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S U M M A R Y
This paper introduces a novel approach to constructing an effective pre-conditioner for finite-
difference (FD) electromagnetic modelling in geophysical applications. This approach is based
on introducing an FD contraction operator, similar to one developed for integral equation for-
mulation of Maxwell’s equation. The properties of the FD contraction operator were established
using an FD analogue of the energy equality for the anomalous electromagnetic field. A new
pre-conditioner uses a discrete Green’s function of a 1-D layered background conductivity. We
also developed the formulae for an estimation of the condition number of the system of FD
equations pre-conditioned with the introduced FD contraction operator. Based on this estima-
tion, we have established that the condition number is bounded by the maximum conductivity
contrast between the background conductivity and actual conductivity. When there are both
resistive and conductive anomalies relative to the background, the new pre-conditioner is ad-
vantageous over using the 1-D discrete Green’s function directly. In our numerical experiments
with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast,
the method accelerates convergence of an iterative method (BiCGStab) by factors of 2–2.5,
and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the
discrete 1-D Green’s function as a pre-conditioner.

Key words: Numerical solutions; Numerical approximations and analysis; Electromagnetic
theory; Magnetotellurics; Marine electromagnetics.

1 I N T RO D U C T I O N

Interpretation of electromagnetic (EM) geophysical data as well as
EM survey design require an efficient forward modelling method.
There are several major techniques of 3-D EM modelling which
have found wide applications in geophysics—integral equations
(IE; e.g. Dmitriev 1969; Hohmann 1975; Weidelt 1975; Newman
et al. 1986; Hursan & Zhdanov 2002), finite difference (FD; e.g.
Yee 1966; Druskin & Knizhnerman 1994; Mackie et al. 1994; Weiss
& Newman 2002; Weiss & Constable 2006; Maaø 2007) and fi-
nite element methods (e.g. Marinenko et al. 2009; Cai et al. 2014;
Koldan et al. 2014). Each of these methods has its own advantages
and disadvantages (Avdeev 2005; Zhdanov 2009). There are sev-
eral principal differences and related advantages and disadvantages
between the IE and FD methods. For example, the system of FD
equations has a sparse matrix, while the system of IE equations
is described by a full matrix. The standard IE approach is usually
based on the uniform grid in the horizontal directions, while the
FD method can use arbitrary stretched discretization grids. There
are quite a few other fundamental differences, which were analysed
in depth in literature. In this paper we discuss the finite-difference
approach, as it combines simple implementation and flexibility.

The most time-consuming step in FD modelling is the solution of
the corresponding system of linear equations. This system is sparse,
complex and generally quite large. Beyond that, the system is very
ill conditioned due to the large ratio of the size of the computa-
tional domain to the smallest grid step (Druskin & Knizhnerman
1994) and to the presence of a highly resistive air layer. The use of
upward continuation procedure allows elimination of the resistive
air layer (Weidelt 2000; Commer & Newman 2004) and subsequent
improvement of the system matrix condition number. However, the
procedure is difficult to implement when the earth’s surface has any
topographic features.

The choice of an efficient method of solving the linear sys-
tem of FD equations is crucial in order to minimize the execu-
tion time of forward modelling algorithms. This is especially im-
portant for EM inversion requiring sequential solution of multiple
forward problems. Recently, significant advances have been made
in developing the direct solvers for forward EM problems (e.g.
Streich 2009; da Silva et al. 2012; Grayver et al. 2013; Jaysaval
et al. 2014). However, the direct solvers still impose challenging
memory requirements for large-scale 3-D problems, which makes
the iterative solvers more attractive in geophysical applications
(Saad 2003).

1718 C© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society.

mailto:nbyavich@gmail.com


Contraction pre-conditioner in FD EM modelling 1719

The performance of an iterative solver is essentially dictated by its
pre-conditioners. A diagonal or Jacobi pre-conditioner may be used
(see, e.g. Newman & Alumbaugh 2002; Cai et al. 2014). However,
its performance degrades after a few tens of iterations. More effi-
cient pre-conditioners have been developed based, for example, on
explicit enforcement of the charge conservation law (Smith 1996),
or on sequential relaxation in a hierarchy of computational grids
(i.e. multigrid; Arnold et al. 2000; Mulder 2008, 2007; Yavich &
Scholl 2012) or on incomplete factorization, (i.e. ILU; Um et al.
2013; Grayver & Bürg 2014; Puzyrev & Cela 2015) or on domain
decomposition methods (Ren et al. 2014). Zaslavsky et al. (2011)
introduced a pre-conditioner based on the FD Green’s functions
computed for the horizontally layered background model. That ap-
proach was shown to be practical for a variety of large complex
problems. Zaslavsky et al. (2011) also demonstrated that Green’s
function based pre-conditioner was efficient, memory-economical,
and an improvement over those now used in practice (e.g. a sparse
direct solver).

In the work by Singer (1995), Zhdanov & Fang (1997), Hursan &
Zhdanov (2002), Zhdanov (2002), Singer et al. (2003) and Singer
(2008), a novel approach to constructing a pre-conditioner for the
IE method was introduced based on a specially chosen contraction
operator (CO). This approach takes into account the physical nature
of the system of IE equations and uses the pre-conditioner based
on the energy inequality for the anomalous EM field (Pankratov
et al. 1995). This inequality represents the fundamental physical
fact that the energy flow of the anomalous EM field outside the
domain with anomalous conductivity is always non-negative. The
goal of our paper is to demonstrate that the idea of using the CO,
successfully developed for the IE method, could be applied to the FD
solutions as well. At the same time we keep all the benefits that FD
provides over IE. For example, efficient modelling on non-uniform
computational grids, accommodation of complex geometries, as
well as semi-infinite and infinite bodies.

