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A B S T R A C T

This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral
equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but
leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by
applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast
Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-
difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several
methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and
computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method
could accurately calculate the seismic field for the models with sharp material boundaries and a point source and
receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while
MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources.
The practical examples and efficiency tests are presented as well.
1. Introduction

Modeling of wave propagation within the Earth is the cornerstone of
seismic full-waveform inversion (FWI). Performing inversion in the fre-
quency domain has many advantages, the most important of which is the
possibility to invert only a few frequencies in a sequential manner,
avoiding trapping to local minima (Virieux and Operto, 2009).

One of the most effective approaches to large frequency-domain
simulation of acoustic waves is the finite-difference (FD) method
accompanied with an iterative solver. The sparse direct solvers were also
considered (Operto et al., 2007), but they are quite memory consuming.
Performance of FD iterative solvers depends critically on the choice of the
preconditioner applied. There is a number of preconditioners designed to
date (Lahaye et al., 2017), however preconditioning usually requires a
complex implementation. In this paper, we considered integral equations
(IE) modeling, which reduces the size of the problem but increases the
complexity of the matrix-vector multiplication.

In the method of IE (Morse and Feshbach, 1953; de Hoop, 1958; Aki
and Richards, 1980; Carcione et al., 2002; Zhdanov, 2002, 2015) the
total field is split into a background part due to a host model and an
anomalous part due to an anomalous domain. The background part of the
total field is usually calculated in an analytical or semi-analytically
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manner, whereas the anomalous part requires a numerical solution.
The solution within the anomalous model is found in form of the Green's
integral by a numerical method. Therefore, if the model can be divided
into an analytically-solvable host model and a compact anomalous
domain, it may speed-up computations. The IE system matrix is dense,
although relatively small. This fact has been the main obstacle for prac-
tical application of the method for a long time. In a straightforward
implementation with the explicit matrix allocation and factorization, the
computational burden becomes prohibitive for typical problems,
encountered in seismology. Yet, some studies, many of them for the two-
dimensional solution, have been reported (Johnson et al., 1983; Freter,
1992; Fu et al., 1997; Zhang and Ulrych, 2000; Fu, 2003). The applica-
tion of the IE method in the framework of 2D inverse problems was
considered in a number of publications (Wu and Toksoz, 1987; Abubakar
et al., 2003; Jakobsen and Ursin, 2015). There have been also successful
attempts to solve IE for 2D lossless media by means of so-called renor-
malized scattering series that converge for any velocity contrasts
(Jakobsen and Wu, 2016; Yao et al., 2016). One of the effective appli-
cations of the IE method for large-scale 3D seismic modeling has been
performed by (Abubakar and Habashy, 2013). These authors imple-
mented the integral operator for the homogeneous space via the 3D FFT
and applied the BiCGStab solver to the resulting system of linear
2017
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equations achieving the cost per iteration of OðNlogNÞ, where N is the
number of model cells. That study is also interesting in that it develops a
specially designed preconditioner, based on the extension for the seismic
case of the contraction preconditioner originally developed for the IE
method of electromagnetic modeling (Zhdanov and Fang, 1997; Hurs�an
and Zhdanov, 2002; Zhdanov, 2002) and based on the energy inequality
for electromagnetic fields (Pankratov et al., 1995). Similar approach has
been recently reported in (Osnabrugge et al., 2016), who solved Helm-
holtz equation by means of Born series, making use of contraction pre-
conditioner to guarantee convergence in a lossy medium, which is similar
to (Zhdanov and Fang, 1997). Performance of this kind of precondi-
tioners in real applications requires more research, since seismic models
have low or no attenuation apart from absorbing boundary conditions. In
contrast, the contraction-operator approach is routinely used in
geophysical electromagnetic modeling because of strong attenuation of
diffusive electromagnetic fields (Yavich and Zhdanov, 2016).

It is not always realized, that the system matrix, arising from the IE, is
related to the FD system matrix, preconditioned with inverse of the FD
system matrix for the background problem. The more closely the back-
ground model follows the original model, the better the IE system matrix
is conditioned. This is our main motivation to develop the method of IE
for a layered host model. Our matrix-vector multiplication algorithm for
layered backgroundmedia has numerical complexity ofOðN4=3logNÞ and
linear memory consumption.

The IE solution may contain spurious reflections from the boundaries
of the anomalous domain. Previously, research in this field focused on
the accurate computation of reflections from the irregular boundaries of
the anomalous domain, e.g (Fu, 2003). It has been shown that it is
possible to impose absorbing boundary on the IE solution (Alles and van
Dongen, 2009; Osnabrugge et al., 2016). In the present study, we
partially mitigate this problem using a layered background model, since
seismic models are always stratified to some degree. More work on
application of the absorbing boundary conditions for the IE method
should be performed in the future, however, to improve the accuracy of
the modeling results.

There are many publications on numerical implementation and par-
allelization of the IE method for electromagnetic simulation, e.g. (Avdeev
et al., 2002; Abubakar and van den Berg, 2004; �Cuma et al., 2017; Kru-
glyakov and Bloshanskaya, 2017). Acoustic modeling is rather different
in the way how the elements of the integral operator are computed. This
important point is addressed in our paper as well. We discuss different
strategies for shared- and distributed-memory parallelization using
OpenMP and MPI, in connection with the fact, that the system matrix is
dense. We propose a new method for the matrix-vector multiplication
that asymptotically has linearithmic complexity estimate of OðNlogNÞ.

