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ABSTRACT
This paper develops the generalised effective-medium theory of induced polarisation
for rock models with elliptical grains and applies this theory to studying the complex
resistivity of typical mineral rocks. We first demonstrate that the developed gener-
alised effective-medium theory of induced polarisation model can correctly represent
the induced polarisation phenomenon in multiphase artificial rock samples manufac-
tured using pyrite and magnetite particles. We have also collected representative rock
samples from the Cu–Au deposit in Mongolia and subjected them to mineralogical
analysis using Quantitative Evaluation of Minerals by Scanning Electron Microscopy
technology. The electrical properties of the same samples were determined using lab-
oratory complex resistivity measurements. As a result, we have established relation-
ships between the mineral composition of the rocks, determined using Quantitative
Evaluation of Minerals by Scanning Electron Microscopy analysis, and the parame-
ters of the generalised effective-medium theory of induced polarisation model defined
from the laboratory measurements of the electrical properties of the rocks. These re-
lationships open the possibility for remote estimation of types of mineralisation and
for mineral discrimination using spectral induced polarization data.

Key words: Complex resistivity, Induced polarisation, Mineral rocks, Generalised
effective-medium theory.

INTRODUCTIO N

One of the major problems in mineral exploration is the inabil-
ity to reliably distinguish between economic mineral deposits
and uneconomic mineralisation. While the mining industry
uses many geophysical methods to locate mineral deposits,
until recently, there was no reliable technology for identifica-
tion and characterisation of mineral resources. In this paper,
we address this problem by studying the complex conduc-
tivity of mineral rocks, which is manifested by the induced
polarisation (IP) effect. Indeed, effective conductivity of rocks
is not necessarily a constant and real number but may vary
with frequency and be complex. There are several explana-
tions for these properties of effective conductivity. Most often,
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they are explained by the physical–chemical polarisation ef-
fects of mineralised particles of the rock material and/or by
membrane effects in the pores of reservoirs (Marshall and
Madden 1959; Wait 1959; Luo and Zang 1998; Vanhala and
Peltoniemi 1992). The polarisability effect is usually associ-
ated with the surface polarisation of the coatings of the grains.
This surface polarisation can be related to an electrochemi-
cal charge transfer between the grains and the host medium
(Wong 1979; Wong and Strangway 1981; Klein, Biegler and
Hornet 1984). Surface polarisation is manifested by accumu-
lating electric charges at the surface of the grain. A double
layer of charges is created, which results in a voltage drop
across the grain boundary (Wait 1982).

The physical–mathematical principles of the IP effect
were originally formulated in the pioneering works of Wait
(1959, 1982) and Sheinman (1969). However, the IP method
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did not find wide application in mineral exploration until the
1970s with the work of Zonge (e.g., Zonge 1974; Zonge and
Wynn 1975) and Pelton (Pelton 1977; Pelton et al. 1978). Sig-
nificant contributions were also made by Kennecott research
team between 1965 and 1977 (Nelson 1997).

Over the last 40 years, several conductivity relaxation
models have been developed, which provided quantitative
characterisation of electric charging phenomena, for exam-
ple, the empirical Cole–Cole model (Cole and Cole, 1941;
Pelton et al. 1978; Kemna 2000; Kamenetsky, Stettler and
Trigubovich 2010), the electrochemical model of Ostrander
and Zonge (1978), and the empirical models of Kavian, Slob
and Mulder (2012) and Gurin et al. (2015). Multiple itera-
tions of a mechanistic model to predict the complex resistivity
response of soils and rocks containing metallic minerals have
been published recently as well (e.g., Revil et al. 2013; Revil,
Florsch and Mao 2015; Misra et al. 2016a,b).

Most of these developed models represent different as-
pects of IP phenomenon relatively well. In this paper, however,
we will focus on the generalised effective-medium theory of the
IP effect (GEMTIP) model, which uses the effective-medium
theory to describe the complex resistivity of heterogeneous
rocks (Zhdanov 2008a, b). It incorporates the physical and
electrical characteristics of rocks at the porous/grain scale and
translates them into an analytic expression for effective com-
plex resistivity. These characteristics include grain size and
conductivity, porous space shape, fluid and host rock conduc-
tivity values, porosity, anisotropy, polarisability, etc. It was
shown in the papers by Zhdanov (2008a, b) that the widely
accepted Cole–Cole model is a special case of the GEMTIP
model, where all the grains have a spherical shape. In this
paper, we investigate a more general case with the grains hav-
ing an elliptical shape. By choosing different values of the
ellipticity coefficient, one can consider oblate or prolate ellip-
soidal inclusions, which provides a wide class of models to be
used in the analysis of the complex conductivity of mineral
rocks.