We introduce a finite-difference analogue of the IE CO. The FD
CO is then used to develop a new pre-conditioner for effective FD
modelling. We also analyse the condition number in order to de-
termine for which models a contraction pre-conditioner is more
beneficial than the conventional Green’s functions pre-conditioner.
We illustrate the performance of the developed approach with nu-
merical examples including 3-D land magnetotelluric (MT) and
marine controlled-source EM modelling.

2 D I F F E R E N T I A L F O R M U L AT I O N O F
A N E L E C T RO M A G N E T I C F O RWA R D
M O D E L L I N G P RO B L E M A N D E N E RG Y
E Q UA L I T Y

We begin with a short summary of the basic differential equations
used in an EM forward modelling problem and their finite differ-
ence approximation. The electrical conductivity of the geoelectrical
model in a general case is a real-valued, positive function of spatial
variables, σ = σ (x, y, z). In a general case, the conductivity is as-
sumed to be non-zero in the air. The electric field, E = E(x, y, z),
satisfies the following second order differential equation:

curl curl E − iωμ0σ E = iωμ0 J, (1)

where J = J(x, y, z) is a known current density in the source, i is
the complex unity, ω is the angular frequency and μ0 is the magnetic
permeability of the vacuum. This equation is completed with the
corresponding boundary conditions at infinity (Zhdanov 2009).

The magnetic field, H = H(x, y, z), can be determined using
Faraday’s law,

H = 1

iωμ0
curl E. (2)

Following the conventional approach to EM forward modelling,
which allows us to avoid a singularity in the source (Zhdanov 2009),
we assume that the total conductivity is a superposition of the back-
ground and anomalous parts, σ (x, y, z) = σ b(x, y, z) + σ a(x, y, z),
and we represent the electric and magnetic fields as a sum of the
background and anomalous components, respectively:

E(x, y, z) = Eb(x, y, z) + Ea(x, y, z),

H(x, y, z) = Hb(x, y, z) + Ha(x, y, z), (3)

where σ a(x, y, z) is non-zero within an anomalous domain only.
We call the anomalous domain the volume(s), D, where σ (x, y, z)
differs from σ b(x, y, z). The anomalous domain may not be bounded
or connected. The background and anomalous electric fields satisfy
the following equations:

curl curl Eb − iωμ0σb Eb = iωμ0 J, (4)

curl curl Ea − iωμ0σb Ea = iωμ0 Ja, (5)

where Ja = σa(Ea + Eb) is the density of the excess electric cur-
rent within the domain with anomalous conductivity. The advan-
tage of this approach is that we can use the known solutions for
the background field and solve the differential equations for the
anomalous field only. For example, in a case where the horizontally
layered background model is excited by an electric or magnetic
dipole, the background electric field could be found explicitly using
the Hankel transform (Zhdanov 2009). We thus will assume that
the background model is invariant to the horizontal coordinates,
σ b(x, y, z) ≡ σ b(z).

The differential equations (5) are solved in a bounded rectangu-
lar hexahedral computational domain V and completed with zero
Dirichlet boundary condition on its boundary S,

Ea × ν = 0, (6)

where ν is the unit outward normal for S.
Interestingly, the energy inequality (Pankratov et al. 1995; Zh-

danov & Fang 1997) takes the form of an equality for the systems (5)
and (6) and under the introduced assumption that the conductivity
is real-valued. Let us derive this equality as it will play an important
role in the discussion later. Scalar multiplication of eq. (5) by E∗

a

and integration over V gives us the following equation:∫
V

E∗
a · curl curl EadV − iωμ0

∫
V

σb E∗
a · EadV

= iωμ0

∫
V

E∗
a · JadV . (7)

The following integral identity is known (see, e.g. Van Bladel 2007)
to hold for any two vector-functions, F and G,∫

V
F · curl GdV =

∫
V

G · curl FdV +
∫

S
F · (ν × G)dS. (8)

Applying it to the first term of eq. (7), we receive:∫
V

|curl Ea |2 dV +
∫

S
E∗

a · (ν × curl Ea)dS

− iωμ0

∫
V

σb |Ea |2 dV = iωμ0

∫
V

E∗
a · JadV . (9)



1720 N. Yavich and M.S. Zhdanov

The integrand of the surface integral is equivalent to [curl Ea ·
(E∗

a × ν)]. This expression is zero due to eq. (6) and consequently
the surface integral vanishes,∫

V

|curl Ea |2 dV − iωμ0

∫
V

σb |Ea |2 dV

= iωμ0

∫
V ∩D

E∗
a · JadV . (10)

where we have reduced the volume integration in the right-hand
side to the intersection of domains D and V, because excess electric
current, Ja , vanishes outside the anomalous domain D. By dividing
by iωμ0 and taking the real part, we finally arrive at the following
energy equality:∫

V
σb |Ea |2 dV + Re

∫
V ∩D

E∗
a · JadV = 0. (11)

It states that all the energy emitted by the excess electric current
within the domain with anomalous conductivity is converted into
Joule heating within the computational domain. This result is justi-
fied because eq. (6) states that there is no electric field propagation
outside the domain of computations, V. In Appendix B, we have
proved that the FD approximations of the anomalous electric field
and current satisfy a discrete energy equality.