The paper is organized as follows. In Section 2 we discuss the problem
formulation, the numerical method and its implementation. Section 3 is
devoted to numerical experiments based on the developed method. We
benchmark our code with an open-source time-domain finite-difference
software and present several parallelization scalability tests.
Concluding remarks are given in Section 4. A simple and numerically
efficient solution for the Green's function in a layered medium is given in
Appendix A.

Practical examples of using our IE modeling scheme for FWI are given
in the paper (Malovichko et al., 2017).

2. Seismic modeling by the method of integral equations

2.1. Problem formulation

We consider a model consisting of a layered host medium and a 3D
anomalous volume, D . The host medium is a stack of L layers, each of
them is characterized with density, ρj, and P-wave velocity, cj, where the
subscript denotes the host layer index,j ¼ 0::L� 1. We assume that the
anomalous volume, D , is confined to n-th layer with ρb≡ρn and cb≡cn.
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The anomalous volume has the same background density ρb, and arbi-
trary distribution of velocity c ¼ cðrÞ, where r is the position vector of the
observation point. Outside of the anomalous volume, velocity cðrÞ is
equal to the background velocity. Let ω be the circular frequency.
Assuming a lossless medium, we define the wavenumber k ¼ ω=c,
background wavenumber kb ¼ ω=cb and parameter ψ ¼ 1=c2 � 1=c2b .

The pressure field, p, everywhere within the host layer, including the
anomalous domain, satisfies the following Helmholtz equation:

�Δp� ω2

c2
p ¼ f ; (1)

where Δ is the Laplacian and f is the source term. The total pressure p can
be represented as p ¼ pa þ pb, where pb is the background part due to the
host medium and pa is the anomalous (scattered) part due to the volume
with anomalous velocity.

The background field, pb, satisfies the following Helmholtz equation
everywhere within the host layer:

�Δpb � ω2

c2b
pb ¼ f : (2)

Using the standard separation technique (Zhdanov, 2002) we arrive
to the following Helmholtz equation with respect to the anomalous
field, pa,

�Δpa � ω2

c2b
pa ¼ ω2ðpa þ pbÞψ : (3)

The solution of this equation is given by the following expression:

paðrÞ ¼ ω2∫
D

gðrjr0Þðpaðr0Þ þ pbðr0ÞÞψðr0Þd3r0; (4)

where gðrjr0Þ is the background Green's function, the primed coordinates
denote the source position. The problem is solved in two main steps.
First, expression (4) is treated as an integral equation with respect to field
pa within domain D (r 2 D ). We call this equation a domain equation.
Once the field inside the scatterer is found, equation (4) is used again to
calculate field pa in all required exterior points (r∉D ). In this case,
expression (4) is called a field equation. The first step is by far the most
time-consuming and storage-demanding part for realistic problems and
the subsequent discussion is devoted to that part.

By adding pb to both sides of (4) we obtain the following IE with
respect to the total field, p, written in operator form as follows:

p� ω2G ½ψp� ¼ pb; (5)

where G is the integral operator, defined for any scalar field, ϕ,

G ½ϕ� ¼ ∫
D

gðrjr0Þϕðr0Þd3r0: (6)

The background Green's function can be decomposed of primary and
secondary parts,

g ¼ gp þ gs; (7)

which both satisfy the Helmholtz equation. The primary component, gp,
is the free-space Green's function. When the source and receiver are
located in the same layer, gp is nonzero,

gp ¼ eikbR

4πR
; (8)

with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
The secondary part, gs, can be obtained for the horizontally stratified

Earth by using the wavenumber integration technique:
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gs ¼ H 0½~gs�; (9)
where ~gs is the spectral Green's function, and H 0 is the Hankel transform
of zero order (Appendix A).

In two important special cases, function gs can be expressed analyti-
cally. If the host model is homogeneous, then gs is zero. If the host model
consists of a half space with a perfectly reflecting boundary, and both the
source and receiver are located within the half space, then the solution
for gs reduces to the following formula:

gs ¼ �eikbR1

4πR1
; (10)

where R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ2 þ ðy � y0Þ2 þ ðz þ z0Þ2

q
.

Let the anomalous volume, D , be covered with N ¼ NxNyNz cubical
cells of size h3. After discretization we receive the following ma-
trix equation:

Au ¼ b; (11)

where u ¼ fp1::pNg is the vector of N unknown values approximating p in
the center of each cell, b ¼ fpb;1::pb;Ng are known values of the back-
ground field in each cell, A is the scattering matrix,

A ¼ �I � ω2GΨ
�
; (12)

where I is the identity matrix, Ψ ¼ diagðψ1::ψNÞ is a diagonal matrix
formed by contrasts for each cell, G contains integrals of Green's function
over cells,

Gij ¼ ∫
D j

gðrijr0Þd3r0; i; j ¼ 1::N; ri; r0 2 D ; (13)

whereD j is j-th cell. For the following, we will separate matrix G as G ¼
Gs þ Gp as we did in (7), where matrix Gs contains corresponding in-
tegrals of gs, and Gp contains the integrals of gp. To solve system (11) we
used the (unpreconditioned) BiCGStab iterative solver (Saad, 2003).
2.2. The IE system matrix and its relation to the FD matrix

Matrix A is dense complex-valued non-hermitian and non-symmetric.
Its condition number substantially improves at lower frequencies since in
this case matrix spectrum has a weak dependence on the grid step size
and velocity distribution. It is advisable to compare it with a FD matrix
arising from equation (1). Let us consider the Helmholtz equation (1), in
a volume that includes D , completed with boundary conditions. We
introduce the uniform grid with the cell size h. After the finite-difference
discretization we receive a system of linear equations with system ma-
trix, AFD,

AFD ¼ L� ω2Σt; (14)

where L is the discrete version of negative Laplacian, and Σt is the di-
agonal matrix with discrete values of 1=c2 on its main diagonal.