We first demonstrate in this paper that the GEMTIP
model with elliptical inclusions can correctly represent the IP
phenomenon in multiphase artificial rock samples. With the
GEMTIP model, we have analysed the spectral IP responses
of 35 artificial rock samples manufactured by Takakura et al.

(2014) using pyrite and magnetite particles mixed with glass
beads and a 0.01M KCl solution.

We have also applied the developed GEMTIP model to
studying the complex resistivity of typical mineral rocks. We
have collected several dozens of representative rock samples
from the Cu–Au deposit in Mongolia. These rock samples

were subjected to mineralogical analysis using Quantitative
Evaluation of Minerals by Scanning Electron Microscopy
(QEMSCan) technology (Rollinson et al. 2011). We have also
conducted an analysis of the electrical properties of the same
samples using the laboratory complex resistivity measurement
system.

In order to invert the complex resistivity data for the
GEMTIP model parameters, we have applied the hybrid
method based on a genetic algorithm with simulated annealing
and the regularised conjugate gradient method, SAAGA-RCG
(Lin et al. 2015). The results of this study demonstrate that
GEMTIP can correctly represent the IP phenomenon in the
artificial and natural rock samples. We have also established
relationships between the mineral composition of the rocks,
determined using QEMScan analysis, and the parameters of
the GEMTIP model defined from laboratory measurements
of the electrical properties of the rocks. These relationships
open the possibility for remote estimation of types of miner-
alisation using spectral IP data.

BASIC FORMULAS OF T HE
EFFECTIVE-MEDIUM T HEORY
OF INDUCED POLARISATION

It was demonstrated in Zhdanov (2008a,b, and 2010) that
the induced polarisation (IP) phenomenon can be mathemat-
ically explained by a composite geoelectrical model of rock
formations. This model is based on effective-medium theory,
which takes into account the surface polarisation of grains
and provides a more realistic representation of complex rock
formations than conventional unimodal conductivity models.

A generalised effective-medium theory of the IP effect
(GEMTIP), introduced in the cited papers, allows us to model
the relationships between the physical characteristics of differ-
ent types of rocks and minerals (e.g., conductivity values, grain
sizes, porosity, anisotropy, and polarisability) and the param-
eters of the relaxation model. The GEMTIP model can be
applied to examining the IP effect in complex rock formations
composed of different mineral structures with varied electrical
properties. In this section, for completeness, we will briefly re-
view the basic principles of the generalised effective-medium
approach as per the original paper by Zhdanov (2008a).

In the framework of the GEMTIP model, we represent a
complex heterogeneous rock formation as a composite model
formed by a homogeneous host medium of a volume V with a
complex conductivity tensor σ̂ 0 filled with grains of arbitrary
shape and conductivity. In the problem presented here, the
rock is composed of a set of N different types of grains, with
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the lth grain type having a complex tensor conductivity tensor
σ̂ l . The grains of the lth type have a volume fraction fl in the
medium and a particular shape and orientation. Therefore,
the total conductivity tensor of the model, i.e., σ̂ (r) (where
r is an observation point), has the following distribution for
volume fraction fl and volume fraction f0 = (1 − ∑N

l=1 fl ),
respectively:

σ̂ (r) =
{

σ̂ 0 for volume fraction f0

σ̂ l for volume fraction fl .
(1)

In order to find the effective conductivity tensor σ̂ e, we
represent the given inhomogeneous composite model as a su-
perposition of a homogeneous infinite background medium
with the conductivity tensor σ̂ b and the anomalous conduc-
tivity �σ̂ (r) :

σ̂ (r) = σ̂ b +�σ̂ (r). (2)

Following Zhdanov (2008a), we can write the follow-
ing expression for the effective conductivity of the polarised
inhomogeneous medium:

σ̂ e = σ̂ 0+
N∑

l=1

[
Î + p̂l

]−1 [
Î −�σ̂

p
l · �̂l

]−1 · [
Î + p̂l

] ·�σ̂ l fl , (3)

where σ̂ e is an effective-medium complex conductivity tensor;
�σ̂ l is an anomalous conductivity tensor;�σ̂

p
l = [̂I + p̂l ] ·�σ̂ l

is the polarised anomalous complex conductivity; Î is an
identity tensor; p̂l is a surface polarisability tensor; �̂l is a
volume depolarisation tensor defined in Appendix A; and in-
dex l corresponds to the grain of the lth type. According to the
definition (Zhdanov 2009, p. 524), the surface polarisability
tensor p̂l can be written as follows:

p̂l = ξl �̂
−1
l · �̂l , (4)

where ξl is equal to

ξl = klσ0σl (�σl )
−1, (5)

�σl = σl − σ0 and kl is a surface polarisability factor. The
expressions for the volume �̂l and surface �̂l depolarisation
tensors are given in Appendices A, B, and C.