3 L I N E A R S Y S T E M S O F
F I N I T E - D I F F E R E N C E E Q UAT I O N S
A N D T H E C O R R E S P O N D I N G
P R E - C O N D I T I O N E R S

Differential equations (1) or (5) for total or anomalous electric
fields can be transformed into the systems of algebraic equations
using the finite-difference discretization (e.g. Yee 1966; Druskin &
Knizhnerman 1994; Mackie et al. 1994; Weiss & Newman 2002;
Weiss & Constable 2006). For completeness, the details of this
discretization on a staggered grid are given in Appendix A. The
linear system of algebraic equations corresponding to differential
eq. (1) has the following form:

Ae = iωμ0 j , (12)

where vector e ∈ C
n is the discrete total electric field and j ∈ C

n

is the discrete current density, and n is defined in eq. (A7).
The system matrix A is complex, square, sparse, non-singular

and has at most 13 non-zero entries per row. The system matrix
inherits some properties of the differential operator involved in (1).
In particular, the matrix admits the following splitting:

A = R − iωμ0�, (13)

where R is a real-valued matrix corresponding to FD discretization
of the curl-curl operator, � is a diagonal real positive-definite matrix
with its diagonal values equal to the edge-sampled conductivities
σ (x, y, z) (A5).

Following the way we decomposed the total conductivity and EM
fields into their background and anomalous parts in the previous
section, we introduce a finite-difference approximation of eq. (4):

Abeb = iωμ0 j , (14)

where eb is a vector of the discrete background electric field on
the staggered grid, Ab is the system matrix corresponding to the
operator of eq. (4),

Ab = R − iωμ0�b, (15)

and �b is a diagonal matrix with edge-sampled background conduc-
tivity, σ b. We can also define discretized anomalous conductivity,
�a , which is related with � and �b as follows: � = �b + �a .
Obviously, the finite-difference approximation of eq. (5) for the
anomalous electric field, ea , takes the following form:

Abea = iωμ0 ja, (16)

where ja is a vector of discrete excess electric current:

ja = �a(ea + eb). (17)

As it was discussed in the Introduction, the most effective way of
solving the matrix equations (12) and (16) for large-scale problems
is based on iterative methods and the use of the corresponding
pre-conditioners. There are many different methods of introducing
pre-conditioners for a general matrix equation. The most general
expression for a pre-conditioned matrix eq. (12) can be written as
follows:

M1 AM2

(
M−1

2 e
) = iωμ0 M1 j , (18)

where M1 and M2 are the left and right pre-conditioners, respec-
tively.

Formula (18) can be presented in an equivalent way as follows,

Ãẽ = iωμ0 j̃ , (19)

where Ã = M1 AM2, ẽ = M−1
2 e, j̃ = M1 j . The pre-conditioners

are usually selected in such a way that matrix Ã = M1 AM2 is
better conditioned than A, which ensures a better convergence of
the applied iterative method.

In many cases, one can use the left pre-conditioner only, assuming
that M2 = I , where I is the identity matrix. For example, Zaslavsky
et al. (2011) suggested using a volume integral equation approach
to arrive at an effective pre-conditioning operator for the FD solver
for the magnetic field. In our formulation, this pre-conditioner can
be formally defined as M1 = A−1

b , where Ab is the system matrix
defined in eq. (15). Thus, the pre-conditioned system of equations
takes the following form:

Ã′e = iωμ0 j̃ ′, (20)

where Ã′ = A−1
b A and j̃ ′ = A−1

b j .
The pre-conditioned eq. (16) for the anomalous field can be writ-

ten as follows:

ea = iωμ0 A−1
b �a (ea + eb). (21)

We can introduce a discrete Green’s operator for the background
media, Gb,

Gb = iωμ0 A−1
b , (22)

and write the pre-conditioned eq. (21) as follows:

ea = Gb �a (ea + eb). (23)

Thus, we can see that computing the pre-conditioner based on the
background model is equivalent to the calculation of the discrete
Green’s operator. This approach is especially efficient in the case of
a layered background conductivity model, because there is a tech-
nique available for inverting Ab via discrete separation of variables
(Martikainen et al. 2003; Zaslavsky et al. 2011). The arithmetical
complexity to compute A−1

b u for arbitrary u ∈ C
n on a non-uniform

grid is O(NxNyNz(Nx + Ny)), and the auxiliary memory needed is
O(n). Under the assumption that Nx,Ny and Nz are of the same order,
the complexity is equal to O(n4/3) due to (A7).
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The multiplication by the FD Green’s function, required for com-
puting the pre-conditioner described by eq. (23) involves the fol-
lowing key steps: (1) diagonal scaling to symmetrize the equation
matrix; (2) 2-D forward discrete Fourier transform of Ex , E y and Ez

within each grid layer; (3) find the corresponding spectra by solving
seven- and tridiagonal systems (4) 2-D inverse Fourier transform
of the spectra; and (5) removing the impact of diagonal scaling.
The interested reader is referred to the papers mentioned above for
technical details.