The FD matrix will be much larger than A, sparse, indefinite and
possibly complex (e.g. due to boundary conditions). Its largest eigenvalue
is nearOðh�2Þ. Its least eigenvalue with respect to magnitude can be quite
close to zero whenever the frequency is close to the resonance frequency.
Due to these and some other reasons, the mentioned properties make the
IE equation system more attractive for iterative solution than that of the
FD method.

Let us consider the background Helmholtz problem (2) completed
with the same boundary conditions. The corresponding FD system ma-
trix, B, is defined as follows:

B ¼ L� ω2Σb; (15)
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where Σb is the diagonal matrix with discrete values of 1=c2b on its main
diagonal. We introduce matrix Σa such that Σa ¼ Σt � Σb. Obviously,

AFD ¼ B� ω2Σa: (16)

Multiplying both sides of this equation by B�1, we receive the
following relation

B�1AFD ¼ I � ω2B�1Σa: (17)

We should note that matrices Σa and B�1 are almost identical to
matrices Ψ and G in equation (12), respectively, though they are not
equal because of different discretizations. Thus, preconditioning of FD
matrix AFD with background media matrix B leads to a system with a
structure and properties similar to that of the IE system. Of note, the act
of B�1 can be computed with the method of separation of variables
(Plessix and Mulder, 2003; Belonosov et al., 2017).
2.3. Matrix-vector multiplication

In this section we study several methods for multiplication A by a
certain vector v. Obviously, this task reduces to the computation of
product s ¼ Gv. In the following, we think about matrices/3D arrays as
being split into quadrants/octants. The 2D/3D data are formed into a
single vector using lexicographic numbering. We will use the following
definitions: xm ¼ hðm� NxÞ, yn ¼ hðn� NyÞ, zl ¼ hðl� NzÞ, where
m ¼ 0::2Nx � 1, n ¼ 0::2Ny � 1, and l ¼ 0::2Nz � 1.

2.3.1. Homogeneous space
In a homogeneous host medium gs≡0. Product Gpv can be computed

by the following formula:

Gpv ¼ T1

�
F�1½F½S� F½T2ðVÞ���; (18)

where F½⋅� and F�1½⋅� are forward and inverse operators of 3D FFT of size
2Nx � 2Ny � 2Nz, V is a three-dimensional array of size Nx � Ny � Nz

formed out of elements of v. In (18) the element-wise multiplication is
assumed between the two F operators. Three-dimensional 2Nx � 2Ny �
2Nz array S is defined by the following expression:

Smnl ¼ ∫ xmþh=2
xm�h=2∫

ynþh=2
yn�h=2∫

zlþh=2
zl�h=2g

pð0; 0; 0jx0; y0; z0Þdx0dy0dz0: (19)

Operator T1 takes a three-dimensional 2Nx � 2Ny � 2Nz array and
rearranges its positive octant to a vector of sizeN. OperatorT2 takes a three-
dimensionalNx � Ny � Nz array, places it to the positive octant of a bigger
2Nx � 2Ny � 2Nz array, and fills other octants with zeros. Since gp is sym-
metric,S canbe constructed fromthefirst rowofmatrixGp. These elements,
except for the first one, is computed by quadratures. Element Gp

11 is addi-
tionally discretized in order to approach the limit in the central subcell:

lim
V→0

∫
V
gðrjr0Þd3r0 ¼ 0: (20)

The matrix-vector multiplication, performed by (18), requires three
3D FFTs, though one of them (for S) can be performed once. The nu-
merical complexity of this method is OðNlogNÞ. The memory re-
quirements is OðNÞ.

2.3.2. Layered host model
When the host medium is layered gs≠0 and matrix G has a

block structure,

G ¼
0@ B11 ⋯ B1Nz

⋮ ⋱ ⋮
BNz1 ⋯ BNzNz

1A; (21)

where Bmn is a NxNy � NxNy submatrix, which corresponds to m-th
source cell layer and n-th receiver cell layer. By Gl we denote l-th row of
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blocks of matrixG. By sl we denote the part of vector s that corresponds to
the product of Gl by v, sl ¼ Glv. The effective algorithm for calculating sl
is the following:

sl ¼ R1

 
Φ�1

"XNz

q¼1

Φ
�
Qlq

�
Φ
�
R2

�
Vq

� � #!
; (22)

whereΦ andΦ�1 denote the forward and inverse FFTs of size 2Nx � 2Ny .
The element-wise multiplication is assumed between the two Φ opera-
tors. Matrix Qlq has size 2Nx � 2Ny . Its values are determined as follows:

Qlq ¼ ∫ xmþh=2
xm�h=2∫

ynþh=2
yn�h=2∫

zqþh=2
zq�h=2gð0; 0; zljx0; y0; z0Þdx0dy0dz0: (23)

Matrix Qlq can be constructed from the elements of block Blq. In total
(for all l) it is sufficient to compute only NxNyN2

z elements of matrix G.
Matrix Vq has dimensions Nx � Ny . It is constructed by rearranging the
part of vector v that corresponds to q-th cell layer. Operator R2 transforms
an Nx � Ny matrix into a 2Nx � 2Ny : it puts its argument into the positive
quadrant of the resulting matrix and fills the other quadrants with zeros.
Operator R1 transforms 2Nx � 2Ny matrix into a NxNy vector by taking
the positive quadrant of its argument and rearranging it into the resulting
vector. The full vector s is obtained by applying formula (22) for all
l ¼ 1::Nz. Matrices Φ