It was shown by Wait (1982), Luo and Zang (1998), and
Zhdanov (2008a) that the surface polarisability factor kl is
a complex function of frequency described by the following
empirical model:

kl = βl (iω)−Cl , (6)

which fits the experimental data, where βl is some empir-
ical surface polarisability coefficient, measured in the units
[βl ] = 	m2/sCl and Cl is the relaxation parameter of the lth

grain. The relaxation parameter (together with the time con-
stant, which will be introduced later) determines the type of
decreasing behaviour of the IP effect over time (in the time
domain). For example, a larger value of relaxation parameter
leads to steeper decrease in the IP effect over time (Kamenetsky
et al. 2010). The physical meaning of these parameters will
become more transparent when they will be presented in an
equation of the GEMTIP resistivity relaxation model (11),
developed subsequently, which could be treated as a general-
isation of the widely used Cole–Cole model.

Formula (3) provides a general solution to the effective
conductivity problem for an arbitrary multiphase composite
polarised medium. This formula allows us to find the effective
conductivity for inclusions with arbitrary shape and electrical
properties. This is why the GEMTIP model can be used to
construct effective conductivity for realistic rock formations
typical for mineralisation zones and/or petroleum reservoirs;
however, the calculation of the parameters of the GEMTIP
model may become very complicated. It was demonstrated by
Burtman and Zhdanov (2015) that there exists a special case
of inclusions with ellipsoidal shape, where the solution of the
GEMTIP formulas can be obtained in closed form, similar to a
model with spherical inclusions. The advantage of the model
with ellipsoidal inclusions is that, in this case, one can use
different shapes of ellipsoids, from oblate to prolate, to model
different types of heterogeneous rock formations and different
types of inclusions. At the same time, for ellipsoidal geometry
of the grains, the surface and volume depolarisation tensors,
i.e., �̂l and �̂l , can be calculated in closed form using the
volume and surface integrals, as shown in Appendices B and
C. Substituting the corresponding expressions for the surface
and volume depolarisation tensors in equation (3), after some
lengthy but straightforward algebra, we arrive at a general
analytical solution for the principal components of the effec-
tive conductivity tensor of a multiphase composite anisotropic
medium filled with ellipsoidal inclusions as follows:

σeα = σ0 +
N∑

l=1

(σl − σ0) fl

[
1 + σl − σ0

σ0
γlα + klσlλlα

]−1

,

α = x, y, z. (7)

where kl is a surface polarisability factor introduced in equa-
tion (6) and γlα and λlα are scalar coefficients defined by
geometrical parameters of the grains (see Appendices A, B,
and C).

In particular, for the case of randomly oriented ellip-
tical inclusions, the conductivity of the polarised inhomoge-
neous medium can be calculated by taking an average over the
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orientation in formula (7). As a result, we obtain the following
formula for effective conductivity σe:

σe = σ0

[
1 + 1

3

N∑
l=1

fl Dl

]
, (8)

where

Dl =
∑

α=x,y,z

Dlα,

and

Dlα = ρ0 − ρl

ρl + γlα (ρ0 − ρ1) + klλlα
. (9)

The expression for the effective resistivity, ρe = 1/σe, of a
medium filled with completely randomly oriented ellipsoidal
grains can be written as follows:

ρe = ρ0

[
1 + 1

3

N∑
l=1

fl Dl

]−1

. (10)

It can be shown that, if the inclusions are conductive, ρl � ρ0,
then formula (10) is simplified as follows:

ρe = ρ0

{
1 +

∑N

l=1

fl

3

∑
α=x,y,z

1
γlα

[
1 − 1

1 + slα (iωτl )
Cl

]}−1

,

(11)

where ρ0 is the DC resistivity of the host matrix, ω is the
frequency, fl is the fraction volume parameter, Cl is a relax-
ation parameter, and τl (in seconds) is the time constant of the
lth grain, similar to the time constant of the Cole–Cole model.
The time constant τl is related to the empirical surface polaris-
ability coefficients βl of expression (6) by the formula, similar
to one introduced in the case of spherical grains (Zhdanov
2008a)

τl =
[

al

2βl
(2ρl + ρ0)

]1/Cl

, (12)

where al is an average value of the equatorial (alx and aly) and
polar (alz) radii of the ellipsoidal grains, i.e.,

al = (alx + aly + alz)

3
. (13)

In a case of the ellipsoid of revolution (spheroid), the
equatorial radii are equal, alx = aly = al , and expression (13)
takes the following form:

al = (2al + εal )
3

= (2 + ε)
3

al , (14)

where ε = alz/al is an ellipticity of the ellipsoid of revolution
(spheroid).