Let us estimate the condition number of the pre-conditioned sys-
tem (20). Assume that the following double inequality holds:

ασb(z) ≤ σ (x, y, z) ≤ βσb(z), 0 < α ≤ 1 ≤ β, (x, y, z) ∈ V .

(24)

This inequality means that the anomalous domains are neither per-
fect conductors nor insulators. With the help of eq. (A5), an analo-
gous inequality for the coefficient matrices can be derived:

α�b ≤ � ≤ β�b. (25)

Let us introduce a pseudo-scalar product in the complex linear
space C

n :

(u, v) =
∑

ui+ 1
2 j kvi+ 1

2 j k |Vi+ 1
2 j k |

+
∑

ui j+ 1
2 kvi j+ 1

2 k |Vi j+ 1
2 k |

+
∑

ui j k+ 1
2
vi j k+ 1

2
|Vi j k+ 1

2
|. (26)

Here, the first sum involves the discrete entries of ux and vx as well
as the volume around the respective internal x edge. Similarly, the
second sum involves discrete uy and vy, the third involves uz and vz

(see eqs A3 and A4, for notations). This expression does not form
a conventional scalar product; however, a vector norm in C

n could
be defined as follows:

‖u‖2 = (u∗, u), (27)

where the complex conjugation is marked by an asterisk ∗.
We note that matrices A and R are symmetric under the intro-

duced pseudo-scalar product,

(Au, v) = (u, Av), (Ru, v) = (u, Rv), ∀ u, v ∈ C
n . (28)

Moreover, R is a semi-positive definite matrix,

(u∗, Ru) ≥ 0, (29)

These properties of the applied discretization are well known (see,
e.g. Schuhmann & Weiland 2001) and will be used extensively
below.

Using this pseudo-scalar product and eqs (13), (24) and (25), we
can write the following:

|(u∗, Au)| =
√

(u∗, Ru)2 + (u∗, ωμ0�u)2

≤
√

(u∗, β Ru)2 + (u∗, βωμ0�bu)2

= β
√

(u∗, Ru)2 + (u∗, ωμ0�bu)2

= β|(u∗, Abu)|. (30)

Similarly,

|(u∗, Au)| ≥ α|(u∗, Abu)|. (31)

These relations allow us to estimate the condition number of the
pre-conditioned system A−1

b A.

In a case of a system with Hermitian positive-definite matrix
M with a left pre-conditioner Q having the same properties, the
pre-conditioner-related inner product can be introduced:

(u∗, v)Q = (u∗, Qv), (32)

and the condition number can be estimated as follows (Lemma 2.4.1
and Theorem 2.5.1, Quarteroni & Valli 2008),

cond Q−1 M =
max
u �=0

(u∗, Q−1 Mu)Q

(u∗, u)Q

min
u �=0

(u∗, Q−1 Mu)Q

(u∗, u)Q

=
max
u �=0

(u∗, Mu)

(u∗, Qu)

min
u �=0

(u∗, Mu)

(u∗, Qu)

. (33)

In our case, unfortunately, matrices A and Ab are not Hermitian and
are not even normal (they do not commute with their adjoint matri-
ces). Consequently, the above argument is not applicable. Heuristi-
cally, we use the latter fraction to approximate the condition number.
Combining it with eqs (30) and (31), we obtain the following esti-
mate for the condition number:

cond A−1
b A ≈

max
u �=0

∣∣∣∣ (u∗, Au)

(u∗, Abu)

∣∣∣∣
min
u �=0

∣∣∣∣ (u∗, Au)

(u∗, Abu)

∣∣∣∣
≤ β

α
. (34)

This formula is not rigorous, but it provides a useful estimate of
the condition number of the pre-conditioned system A−1

b A, as will
be illustrated by numerical examples. Since the frequency of the
EM field and grid size are not involved in this estimate, the conver-
gence of the chosen pre-conditioned iterative solver is expected to
be invariant with respect to these parameters. However, the right-
hand side of eq. (34) is essentially a measure of the conductivity
contrast; thus, the solver will degrade on models with high-contrast
anomalies. In the next section, we will develop a technique which
significantly improves this result.

4 P R E - C O N D I T I O N E R B A S E D O N T H E
C O N T R A C T I O N O P E R AT O R

Estimate (34) is similar to that of the conventional IE method. That
method is known to have difficulties for models with high con-
ductivity contrast. In order to mitigate this problem the papers by
Pankratov et al. (1995), Singer (1995), Zhdanov & Fang (1997),
Hursan & Zhdanov (2002), Singer (2008) and Zhdanov (2009) de-
veloped a contraction integral equation operator and illustrated its
robustness. In this section, we will derive an FD CO similar to one
introduced in Hursan & Zhdanov (2002) and Zhdanov (2002) and
will analyse the condition number of the respective problem.