�
R2
�
Vq
� �

; q ¼ 1::Nz, can be computed ones for all l.
The algorithm requires Nz þ N2

z double FFTs of size 2Nx � 2Ny and Nz

inverse double FFTs of the same size, totaling to Nzð2þ NzÞ double FFTs.
The overall numerical complexity of the matrix-vector multiplication
algorithm is OðNxNyN2

z logðNxNyÞÞ. The memory consumption is OðNÞ. It
is possible to save computation time by storing NxNyN2

z required values
of G (Kruglyakov and Bloshanskaya, 2017), but it would rise the memory
consumption to OðNxNyN2

z Þ. The matrix-vector multiplication algorithm
described above is exact up to round-off errors.

2.3.3. Reduction of numerical complexity of the matrix-vector multiplication
for the layered background model

In this section we investigate the reduction of numerical complexity
of the matrix-vector multiplication from OðNxNyN2

z logðNxNyÞÞ to
OðNxNyNzlogðNxNyÞÞ. A similar problem was considered in the work
(Avdeev and Knizhnik, 2009) as applied to electromagnetic diffusion
modeling. It can be shown, that our approach is closely related to the
well-known angular spectrum method (Leeman and Healey, 1997).

Term Φ½Qlq� in (22) is a rough approximation of the spectral Green's
function. Its wavenumber resolution in, say, the x direction, is
Δkx ¼ π=ðNxhÞ. This is inadequate, except for the near-field regime. The
approximation error can be made arbitrary small by extending the double
FFT beyond the body extent. We replace operator Φ, whose dimension is
dictated by the body discretization, with a larger operator, ~Φ. Dimensions
of ~Φ is 2M � 2M, where M is a multiple of maxðNx;NyÞ. Letting M to be
larger, we improve wavenumber resolution, π=ðMhÞ, through increase of
memory usage. Operators R1 and R2 are replacedwith wider operators ~R1

and ~R2. They transform a Nx � Ny submatrix of a 2M � 2M matrix into a
NxNy vector and vise versa.

By ~g, ~gp, and ~gs we denote the spectral Green's function, its primary
part, and its secondary part, respectively. Thus we have ~g ¼ ~gpþ~gs. The
expression for ~gs can be written as follows (Appendix A):

~gs ¼ cneikzðz�zn�1Þ þ dneikzðzn�zÞ; (24)

where kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q
, zn�1 and zn are depths of the top and bottom

boundaries of the host layer, cn and dn are some coefficients, which need
to be determined for each value of kz. Coefficients cn and dn do not
depend on the depth of the receiver, and the exponentials do not depend
on the depth of the source. Let us rewrite (24) for z ¼ zq, z0 ¼ zl as

~gs�kx; ky; zl; zq� ¼ ~Clq þ ~Dlq; (25)
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with

~Clq ¼ cn
�
kx; ky; zl

�
eiðzq�zn�1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2�k2x�k2y
p

;

~Dlq ¼ dn

�
kx; ky; zl

�
eiðzn�zq�1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2�k2x�k2y
p

;
(26)

kx ¼ nπ
Mh

; m ¼ �M::M � 1;

ky ¼ mπ
Mh

; n ¼ �M::M � 1:

Obviously,

~Clq ¼ ~Cl1ðPÞq; ~Dlq ¼ ~Dl;Nz�1ðPÞNz�q�1
; (27)

where

P ¼ eih
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2x�k2y

p
; (28)

with kx and ky take on the same discrete values, as in (26). We arrive at
the following decomposition of matrix G:

G ¼ Gp þ Gc þ Gd ; (29)

where Gp corresponds to the primary part of the Green's function, Gc and
Gd correspond to the two terms of (25), respectively. Let us consider
matrix Gc. It has a block structure:

Gc ¼
0@ C11 ⋯ C1Nz

⋮ ⋱ ⋮
CNz1 ⋯ CNzNz

1A: (30)

Using the above results, the product of l-th block row of matrixGc by a
vector v, which we denote by wl, can be expressed as follows:

wl � h3~R1

 
~Φ�1

"XNz

q¼1

~Clq ~Φ
�
~R2

�
Vq

� �#!
; (31)

where h3 accounts for volumetric integration. This equality holds

approximately because Qlq � ~Φ�1�~Clq
�
h3. Using properties (27) we

rewrite this expression as

wl � h3~R1

�
~Φ�1½~Cl1W�

�
; (32)

with

W ¼ ~V1 þ P
�
~V2 þ P

�
~V3 þ ::

��
; (33)

where

~Vq ¼ ~Φ
�
~R2

�
Vq

� �
: (34)

Matrix W can be computed once for all l. Formula (32) requires one
FFT per cell layer. Similar expressions can be derived for product Gdv.
Product Gpv is calculated as shown in Section 2.3.1. The overall
asymptotic complexity of the described algorithm
is OðNxNyNzlogðNxNyÞÞ.
2.4. Parallelization

In this section we describe parallelization of our modeling code, based
on the matrix-vector multiplication algorithm from Section 2.3.2. We
used MPI for inter-node communication, whereas OpenMP was used for
multi-core parallelization.