As we noted above, the relaxation parameter, together
with the time constant, determines the behaviour of the IP
effect over time (in the time domain). For example, an increase
in the time constant results in shifting the IP effect in a later
time (Kamenetsky et al. 2010).

The coefficients slα (l = 1, 2, . . .N; α = x, y, z) in expres-
sion (11) are the structural coefficients defined by the geo-
metrical characteristics of the ellipsoidal inclusions used to
approximate the grains

slα = rlα/al , rlα = 2
γlα

λlα
, (15)

where γlα and λlα are the diagonal components of the volume
and surface depolarisation tensors described in Appendices B
and C.

Note that, for spheroidal grains, the equatorial radii are
equal to each other (alx = aly = al ), the polar radius is denoted
by bl (alz = bl ), and the equation for slα takes the following
form:

slα = 3
2 + εl

rlα/al , (16)

where εl is an ellipticity, εl = bl/al , of the lth type of grains.
In the case of a two-phase composite model with spher-

ical inclusions, formula (16) is simplified, and formula (11)
transforms into an expression similar to Cole–Cole formula
of complex resistivity (Pelton et al. 1978; Zhdanov 2008a).

Table 1 presents a list of parameters used in the multi-
phase ellipsoidal GEMTIP model (11).

INVERS ION FOR PARAMETERS OF THE
GENERALISED EFFECTIVE-MEDIUM
MODEL

An important question is how well the developed generalised
effective-medium theory of induced polarisation (GEMTIP)
model with elliptical grains could represent the actual complex
resistivity of the rocks. In order to answer to this question, we
formulate the inverse GEMTIP problem as follows.

We introduce a vector m of the unknown model pa-
rameters, m = [ρ0, fl , τl ,Cl , al , εl ; l = 1, 2, ..N], and a vec-
tor d of the observed data (the values of the complex re-
sistivity as a function of frequency), i.e., d = [ρe(ω1), ρe(ω2),
ρe(ω3), . . . ..ρe(ωn)].

Using these notations, we can write expression (11) in the
following form:

d = AG(m), (17)

where AG is a forward modelling operator described by
equation (11).
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Table 1 List of parameters of the multiphase ellipsoidal GEMTIP model. (l = 1, 2, . . .N)

Parameter Name Units Description

ρe effective resistivity 	m resulting effective resistivity
ρ0 matrix resistivity 	m matrix resistivity of rock
fl grain volume fraction m3 volume fraction of the lth grain
al grain equatorial radius m equatorial radius of the spheroid
bl grain polar radius m polar radius of the spheroid
εl ellipticity – εl = bl/al

εl p
eccentricity – εl p

=
√

1 − a2
l /b

2
l

(prolate spheroid: bl> al )

εlo
eccentricity – εlo

=
√

a2
l /b

2
l − 1

(oblate spheroid: bl< al )
τl time constant sec time constant of the lth grain
Cl relaxation parameters – decay coefficient
ω angular frequency sec−1 EM angular frequency
βl surface polarisability coefficient (	 × m2)/sCl empirical coefficient
γlα structural parameter – function of ellipticity εl
λlα structural parameter – function of ellipticity εl
rlα structural parameter – rlα = 2

γlα
λlα

slα structural parameter – slα = 3
2+εl rlα/al

In order to find the parameters of the GEMTIP model,
we should solve equation (17) with respect to m. The prob-
lem is an ill-posed one, which means that the solution can
be nonunique and unstable. The conventional way to solve
this ill-posed problem using the regularisation theory is based
on substituting for inverse problem (17) the minimisation of
the corresponding Tikhonov parametric functional (Zhdanov
2002):

Pα(m) = ∥∥Wd(AG(m) − d)
∥∥2

L2
+ αS(m) = min, (18)

where Wd is the data-weighting matrix and α is a regularisa-
tion parameter.

The first term in equation (18) is a misfit functional,

ϕ(m) = ∥∥Wd(AG(m) − d)
∥∥2

L2
,

determined as a weighted least square norm of the difference
between the observed and predicted data. The second term is
a minimum-norm stabilising functional,

SMN(m) = ∥∥Wm(m − mapr)
∥∥2

L2
,

where Wm is the weighting matrix of the model parameters
and mapr is some a priori model.

We should note that, in a case of the GEMTIP inversion,
the misfit and parametric functionals may be characterised by
having multiple local minima. In this situation, the conven-
tional gradient-type minimisation algorithms (e.g., Zhdanov
2002, 2015) may not be suitable for solving this problem. In

order to overcome these difficulties and to find the global min-
imum, Lin et al. (2015) developed a hybrid method based on
a genetic algorithm with simulated annealing and the regular-
ized conjugate gradient method (SAAGA-RCG). The SAAGA-
RCG method is an iterative solver, which first generates the
best solution from the possible solution set (a population) on
each iteration using the genetic and annealing operations and
then applies the regularised conjugate gradient method at the
final stage of the inversion to make the solution converge to
the global minimum. An interested reader can find a detailed
description of the SAAGA-RCG method in the paper by Lin
et al. (2015). We have applied this algorithm to minimise the
Tikhonov parametric functional (18).