Following the strategy of Zhdanov & Fang (1997), Hursan &
Zhdanov (2002) and Zhdanov (2002), we introduce a modified FD
Green’s operator according to the following formula:

GM
b = 2iωμ0�

1
2
b A−1

b �
1
2
b + I . (35)

Using this operator, eq. (23) can be written in an equivalent form
as follows:

êa = GM
b K 2 K−1

1 êa + iωμ0�
1
2
b A−1

b �a eb, êa = K 1ea, (36)

where K 1, K 2 are diagonal matrices,

K 1 = 1

2
(� + �b)�

− 1
2

b , K 2 = 1

2
(� − �b)�

− 1
2

b . (37)

By introducing a new operator,

C = GM
b K 2 K−1

1 , (38)
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we rewrite system (36) as follows:

êa = Cêa + iωμ0�
1
2
b A−1

b �a eb. (39)

Finally, we arrive at the following pre-conditioned system of
equations for the scaled anomalous electric field:

(I − C )̂ea = iωμ0�
1
2
b A−1

b �a eb. (40)

An important feature of the above equation is that operator C is
a CO. Let us prove this by deducing an estimate of the norm of C.
We will also determine the condition number of (I − C), which is
the system matrix of (40) and compare it with that of (23).

Note that Zhdanov & Fang (1997) and Zhdanov (2002, 2009) uti-
lized the energy inequality for the anomalous field in order to prove
a similar result for an integral equation operator. This inequality
states that the energy flow of the anomalous EM field outside the
anomalous domain is always non-negative (Zhdanov 2002, 2009).
It was shown in Section 2 that the energy inequality takes the form
of equality (11) when we complete Maxwell’s equations with zero
Dirichlet boundary conditions. In Appendix B, we have proved that
FD approximations of the anomalous electric field and current, ea

and ja , satisfy a discrete energy equality,∥∥∥∥�
1
2
b ea

∥∥∥∥2

+ Re(ea, j∗
a) = 0. (41)

Applying some simple algebra, we can rewrite the equality as fol-
lows:∥∥∥∥�

1
2
b ea + 1

2
�

− 1
2

b ja

∥∥∥∥2

=
∥∥∥∥1

2
�

− 1
2

b ja

∥∥∥∥2

. (42)

Now, we substitute expression ea = iωμ0 A−1
b ja into the last equal-

ity:∥∥∥∥iωμ0�
1
2
b A−1

b ja + 1

2
�

− 1
2

b ja

∥∥∥∥2

=
∥∥∥∥1

2
�

− 1
2

b ja

∥∥∥∥2

. (43)

Introducing a new vector v = 1
2 �

− 1
2

b ja , and taking into account eq.
(35), we obtain:∥∥∥∥2iωμ0�

1
2
b A−1

b �
1
2
b v + v

∥∥∥∥2

= ∥∥GM
b v

∥∥2 = ‖v‖2. (44)

The last equality evidently proves that operator GM
b has its norm

equal to one:∥∥GM
b

∥∥ = 1. (45)

Equality (45) is the key fact needed to prove that C is a CO.
Indeed, let us calculate its norm:

‖C‖ = ∥∥GM
b K 2 K−1

1

∥∥ ≤ ∥∥K 2 K−1
1

∥∥ . (46)

Thus it remains to estimate the norm of K 2 K−1
1 . This product is a di-

agonal matrix and its norm is equal to the largest entry. Substituting
expressions for K 1 and K 2, we obtain∥∥K 2 K−1

1

∥∥ =
∥∥∥(

�−1
b � − I

) (
�−1

b � + I
)−1

∥∥∥ . (47)

The non-zero entries of matrix �−1
b � belong to [α, β] due to in-

equality (25). Consequently, computation of the norm in (47) is
equivalent to solution of the following optimization problem:

∥∥K 2 K−1
1

∥∥ ≤ max
ξ∈[α,β]

|ξ − 1|
ξ + 1

. (48)

The optimization problem on the right-hand side of inequality (48)
can be easily solved, and we obtain∥∥K 2 K−1

1

∥∥ ≤ max

{
1 − α

α + 1
,

β − 1

β + 1

}
. (49)

Since both of the fractions are less than one, we finally conclude

‖C‖ ≤ ∥∥K 2 K−1
1

∥∥ < 1. (50)

This completes the proof that C is a CO.
Let us equivalently rewrite the later estimates:

‖C‖ ≤ 1 − 2 min

{
α/(α + 1),

1

β + 1

}
. (51)

The fundamental result is that C is a CO for media of any contrast,
though its norm approaches 1 in the limiting cases.

The performance of iterative solvers depends on the condition
number of the system matrix of equation (40). Let us find the con-
dition number of (I − C). For any CO C the following estimate
for the condition number could be derived (see Appendix C for the
proof):

cond(I − C) ≤ 1 + ‖C‖
1 − ‖C‖ . (52)

Combining this formula with inequality (51) gives us

cond(I − C) ≤ max

{
1

α
, β

}
. (53)

In order to conclude our analysis of the two solvers, let us
compare estimates (34) and (53) for the condition numbers of
the two pre-conditioned systems. The two estimates provide a
clear indication on how the two pre-conditioners are expected to
perform.

We can see from these estimates that the convergence will be ap-
proximately the same for the models formed by conductive anoma-
lies only (α = 1, β ≥ 1) as for those formed by resistive anomalies
only (α ≤ 1, β = 1). However, in a general case we may have both
the conductive and resistive anomalies in the geoelectrical model (α
< 1, β > 1). In this situation, the solver based on the pre-conditioner
formed by the CO will converge faster than with the pre-conditioner
based on the background model. Note that the computational effort
of the CO differs from the use of the background model Green’s

function in scaling by diagonal matrices K 2 K−1
1 , �

1
2
b and 2iωμ0�

1
2
b ,

and two added vector additions from I terms in eqs (35) and (40).
Since this effort is minor relative to that of computation A−1

b u, we
expect a better convergence of the FD solver based on the CO than
of that based on the background model, and also a smaller CPU
time. We will illustrate the performances of the developed methods
in the next section.