(I) The highest level of parallelism is the data decomposition across
different compute nodes. The forward problem typically has to be
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Fig. 1. Computational domain 15� 11� 5 km3 used for FDTD, the x-z plane is shown.
The filled square is the 1� 1� 1 km3 body. The dotted line depicts location of receivers.
The circle depicts the source position.
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solved for many sources with the same model. Naturally, the
available pool of MPI processes is divided into several groups. All
processes in a group have their copies of model parameters and
simultaneously work on a subset of sources, processing them one
by one.

(II) The middle level of parallelism is the solution of a single system of
linear equations on several compute nodes by BiCGStab. The
BiCGStab solver requires four inner products and two matrix-
vector products per iteration. Most of computation time is spent
on computing products Gv. In our implementation matrix G is
divided into P strips,

G ¼
0@G1

⋮
GP

1A; (35)

where P is the number of MPI processes in a group. Each MPI process
computes product Gpv. The resulting vector is assembled on one MPI
process and then sent to all other MPI processes to update their copies.
This is performed by a call to Allgather. Some work in our code is not
shared between MPI processes. For example, calculation of Φ½R2

�
Vq
�� in

(22) is performed on each node independently. The last issue can be
improved by a fairly complex implementation (Kruglyakov and Blosh-
anskaya, 2017).

(III) The fine-grained parallelism with OpenMP includes parallel execu-
tion of the partial matrix-vector product Gpv. The matrix-vector
multiplication algorithm, described in section 2.3.2, is parallelized
in the following way. Expression bV q ¼ Φ

�
R2
�
Vq
� �

; q ¼ 1::Nz, is
computed in parallel onOpenMP threads. This part of the code is not
sharedamong severaldifferentMPIprocesses.Then the loopover l 2
zlist follows, where zlist is the list of cell layers assigned to a partic-
ularMPI process. Inside that loop, several OpenMP threads compute

partial sums in form
Pq2

q¼q1Φ½Qlq� bV q with subsequent summationof
the partial sums. Finally, inverse FFTs (see (22)) are computed in
parallel on several OpenMP threads.

3. Numerical study

3.1. Comparison and verification

We have verified our solution with SFAWEFD3D, which is a part of
MADAGASCAR software package (http://www.ahay.org/). SFAWEFD3D
solves the three-dimensional acoustic wave equation with the constant
density in the time domain. We will refer this solution as the finite-
difference time-domain (FDTD) solution.

We used the model consisting of a cubical body immersed into the
half space. The body had dimensions of 1� 1� 1 km3. The center of the
body was located at (0,0,1500) m. The body had constant velocity c ¼
3000 m/s. The half space had velocity cb ¼ 4000 m/s and density ρb ¼
2500 kg/m3. There were 40 receivers spanning x from 100 m to
4000 m at a depth of 50 m with y ¼ 0. The point source was located at
(0,0,50) m.

For the IE solution, the anomalous domain was discretized into 64�
64� 64 cubical cells with size h ¼ 15:525m. The problemwas solved for
64 frequencies equally distributed from 0.25 Hz to 16 Hz. We use a
twelve-core work station with Intel Xeon CPU E5-2620 v2 running at
2.1 GHz, equipped with 256 Gb RAM. The run times for different fre-
quencies varied from 8 s at 0.25 Hz to 173 s at 16 Hz with the total time
62 min. These 64 solutions were Fourier-transformed into the
time-domain.

For FDTD simulation, we created a 15� 11� 5 km3 domain (Fig. 1).
We set the reflecting boundary condition on the top of the domain, and
the hybrid one-way absorbing boundary conditions on the other sides.
Such a large computational domain was selected to prevent strong
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remnant reflections from the bottom and sides before 2.5 s.
We employed the Oðτ2; h4Þ scheme. The scheme was running with the

time step τ ¼ 0.4 ms up to 4 s. The grid step size, h, was set to 10 m. The
source wavelet was specified as the Ricker wavelet with the central fre-
quency of 5 Hz, delayed by 240 ms. The total run time was 16.5 h. The
agreement between the IE and FDTD two methods is perfect (Fig. 2).

We computed the relative misfit between traces from the two sei-
mograms by the formula ε ¼ jjpIE � pFDTDjj=jjpIE jj, where the subscript
denotes the computational method, and jj⋅jj is the maximum norm. We
added one another FDTD simulation with h¼ 20 m to check convergence
of the FD solution. We observe that the relative error has doubled as the
grid step size increased from 10 to 20 m (Fig. 3). The maximum relative
misfit between the IE and FDTD traces computed with h ¼10 m is 8% on
trace #9 at 900 m offset.

Trace # 9 is plotted in Fig. 4. Since the part of that trace before 0.6 s
contains only the direct wave, we added the analytical solution for the
half space as a reference. The IE solution is in excellent agreement with
the exact solution at early times. The small amplitude mismatch in the
FDTD solution at the first arrival, which is present at all receivers, may be
caused either by the free surface or source term implementation. The
visible phase shift in the FDTD solution after 0.65 s, which is present too
at all receivers, is, likely, due to the fact that, the accuracy of a regular FD
scheme drops to first order at a coefficient discontinuity. In general, the
two methods show a decent match.

We applied our modeling algorithm to SEG/EAGE Overthrust model
(Aminzadeh et al., 1997). The grid points of the original model within the
ranges of 271–526, 271–526, and 1–128 cells in x,y, and z directions,
respectively, were assigned to cells of the model shown in Fig. 5. The
anomalous domain was immersed into the half space with cb ¼ 2345
m/s, and ρb ¼ 2500 kg/m3. Its top was placed at 500 m below the sur-
face. The velocity in the model varied from 2345 m/s to 5500 m/s. The
dimension of each model cell was 25� 25� 25 m3.