We subsequently summarise the major steps of the
SAAGA-RCG algorithm.

(1) Search subspace and search interval

The search subspace is selected from the model parameter
space by determining the lower and upper bounds of the model
parameters. The search intervals for every scalar component
mi of vector m are divided into 2Ni segments, where numbers
Ni determine the total number of free parameters in the search
subspace.
(2) Selection of initial population and individuals

A possible solution (called an individual) is randomly
generated from the search subspaces for each GEMTIP pa-
rameter. Following the conventional technique of the ge-
netic algorithm, each scalar parameter mi is encoded into the
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Table 2 List of artificial rock samples

Case Weight content Size of minerals Size of glass beads

1 Pyrite: 1%, 3%, 5%, 10%, 15%, 20% 1.4–2.0 mm 1 mm
2 Pyrite: 1%, 3%, 5%, 10%, 15%, 20% 0.7–1.0 mm 1 mm
3 Pyrite: 1%, 3%, 5%, 10%, 15%, 20% 1.4–2.0 mm 0.05 mm
4 Pyrite: 1%, 3%, 5%, 10% 0.5–0.7 mm 0.05 mm
5 Magnetite: 1%, 3%, 5%, 10%, 15%, 20% 1.4–2.0 mm 1 mm
6 Magnetite: 1%, 3%, 5%, 10%, 15%, 20% 0.7–1.0 mm 1 mm
7 10% pyrite and 20% magnetite 1.4–2.0 mm 1 mm

binary number. Then, all the binary numbers for different
scalar components of vector m are connected into a string to
form a binary representation of each individual. The above
steps are repeated Q times, obtaining Q individuals.
(3) Fitness function

The fitness function is defined by the following
expression:

f (k) = 1/
Q∑

l=1

exp [(ψ(k) − ψ(l))/2σ ] ,

where k = 1, 2, . . . ,Q; ψ(k) = Pα(m(k)) is the parametric
functional for the individual m(k); and σ is the standard devia-
tion of ψ(k) over the entire initial population. The regularisa-
tion parameter α is selected using the adaptive regularisation
(Zhdanov 2002, 2015).
(4) Selection

The “roulette rule” is used to determine which individual
should be selected. The chances are higher for individuals that
have larger fitness values.
(5) Crossover and mutation

In the framework of the genetic algorithm method, a
new population is produced from the initial population by
crossover and mutation operations (Whitley 1994). It is well
known that moderately large values of crossover probabil-
ity and small values of mutation probability are essential for
the successful work of the genetic algorithm method. We also
apply the adaptive genetic algorithm by adjusting the proba-
bilities of crossover and mutation in each iteration.
(6) Annealing operation

It is known that the convergence of the genetic algorithm
could be very slow. To overcome this difficulty, we use the
adaptive genetic algorithm combined with the simulated an-
nealing method (Kirkpatrick, Gelatt and Vecchi 1983)
(7) Regularised conjugate gradient operation

The stopping criterion for the inversion is based on the
condition that the misfit is smaller than a given threshold
value δ2. The advantage of this method is that it allows the
user to find the global minimum even in the case of very

complex behaviour of the parametric functional (18), which
is observed in the case of GEMTIP inversion.

ANALYSIS OF THE INDUCED
POLARISATION EFFECT FOR ARTIF IC IAL
ROCK SAMPLES

Artificial rock samples

The artificial rock samples assembled by Takakura et al.

(2014) were composed of mineral grains, glass beads, and
a 0.01M KCL solution. Six different two-phase sample sets,
which included one type of mineral (pyrite or magnetite) only,
and one three-phase sample, which included both pyrite and
magnetite, were prepared (a total of seven sample sets/cases,
as shown in Table 2). For the cases of two-phase sample sets,
each sample set contained different weighted concentrations
of minerals, either pyrite or magnetite. The weighted concen-
trations for sample sets #1, #2, #3, and #5 were 1%, 3%,
5%, 10%, 15%, and 20%, respectively. In sample set #4,
the weighted concentrations were 1%, 3%, 5%, and 10%.
The weighted concentrations of pyrite and magnetite in the
three-phase sample set (sample set #7) were 10% and 20%,
respectively. We have studied how the induced polarisation
(IP) effect changed with (1) the type of minerals, (2) the con-
centration of minerals, (3) the size of the minerals, and (4) the
size of the glass beads. Overall, 35 individual samples (34 two-
phase samples and one three-phase sample) were prepared.