5 N U M E R I C A L E X P E R I M E N T S

In this section, we present a numerical comparison of the two pre-
conditioners discussed and analysed earlier. The first one is based
on the discrete Green’s function for the layered background model
(i.e. eq. 23) and will be abbreviated as FD 1-D, while the second one
is based on the designed CO (eq. 40) and will be abbreviated as CO.
For an iterative solver we use BiCGStab (van der Vorst 1992; Saad
2003) for both pre-conditioners. This iterative solver performs two
residual norm checks at each iteration. If the requested tolerance is
achieved at the first check, the solver stops, and this corresponds to
a fractional iteration number Nit. If the tolerance is achieved at the
second check, this corresponds to a whole iteration number.
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Figure 1. Two bodies having resistivities of ρ1 = 10 and ρ2 = 1000 �m,
respectively, embedded in a half-space with a resistivity of 100 �m; the
receivers are marked as triangles.

Table 1. Number of iterations and CPU time versus toler-
ance, ε, for the FD 1-D and CO pre-conditioners; ρ1 = 10
and ρ2 = 1000 �m.

FD 1-D CO

ε Nit t Nit t

1e-4 12.0 108 6.5 62
1e-6 23.5 209 10.5 99
1e-8 38.5 340 14.5 128
1e-10 45.0 405 18.0 171
1e-12 56.5 503 21.0 195

5.1 Modelling magnetotelluric data

In order to test the discussed pre-conditioning algorithms, we con-
sidered a model adopted from Mehanee & Zhdanov (2002). The
model is formed by two bodies 2 × 2 × 2 km3 each, having
resistivities of ρ1 = 10 and ρ2 = 1000 �m respectively, and
buried 1 km below the earth’s surface (Fig. 1). The distance
between the bodies is 4 km. The background is a half-space

with a uniform resistivity of 100 �m. The model is excited
by a 0.1 Hz incident plane wave. The receivers are placed ev-
ery 250 m along a 12 km line which spans the bodies and is lo-
cated symmetrically with respect to the inclusions, as shown in
Fig. 1.

For this test, a non-uniform grid of 174 × 160 × 70 cells was
generated with the smallest cell size 250 × 250 × 250 m3; the
discrete problem involved 5 744 364 unknowns. The computational
domain spanned for 300 km in the horizontal directions and for
120 km in the vertical direction. A much smaller grid might have
been used for this model. However, we used this fairly large grid
for testing the effectiveness of the developed pre-conditioners. For
each execution of the iterative solver, we recorded the number of
iterations, Nit, and the CPU time in seconds, t, depending on the
requested residual tolerance (Table 1). Fig. 2 illustrates the conver-
gence process for the two pre-conditioners as well as for the Jacobi
pre-conditioner.

Both the FD 1-D and CO pre-conditioned solvers were able to
tackle this high-contrast problem, though the CO pre-conditioner
was approximately twice more efficient than the FD 1-D pre-
conditioner in this case. For the Jacobi pre-conditioner, 100 iter-
ations were clearly not enough to reach a decent accuracy. The
time needed for BiCGStab to perform 100 Jacobi pre-conditioned
iteration was 160 s, implying that time spent on one iteration was
1.6 s. A similar parameter for a CO pre-conditioned iteration was
9.4 s. This means that a CO pre-conditioned iteration in this ex-
ample took only about 6 times more than that of Jacobi. There is
little difference in expense per iteration between the FD 1-D and the
CO pre-conditioner as it was shown in the previous section. Fig. 3
presents plots of the real and imaginary parts of electric field Ex

Figure 2. The plots of the l2-norm of relative residuals versus iteration count for the FD 1-D pre-conditioner (blue line), contraction operator (red line) and
Jacobi pre-conditioners (black line), respectively; ρ1 = 10 and ρ2 = 1000 �m.
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Figure 3. Real and imaginary parts of the electric field Ex along the profile; ρ1 = 10 and ρ2 = 1000 �m.

Table 2. Number of iterations and CPU time versus resistiv-
ity for the BiCGStab accuracy tolerance of ε = 1e-6.

FD 1-D CO

ρ1 ρ2 Nit t Nit t

10 10 10.0 92 10.0 94
40 10 11.0 104 10.0 94
1000 1000 6.5 61 7.5 71
400 1000 8.0 74 9.0 86
10 1000 23.5 209 10.5 99

along the profile. We observed a decent sensitivity of the response
to the anomalous bodies.

We also varied the resistivities of the two inclusions (Fig. 1), while
keeping the background model (ρ = 100 �m), frequency (0.1 Hz),
computational grid (174 × 160 × 70) and accuracy tolerance
(ε = 1e-6) fixed. We observed that the two solvers performed
similarly when both inclusions were either resistive or conductive
(Table 2). If there were both resistive and conductive inclusions,

then the CO pre-conditioner was the fastest. This result was ex-
pected according to estimates (34) and (53).