The source was located at (0,0,50) m. The pressure response was
computed at frequencies of 2,5, and 8 Hz. We used 16 twelve-core nodes
with Intel Xeon (Westmere X5660) processors running at 2.8 GHz and
equipped with 24 Gb RAM and QDR Infiniband interconnect. During this
simulation the code consumed 2.6 Gb memory per node. The BiCGStab
solver performed 189, 1082, and 2639 double iterations, respectively
(Fig. 6). The total run time was 47 min, 4.2 h, and 10.4 h, respectively.
The anomalous pressure response at 8 Hz inside the anomalous domain is
shown in Fig. 7.

3.2. Parallelization

In order to empirically assess the efficiency of parallelization, we used
the same Overthrust model. The grid points of the original model within
the ranges of 336–463, 336–463, and 1–128 in x,y, and z directions,
respectively, were assigned to cells of the model, shown in Fig. 8. The
other parameters were the same as in the previous example.

Parallelism level (I) should scale almost linearly in K, where K is the
number of equally-sized MPI groups. In our tests, which involved a
moderate number of compute nodes (hundreds), the scaling was nearly
perfect. One of the typical results is presented in Fig. 9. The code had to

http://www.ahay.org/


Fig. 2. Benchmark of IE against FDTD: (a) - traces converted from the spectrum computed by IE, (b) - FDTD seismogram, h ¼ 10 m. Each trace was normalized by its maximum value
independently in both panels. The time axis shows the arrival time in milliseconds.

Fig. 3. Comparison of relative misfit between the IE and FDTD solutions in the
maximum norm.

Fig. 4. Comparison of trace #9 (offset 900 m) from the shot records in Fig. 2. The curves
are not normalized.
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solve 1 to 128 identical forward problems on 1 to 128 compute nodes,
one forward problem per node. Each node consisted of two four-core
Intel Xeon X5570 processors running at 2.93 GHz and was equipped
with 12 Gb RAM and QDR Infiniband interconnect. The resulting effi-
ciency curves deviate from the maximum value 1.0 to less than 3%
indicating a good speedup.

Parallelism level (II) represents iterative solution of the system of
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linear equations by P nodes simultaneously. In our experiments this level
demonstrated limited scalability. One of the numerical experiments is
presented in Fig. 10. In this test we used the same setup, as before. This
test was run on a cluster consisted of twelve-core nodes with Intel Xeon
(Westmere X5660) processors running at 2.8 GHz and equipped with
24 Gb RAM and QDR Infiniband interconnect. Only one core per node
was working. In each individual runs all nodes were running the parallel
iterative solver. The iterative solver was forced to terminate at iteration



Fig. 5. Velocity model.

Fig. 6. Convergence of BiCGStab solver for different frequencies.

Fig. 7. Real part of the anomalous pressure field, pa, at 8 Hz.

Fig. 8. The model used to test the efficiency of parallelization.

Fig. 9. Scalability of the source distribution across different compute nodes (weak
scalability).
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71, when the solution misfit was slightly above 10�6, to ensure the same
number of iterations for all runs.

The speed-up curves start to deteriorate at 8 nodes, where effective-
ness is 84% and 85% for the two curves shown. Effectiveness decreases to
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55% and 61%, respectively, at 64 nodes. We attribute such limited
scaling to duplicated computations and a large number of collectives.
This level of parallelism should be used with care and other levels should
be preferred whenever possible.

Parallelism level (III) includes the parallel execution of matrix-vector
multiplication on several cores within the same node. The algorithm,
outlined in section 2.4, has a sequential segment within the critical sec-
tion. This segment is responsible for decreasing the effectiveness as the
number cores grows. A typical result of the parallelization test is shown in
Fig. 11. In this test we used a 20-core shared-memory system with two
Intel Xeon Ivybridge E5-2670 processors running at 2.5 GHz and
equipped with 64 GB memory. The forward problem was solved with
1–20 cores in parallel. The iterative solver was forced to terminate at
iteration 69, when the solution misfit was slightly above 10�6. The CPU
affinity was set in such a way to rigidly bind OpenMP threads to physical
cores. In this test we used the same model, described above, without 8
most lower cell layers (thus, the model was of 128�128�120 cells). Such
a modification of the model ensures that the number of cell layers per



Fig. 10. Scalability of the parallel system solution.

Fig. 11. Scalability test of OpenMP parallelization. Vertical dashed lines depict numbers
of cores that evenly divide the number of cell layers (i.e. 120).

Fig. 12. The layered model.
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core is integer for 1,2,3,4,5,6,8,10,12,15, and 20 cores.
The resulting speedup curves revealed fairly good scaling versus the

number of cores. Efficiency is above 70% at 20 nodes. Efficiency rises
when the number of cores is evenly divisible by number of cell layers,
which is indicated by local peaks. Note, that vector-vector products in-
side BiCGStab algorithm was running on the master thread without
parallelization.
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4. Conclusions

We have developed an effective numerical method and a parallel al-
gorithm for 3D frequency-domain modeling of the acoustic field. The
system of integral equations is solved iteratively; the matrix-vector
product is computed via FFT. This makes the computational complexity
and memory requirements tolerable for application to realistically large
problems. We extended this approach by parallelizing the code at three
levels: distribution of seismic sources across different groups of MPI
processes, solution of system of linear equation with several MPI pro-
cesses, and parallelization of the matrix-vector multiplication over
OpenMP threads.