According to Takakura et al. (2014), 1% content weight
corresponded to 4 g in mass, and the volume of the artifi-
cial rock was 192 cm3. Considering that the densities of the
pyrite and magnetite were 5 and 5.15 g/cm3, respectively, we
calculated the volume fraction (content volume) for the min-
eral particles in the rock samples. Table 3 shows the volume
fractions of pyrite and magnetite for each content weight.

The complex resistivity data for artificial rock sam-
ples were measured by Dr. Takakura (National Institute of
Advanced Industrial Science and Technology (AIST)). The
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Table 3 List of contents of mineral particles in volume weight and
volume fraction

Content 1% 3% 5% 10% 15% 20%

Weight (g) 4 12 20 40 60 80
Volume of

pyrite
0.42% 1.25% 2.08% 4.17% 6.25% 8.33%

Volume of
magnetite

0.40% 1.21% 2.02% 4.05% 6.07% 8.09%

details of the complex resistivity measurement were described
in Takakura, Nakada and Murakami (2013) and Takakura
et al. (2014). The authors of the cited papers used stainless
plates as the current electrodes and Ag–AgCl receiver elec-
trodes, which were tested carefully in order to avoid po-
larisation errors. Solartron 1260 Impedance Analyzer and
1287 Potentiostat/Galvanostat were used to measure the com-
plex resistivity data, which were further analysed by a single
sine correlation. According to Takakura et al. (2013, 2014),

this method had the accuracy of 0.1% in amplitude and
0.1◦ in phase. Similar studies in the past were conducted by
Gurin et al. (2013), Mahan, Redman and Strangway (1986),
Slater, Choi and Wu (2005), Slater, Ntarlagiannis and Wishart
(2006), and Hubbard et al. (2014).

Analysis of the induced polarisation effect for the two-phase
artificial mineral rocks

We ran the inversion of complex resistivity data for all 34
two-phase samples (cases 1 to 6 in Table 2) using the SAAGA-
RCG algorithm, outlined above, for two-phase generalised
effective-medium theory of induced polarisation (GEMTIP)
model, where one phase was represented by either pyrite or
magnetite and another phase was represented by the glass
beads and KCl (assumed as the matrix).

Figure 1 shows a comparison of the real and imaginary
parts of the complex resistivity spectra of the artificial min-
eral rocks composed of pyrite particles (panels (a) and (b))

Figure 1 Observed and predicted complex resistivity spectra for artificial mineral rocks with pyrite (panels a and b) and magnetite (panels c and
d) particles. The pyrite and magnetite particles are the same average size of 1.4–2 mm. The plots present the real (panels a and c) and imaginary
(panels b and d) resistivities as functions of the frequency for six different mixing concentrations, 1%, 3%, 5%, 10%, 15%, and 20%, shown
by bold dots, black squares, grey diamonds, triangulars, circles, and grey triangulars, respectively. The solid lines show the theoretical predicted
complex resistivity curves based on the GEMTIP models.
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Figure 2 Observed and predicted complex resistivity spectra for artificial mineral rocks with pyrite (panels a and b) and magnetite (panels c
and d) particles. The pyrite and magnetite particles are the same average size of 1.4–2 mm. The plots present the amplitude (panels a and c) and
phase (panels b and d) resistivities as functions of the frequency for six different mixing concentrations, 1%, 3%, 5%, 10%, 15%, and 20%,
shown by bold dots, black squares, grey diamonds, triangulars, circles, and grey triangulars, respectively. The solid lines show the theoretical
predicted complex resistivity curves based on the GEMTIP models.

and magnetite particles (panels (c) and (d)) as examples. The
pyrite and magnetite particles have the same average size of
1.4–2 mm, and the glass beads are of about 1 mm in size.
The six measured complex resistivity spectra correspond to
the six mixing concentrations, 1%, 3%, 5%, 10%, 15%, and
20%, shown by bold dots, black squares, grey diamonds, tri-
angulars, circles, and grey triangulars, respectively. We used
these experimental curves as input data in the solution to the
GEMTIP inverse problem (17). The theoretical complex resis-
tivity curves based on the GEMTIP model are shown by the
solid lines for all experimental complex resistivity data. Pan-
els (a) and (c) show the real parts of the complex resistivity;
panels (b) and (d) present the imaginary parts of the complex
resistivity. Figure 2 shows a comparison of the amplitude and
phase of the complex resistivity data with the same dots and
line styles as those used in Fig. 1. In this paper, we plot the
complex resistivity data as real and imaginary resistivities in-
stead of amplitude and phase because we invert the real and
imaginary resistivities for the GEMTIP model parameters.