5.2 Modelling marine CSEM data

In the next set of numerical experiments, we consider a complex
geoelectric model of an offshore oil reservoir (Fig. 4). The model
consists of a 200 m seawater layer with a resistivity of 0.25 �m, three
sedimentary layers (4, 8 and 4 �m), a basement with a resistivity of
200 �m and a 100 �m reservoir. The reservoir has a complex shape
and an approximate size 8 × 6 × 0.2 km3. The model is partially
based on the one tested in Li & Key (2007).

The EM field at a frequency of 0.25 Hz was generated by a
horizontal electric dipole source located at (0, 0, 10) m. An ar-
ray of inline electric receivers was located at the depth of the
source.

In this example, we generated a non-uniform 202 × 182 × 97 grid
with the smallest cell size 125 × 125 × 50 m3; thus, the discrete
problem involved nearly 10 million unknowns. We sampled the
model onto this grid as illustrated in Fig. 5.

Figure 4. Vertical cross-section of the offshore oilfield model: (1) seawater layer, (2) 4 �m sedimentary layer, (3) 8 �m sedimentary layer, (4) 4 �m sedimentary
layer, (5) 100 �m hydrocarbon deposit, (6) 200 �m basement.
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Figure 5. Volume view of the offshore oilfield model sampled onto computational grid cells.

Table 3. Iteration count and CPU time in mod-
elling of the CSEM data for the offshore oilfield
model.

FD 1-D CO

Nit t Nit t

148.0 3407 31.5 733

As in the previous examples, we tested the BiCGStab iterative
solver leveraged with the FD 1-D and CO pre-conditioners. The it-
eration count and execution time are shown in Table 3. We observed
that the use of the CO pre-conditioner gave us a speed-up of almost
five times. This result can be explained as follows. Due to variations
of the basement depth, the horizontal contrast coefficients (24) are
equal to α = 1/50 and β = 50. Substitution of these values into con-
dition number estimates (34) and (53) suggests that the condition
number for the CO system is 50 times smaller, implying

√
50 ≈ 7

times faster convergence. This is what we roughly observed in the
numerical tests.

We finalized this test with an illustration of the simulated re-
sponses for the oilfield model. Fig. 6 shows the response for the
models with and without a hydrocarbon deposit. We observed a
sensitivity of about 19 per cent for the amplitude and about 12◦ for
the phase of the electric field response.

6 C O N C LU S I O N S

In this paper, we have introduced a novel pre-conditioner for the
FD system of EM equations. This pre-conditioner represents an

FD analogue of the well-known pre-conditioner of the system
of the EM integral equations based on the CO. The new pre-
conditioner can be easily constructed using the known conduc-
tivity distribution in the model. This pre-conditioner makes it pos-
sible to speed up the convergence of the iterative solvers of the
FD equations significantly. We have also demonstrated that this
pre-conditioner provides a better condition number for the sys-
tem of FD equations than the one based on the discrete Green’s
function for the background EM model only. This result was il-
lustrated with numerical examples for different geophysical ap-
plications. Beyond this, both of the pre-conditioners are very
memory-economical.

Future research will be aimed at extending the developed algo-
rithms for the cases of anisotropic geoelectrical models, which will
be the subject of another paper.
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Figure 6. Sensitivity of the electric field data to the hydrocarbon deposit.
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A P P E N D I X A : D I S C R E T I Z AT I O N O F
T H E E L E C T R I C F I E L D E Q UAT I O N S
U S I N G A S TA G G E R E D G R I D

In this appendix, we introduce discrete unknowns to approximate
the electric field on a staggered grid. To simplify the notations, we
will limit our discussion to eq. (1), although discretization of eq. (5)
could be obtained in a similar way.

We assume that some non-uniform Cartesian grid covering com-
putational domain V is given. An actual algorithm to generate such
a grid is based on the notion of skin depth and is not discussed in
this note. Let us denote grid lines as

{xi }, i = 1..Nx + 1,

{y j }, j = 1..Ny + 1,

{zk}, k = 1..Nz + 1, (A1)

where Nx, Ny and Nz are grid cell numbers in the respective direc-
tions. We also need staggered grid lines,

xi+ 1
2

= 1

2
(xi+1 + xi ), i = 1..Nx ,

y j+ 1
2

= 1

2
(y j+1 + y j ), j = 1..Ny,

zk+ 1
2

= 1

2
(zk+1 + zk), k = 1..Nz . (A2)

Finally, we need volumes associated with each internal edge of the
grid:

Vi+ 1
2 j k = [xi , xi+1] × [

y j− 1
2
, y j+ 1

2

] × [
zk− 1

2
, zk+ 1

2

]
,

Vi j+ 1
2 k = [

xi− 1
2
, xi+ 1

2

] × [
y j , y j+1

] × [
zk− 1

2
, zk+ 1

2

]
,

Vi j k+ 1
2

= [
xi− 1

2
, xi+ 1

2

] × [
y j− 1

2
, y j+ 1

2

] × [
zk, zk+1

]
. (A3)

The FD method approximates (Yee 1966; Monk & Süli 1994) the
unknown electric field E = (Ex, Ey, Ez) with a finite set of discrete
values {Ei+ 1

2 j k, Ei j+ 1
2 k, Ei j k+ 1

2
},

Ei+ 1
2 j k ≈ Ex

(
xi+ 1

2
, y j , zk

)
,

Ei j+ 1
2 k ≈ Ey

(
xi , y j+ 1

2
, zk

)
,

Ei j k+ 1
2

≈ Ez

(
xi , y j , zk+ 1

2

)
. (A4)

Each discrete value is associated with the respective edge of the FD
grid, Fig. A1.