We studied the efficiency of all three levels of parallelization. The
parallelization of the system solution has been found the most difficult
part, because the system matrix is dense. This limits the scaling of this
level. Presumably, any algorithms, based on volume integral equations,
would have similar problems. On the other hand, the coarse-grained
parallelism (the distribution of sources) and fine-grained parallelism
(matrix-vector multiplication) are effectively parallelized.

The results of our paper demonstrate that the IE method may be an
invaluable tool for accurate acoustic modeling of seismic field in the
medium with sharp material property discontinuities, and with the
infinitely extended domains. The parallelization of the developed algo-
rithm, as presented above, allows the user to simulate realistically large
seismic models. If the anomalous domain is relatively small, then the IE
method can outperform the standard finite-difference schemes in terms
of computation time. Future research will be aimed at application of the
developed method to a solution of the full elastic wave problem.
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Appendix A. Acoustic Green's function in a layered medium

The task of computing wave fields in a horizontally stratified elastic medium has been analyzed in detail in (Schmidt and Jensen, 1985). We give a
less general, but more simple and fast solution for the acoustic case. Our exposition is somewhat similar to (Zhdanov, 2009) and (Brekhovskikh, 1980),
though the first reference deals with the electromagnetic Green's tensor, and the second one considers a source located above a stack of elastic layers.

The earth is assumed to be a horizontally stratified stack of N layers. The layers are numbered from 0, to N � 1 (Fig. 12).
Each j-th layer is characterized by its velocity of P-waves, cj, density, ρj, and the depth of its upper and lower boundary, zj�1 and zj, respectively. The

layers j ¼ 0;N � 1 are the half spaces. In each layer, the Green's function satisfies to the following Helmholtz equation:
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�Δu� k2j u ¼ δðr � r0Þ;
 (A.1)

where kj ¼ ω=cj is the wavenumber, δ is the Dirac delta-function, r is the position vector of the receiver, and r' is the position vector of the source. This
equation is completed with the boundary conditions (or the radiation conditions at infinity). We will seek the solution in form
�1
u ¼ F ½U�; (A.2)

whereF andF �1 are the pair of double Fourier transform over the XY plane, and U ¼ F ½u�. We call U the spectral Green's function. By kx, ky , and kz we
will denote the components of the wave vector k, such as k ¼ ðkz; ky ; kzÞ. We will denote by μ z-component of k:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

μ≡kz ¼ k2 � k2x � k2y : (A.3)

Let the point source be located in layer m, and the point receiver be located at the layer n. The spectral Green's function, U, satisfies to the following
set of N equations:
	 0

U 00

j þ μ2j Uj ¼ δðz� z Þ; j ¼ m
0; otherwise:

(A.4)

Equation (A.4) are supplemented with 2ðN � 1Þ conditions on layers interfaces plus the radiation conditions as follows:
½U�j ¼ 0; j ¼ 0::N � 2;


 �

ρ

μ

U
U 0

j

¼ 0; j ¼ 0::N � 2; (A.5)
U∞ ¼ 0; U�∞ ¼ 0:

Solutions of equation (A.4) are given in the following form:
UjðzÞ ¼ cjfjðzÞ þ djgjðzÞ; (A.6)
fjðzÞ ¼ eiμjðz�zj�1Þ; j ¼ 0::N � 1; (A.7)
gjðzÞ ¼ eiμjðzj�zÞ; j ¼ 0::N � 1:

From (A.5) it follows that,
c0≡0; f0≡0;
dN�1≡0; gN�1≡0: (A.8)

Let us consider an auxiliary variable Rj,
RjðzÞ ¼ Uj

U 0
j
¼ cjfjðzÞ þ djgnðzÞ

cjfjðzÞ � djgjðzÞ; zj�1 � z � zj: (A.9)

It follows from (A.8) that:
R0ðzÞ≡� 1; z � z0;
RN�1ðzÞ≡1; z � zN�2: (A.10)

Starting from these two values, Rj at the top and bottom of the source layerm are computed recursively. We rewrite the second set of conditions (A.5)
as follows:
� � � �

ξjRj zj ¼ ξjþ1Rjþ1 zj ; (A.11)

where ξj ¼ ρj=μj. Using identity
ix �ix � �
Ce þ De
Ceix � De�ix

¼ coth ixþ lnðC=DÞ1=2 ; (A.12)

the following recursion relations can be obtained
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Rj

�
zj
� ¼ coth iμj

�
zj � zj�1

�þ acoth
ξj�1

ξ
Rj�1

�
zj�1

�
; j ¼ 1::m�
� �
j




1;

Rj

�
zj�1

� ¼ coth
�
� iμj

�
zj � zj�1

�þ acoth
�
ξjþ1

ξj
Rjþ1

�
zj
�



; j ¼ N � 2::mþ 1;

(A.13)

where coth and acoth are the hyperbolic cotangent and inverse hyperbolic cotangent, respectively. Note that, the free-space and double half-space cases
are threated separately.