As an example, Table 4 shows the recovered GEMTIP
parameters for two-phase artificial mineral rock for case 1
(1.4- and 2.0-mm grains of pyrite with 1-mm glass beads).
We should note that ellipticity ε1 is one of the very important
factors to represent the observed complex resistivity data ap-
propriately; in other words, we cannot fit the observed data if
we assume the spherical grains (the two-phase GEMTIP model
with spherical grain is equivalent to the Cole–Cole model).

Table 4 Recovered GEMTIP parameters for two-phase artificial min-
eral rocks for case 1 (1.4- and 2.0-mm grains of pyrite with 1-mm
glass beads)

Content 1% 3% 5% 10% 15% 20%

ρ0 (	 · m) 29.1 27.6 28.0 27.3 25.2 24.0
ε1(−) 3.37 3.10 3.50 4.42 3.84 4.41
τ1 (s) 0.0024 0.0022 0.0015 0.0013 0.0012 0.0011
C1(−) 0.81 0.82 0.81 0.80 0.81 0.81
f1 (%) 0.45 1.29 2.08 4.16 6.20 8.32
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Figure 3 Observed and predicted complex resistivity spectra for artificial mineral rocks with pyrite (panels a and b) and magnetite (panels c and
d) particles. The pyrite and magnetite particles have the same average size of 0.7–1 mm. The plots present the real (panels a and c) and imaginary
(panels b and d) resistivities as functions of the frequency for six different mixing concentrations, 1%, 3%, 5%, 10%, 15%, and 20%, shown
by bold dots, black squares, grey diamonds, triangulars, circles, and grey triangulars, respectively. The solid lines show the theoretical predicted
complex resistivity curves based on the GEMTIP models.

The values of ellipticity in Table 4, recovered from GEMTIP
inversion of the complex resistivity data, may indicate that the
mineral particles in the artificial rock samples have ellipsoidal
shape or they form clusters whose shape is ellipsoid.

Figure 3 also compares the complex resistivity spectra
of the artificial mineral rocks composed of pyrite particles
(panels (a) and (b)) and magnetite particles (panels (c) and
(d)). However, the pyrite and magnetite particles are smaller,
0.7–1 mm, than in the previous case, and the glass beads have
the same size of 1 mm. Similar to Fig. 1 , the six measured
datasets of each spectrum correspond to the six mixing con-
centrations, 1%, 3%, 5%, 10%, 15%, and 20%, shown by
bold dots, black squares, grey diamonds, triangulars, circles,
and grey triangulars, respectively. The theoretical complex re-
sistivity curves based on the GEMTIP inversion are shown by
the solid lines for all experimental complex resistivity data.
Panels (a) and (c) show the real parts of the complex resis-
tivity; panels (b) and (d) present the imaginary parts of the

complex resistivity. Note that all the inversions for two-phase
sample sets (cases 1 to 6 in Table 2) converged quite well, and
their final normalised misfit were less than 1%.

In order to analyse the IP properties of pyrite and mag-
netite, we plotted the content dependence of the time constant
(τ ), the relaxation parameter (C), and the matrix resistivity
(ρ0), recovered from GEMTIP inversions of complex resistiv-
ity data for all two-phase artificial rock samples (cases 1 to 6
in Table 2).

Figure 4 presents the plots of the time constant (τ ) versus
the content weight of the mineral particles for cases 1 to 6.
For the pyrite particles (cases 1 to 4), the time constants are in
a range of 4 × 10−4 to 5 × 10−3, whereas for magnetite (cases
5 and 6), the range is of 5 × 10−6 to 1 × 10−4. It is also clear
from the produced plots that the mineral type, the size of the
particles, and the content of the minerals are the major factors
that affect the value of the time constant. For the particles of
the same size (cases 1 and 5 or cases 2 and 6), the time constant
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Figure 4 Time constant (τ ) versus weight content of mineral particles
for cases 1–6 using the GEMTIP model.

for the pyrite sample is about 100 times larger than that for
the magnetite sample.

In the case of the different sizes of pyrite, the artificial
rock samples with the bigger particles tend to have a larger
time constant. The time constant of the pyrite samples (ex.
cases 3 and 4) decreases with the content of the particles in-
creases in the range of 0−15%, and for larger content, the
curve tends to be steady. In the case of the magnetite samples
(cases 5 and 6), the time constant is much smaller than that
for the pyrite samples, and it varies with the size very slowly.
The difference in the time constants between the pyrite and
magnetite samples may be due to the physical fact that pyrite
is conductive and magnetite is resistive. As a result, the con-
ductor (pyrite) requires more time to release the charges after
the current cut-off during the measurement of the IP effect.