In the derivations, we use σi+ 1
2 j k , σi j+ 1

2 k , σi j k+ 1
2
, which are

edge-sampled conductivities. For example, in the framework of the
so-called integro-interpolation scheme for coefficients averaging
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Figure A1. Finite-difference cell.

(Moskow et al. 1999; Tikhonov & Samarskii 1999; Commer &
Newman 2008), we have

σi+ 1
2 j k = xi+1 − xi(

y j+ 1
2

− y j− 1
2

) (
zk+ 1

2
− zk− 1

2

)

×

⎛
⎜⎜⎝

xi+1∫
xi

⎛
⎜⎜⎝

z
k+ 1

2∫
z

k− 1
2

y
j+ 1

2∫
y

j− 1
2

σ (x, y, z)dydz

⎞
⎟⎟⎠

−1

dx

⎞
⎟⎟⎠

−1

. (A5)

Note that there exist more advanced material-averaging schemes
(Moskow et al. 1999). However, in this paper we use a standard
integro-interpolation scheme for simplicity.

Finally, we also use the sampled source,

Ji+ 1
2 j k = 1∣∣∣Vi+ 1

2 j k

∣∣∣
∫

V
i+ 1

2 j k

Jx (x, y, z)dV, (A6)

and similarly Ji j+ 1
2 k and Ji j k+ 1

2
are defined.

The actual discrete equations can be found, for example, in Weiss
& Newman (2002). Fig. A2 illustrates the obtained stencils of the
equations. The presented discretization is known to have locally first
order accuracy, while globally it has second-order accuracy (Monk
& Süli 1994). In practice, this implies that we prefer equidistant
grids near the receiver locations.

Let us form the unknown vector e of the discrete electric fields
{Ei+ 1

2 j k, Ei j+ 1
2 k, Ei j k+ 1

2
} introduced above. First we enumerate

the electric fields assigned to the edges parallel to the x axis, then
those parallel to y, and finally those parallel to z. Within each set of
edges, we assume the lexicographic x − y − z order. If we denote
as n the total number of internal edges, then the FD electric field e
belongs to the complex linear space C

n ,

n = Nx (Ny − 1)(Nz − 1)

+ (Nx − 1)Ny(Nz − 1) + (Nx − 1)(Ny − 1)Nz . (A7)

Using the same enumeration, we form a right-hand vector j ∈ C
n of

{Ji+ 1
2 j k, Ji j+ 1

2 k, Ji j k+ 1
2
}. Now we can write the FD discretization

of eq. (1) in a matrix form:

Ae = iωμ0 j . (A8)

Some properties of A were discussed in Section 3.

A P P E N D I X B : D I S C R E T E E N E RG Y
E Q UA L I T Y

In this appendix, we introduce a discrete energy equality, which
is used in determining the properties of the FD CO. The deriva-
tion of the discrete equation is similar to that of the continuous
equation (11), however, we present this derivation for complete-
ness. This derivation relies on semi-positiveness of FD curl-curl
matrix R (see eq. 29).

Let us substitute eq. (15) into eq. (16),

Rea − iωμ0�bea = iωμ0 ja . (B1)

Using the pseudo-scalar product (26), let us multiply this equation
by e∗

a :

(e∗
a, Rea) − iωμ0(e∗

a, �bea) = iωμ0(e∗
a, ja). (B2)

Dividing by iωμ0, taking the real part, and noting semi-positiveness
of R (29), we obtain:

(e∗
a, �bea) + Re(e∗

a, ja) = 0. (B3)

The last equality can be rewritten as follows using the definition of
the norm (27),∥∥∥∥�

1
2
b ea

∥∥∥∥2

+ Re(ea, j∗
a) = 0. (B4)

This completes the proof of the discrete energy equality. As for its
continuous version (11), it states that the energy introduced through
the anomalous currents is equal the radiated Joule heating.

A P P E N D I X C : C O N D I T I O N N U M B E R
O F A N E Q UAT I O N S Y S T E M I N V O LV I N G
A C O N T R A C T I O N O P E R AT O R

We consider eq. (40) written in a compact form as follows:

(I − C)u = f , (C1)

Figure A2. Discretization stencils for eq. (1).
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with C being a CO, that is, ‖C‖ < 1, I is the identity matrix and

f = iωμ0�
1
2
b A−1

b �a eb is a known complex vector. In this appendix,
we estimate the condition number of this system, given by the
following formula:

cond(I − C) = ‖I − C‖‖(I − C)−1‖. (C2)

Using basic properties of the norm, we find

‖I − C‖ ≤ 1 + ‖C‖. (C3)

To estimate the second multiplier in eq. (C2), we use Neumann
series expansion:

‖(I − C)−1‖ =
∥∥∥∥∥

∞∑
k=0

Ck

∥∥∥∥∥ ≤
∞∑

k=0

‖C‖k = 1

1 − ‖C‖ . (C4)

Combining these inequalities, we finally determine the condition
number of this system:

cond(I − C) ≤ 1 + ‖C‖
1 − ‖C‖ . (C5)