Since values Rm�1ðzm�1Þ and Rmþ1ðzmÞ are known, we can obtain the coefficients, cm and dm, in the source layer m. Within the source layer, the
solution is the sum of the general solution of the homogeneous differential equation, Um, and a particular solution of its nonhomogeneous version. The
particular solution, u0, is the free-space Green's function, which has the following spectral representation:
	

iμ ðz'�zÞ 0

U0ðzÞ ¼ i

2π
1
μm

e m ; z< z
eiμmðz�z'Þ; z> z0:

(A.14)

Its z-derivative, QðzÞ ¼ dU0=dz, is expressed as follows:
	
iμ ðz0�zÞ 0
QðzÞ ¼ 1
2π

e m ; z< z
eiμmðz�z0 Þ; z> z0:

(A.15)

Continuity of the solution and discontinuity of its z-derivative must be satisfied at the source layer interfaces:
0

ξm�1Rm�1ðzm�1Þ ¼ ξj
cmfmðzm�1Þ þ dmgmðzm�1Þ þ U ðzm�1Þ
cmfmðzm�1Þ � dmgmðzm�1Þ þ Qðzm�1Þ ; (A.16)

and
0

ξmþ1Rmþ1ðzmþ1Þ ¼ ξm
cmfmðzmÞ þ dmgmðzmÞ þ U ðzmÞ
cmfmðzmÞ � dmgmðzmÞ þ QðzmÞ : (A.17)

These equations can be combined into the following 2�2 system of linear equations with respect to cm and dm:
cmfmðzm�1Þðξm � Tξm�1Þ þ dmgmðzm�1Þðξþ Tξm�1Þ ¼ Tξm�1Qðzm�1Þ � ξmU
0ðzm�1Þ (A.18)

0
cmfmðzmÞðξn � Bξmþ1Þ þ dmgmðzmÞðξm þ Bξmþ1Þ ¼ Bξmþ1QðzmÞ � ξmU ðzmÞ (A.19)

where T ¼ Rm�1ðzm�1Þ, B ¼ Rmþ1ðzmÞ. Note that, fmðzm�1Þ ¼ 1, gmðzmÞ ¼ 1. The cases m ¼ 0;1;N � 2, and N � 1 are treated separately.
Coefficients cj,dj in all other layers are calculated recursively. For j<m we impose continuity of the solution at j interface:
� � � � � �
cjfj zj þ djgj zj ¼ Ujþ1 zj : (A.20)

We use the following identity at interface j:
� � � �

ξjRj

�
zj
� ¼ ξj

cjfj zj þ djgj zj
cjfj
�
zj
�� djgj

�
zj
� : (A.21)

Values of RjðzjÞ are computed at the previous steps. We have the following relation:
� �� � � �

dj ¼

Ujþ1 zj Rj zj � 1

2Rj

�
zj
� : (A.22)

In order to determine cj we use the discontinuity condition on R at j� 1 interface:
� � � �

ξj�1Rj�1

�
zj�1

� ¼ ξj
cjfj zj�1 þ djgj zj�1

cjfj
�
zj�1

�� djgj
�
zj�1

� : (A.23)

We have the following relation:
� �

cj ¼

Rj�1 zj�1 ξj�1 þ ξj
Rj�1

�
zj�1

�
ξj�1 � ξj

djgj
�
zj�1

�
: (A.24)

We use different equations for cj and dj ((A.23) and (A.21), respectively) to avoid growing exponentials in the solution even for attenuating media
(that is ImðkÞ> 0, by convention).

For the layers located below the source layer (j>m) we impose continuity of the solution at zj�1 interface:
� � � � � �

cjfj zj�1 þ dj zj�1 ¼ Uj�1 zj�1 : (A.25)

To determine cj, we use the following identity at j� 1 interface:
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ξj
cjfj zj�1 þ djgj zj�1� � � � ¼ Uj�1

�
zj�1

�
:

� � � �
cjfj zj�1 � djgj zj�1

(A.26)

Expression for cj is as follows:
� �� � � �

cj ¼

Uj�1 zj�1 Rj zj�1 þ 1

2Rj

�
zj�1

� : (A.27)

To determine dj, we use the discontinuity of R at j-th interface:
� � � �

ξjþ1Rjþ1

�
zj
� ¼ ξj

cjfj zj þ djgj zj
cjfj
�
zj
�� djgj

�
zj
� : (A.28)

Expression for dj is as follows:
� �

dj ¼

ξjþ1Rjþ1 zj � ξj
ξjþ1Rjþ1

�
zj
�þ ξj

cjfj
�
zj
�
: (A.29)

The algorithm can be summarize as follows:

1. Recursively compute RjðzjÞ for j ¼ 0::m� 1 and Rjðzj�1Þ for j ¼ N � 1::mþ 1 using (A.13).
2. Compute U0 and Q at the top and bottom boundaries of the source layer using (A.14) and (A.15).
3. Solve system (A.18)-(A.19) for cm and dm.
4. Recursively compute cn and dn using (A.22), (A.24) (n<m) or (A.27), (A.29) (n>m).

Care must be taken in evaluating acoth close to its brunch points, and also for coth for large arguments.
In order to solve the original problem (A.1), we must perform the inverse Fourier transform (A.2), or, equivalently, the Hankel transform as follows:
uðr; z; z0Þ ¼ H 0½Unðz; z0Þ� ¼ 1
2π

∫ ∞
0 Unðα; z; z0ÞJ0ðαrÞαdα (A.30)

where J0 is the Bessel function of the first kind of zero order, α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ2 þ ðy � y0Þ2

q
. The digital filtering approach, which is routinely

used in geophysical electromagnetic simulation, does not work for (A.30). The difficulties arise from the fact that the integrand oscillates, has the branch
point at α ¼ kn, has poles that correspond the horizontal waves in the layers, and, generally, decays very slowly with r. Despite a vast body of literature
on the matter integration of the spectral Green's function remains difficult. From our experience, the most reliable result is achieved by the adaptive
integration along a contour in the lower half plane with the additional adaptive integration of the integrand tail along the real axis.
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