A comparison of recovered relaxation parameters (C) is
shown in Fig. 5. The recovered relaxation parameters for both
models show a similar behaviour. For the pyrite particles,
the relaxation parameters are within the range of 0.7–0.9,
whereas for magnetite, the range is within 0.3–0.5. From the
inversion results, we can find that the relaxation parameter
of the pyrite samples is affected by the size of the mineral
particles and the glass beads. The artificial rock samples with
the bigger pyrite particles and smaller glass beads tend to have

Figure 5 Relaxation parameter (C) versus weight content of mineral
particles for cases 1–6 using the GEMTIP model.

larger C. In the case of the magnetite samples, the recovered
relaxation parameters of the smaller magnetite particles are
larger than those of the bigger particles. A comparison be-
tween the relaxation parameters for the pyrite and magnetite
shows that the recovered C of the pyrite is less sensitive to
the content of minerals. The relaxation parameter of the mag-
netite particles decreases within the range of 0%–5% and
then increases within the range of 5%–20%. We should note
that the uncertainty of complex resistivity measurement was
1–3 milliradian for the phase shift and 0.3% for amplitude
measurement. Such uncertainties of complex resistivity mea-
surement did not significantly affect the inversion results.

Figure 6 shows the matrix resistivity (ρ0) versus the
weight content of the minerals determined using the GEMTIP
model. The matrix resistivity varies very slowly with the con-
tent of mineral particles. While it slightly decreases with the
content of mineral particles in some cases (cases 1 and 2),
we also observe a slight increase in the resistivity in case 3.
One possible explanation of this phenomenon for case 3 could
be related to the fact that the pyrite particles are characterised
by very high surface impedances at lower frequencies, which
we used in our measurements (see Yokoyama et al. 1984).
It seems that the very small size of the glass beads used in
case 3 (just 0.05 mm) could contribute to this effect as well.
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Figure 6 Matrix resistivity (ρ0) versus weight content of mineral par-
ticles for cases 1–6 using the GEMTIP model.

More experimental study is needed to understand better this
phenomenon, which was also observed by Revil et al. (2015).

Analysis of the induced polarisation effect for three-phase
artificial mineral rocks

The last artificial rock sample (case 7) contains 10% pyrite
and 20% magnetite (in weight), mixed with glass beads, which
represents a three-phase medium. Takakura et al. (2014) de-
scribe that it is very difficult to discriminate the minerals
(pyrite and magnetite) from the analysis of the complex re-
sistivity spectra using the Cole–Cole model.

At the same time, by using the three-phase GEMTIP
model (equation (11), with elliptical grains), we were able
to successfully invert the complex resistivity data for this sam-
ple and determine the GEMTIP parameters for both pyrite
and magnetite. For the comparison, we also inverted the
same complex resistivity data using the three-phase GEMTIP
model with spherical grains. Figure 7 shows a plot of
the complex resistivity data predicted from two GEMTIP
inversions (with elliptical and spherical grains) with ob-
served complex resistivity data. Note that, for the case of the
GEMTIP inversion with spherical grains, we have fixed the

fraction volumes to the values recovered from the GEMTIP
inversion with elliptical grains (these values are very close
to the values calculated using volume weight, as shown in
Table 3). Figure 7 demonstrates that the complex resistiv-
ity data predicted from the GEMTIP inversion with elliptical
grains represent the observed complex resistivity data well,
whereas the complex resistivity data predicted from GEMTIP
inversion with spherical grain cannot fit the observed data.
One can see in Table 5 that the recovered time constants
(τ1 = 1.40 × 10−3, τ2 = 8.01 × 10−6) and relaxation param-
eters (C1 = 0.80, C2 = 0.46) of the pyrite and magnetite are
within the ranges listed above, whereas time constants re-
covered from the GEMTIP inversion with spherical grains
(Table 6) are not within the ranges listed above. These re-
sults demonstrate that ellipticity is one of the very important
parameters to be used for an accurate representation of the
complex resistivity data and that the GEMTIP model with el-
liptical grains can be used to distinguish between pyrite and
magnetite in the analysed rock samples.

EXPERIMENTAL STUDY OF THE M INERAL
ROCK SAMPLES

We will subsequently present the results of the QEMSCan
and complex resistivity study of the rock samples from the
Cu–Au deposit in Mongolia. The copper–gold ore is hosted in
the hydrothermal alteration zone. The mineralisation is a low-
sulfide type. The distribution of the mineralisation is uneven,
and it was determined that the mineralisation is generally dis-
tributed in or in the vicinity of the quartz-carbonate gangue
located inside of the hydrothermal alteration zone. Minerali-
sation is associated with chalcopyrite related to early quartz
veins. The main exploration problem in this case is the ability
to differentiate between normally barren pyrite-bearing al-
teration phases and mineralised chalcopyrite phases. Systems
generally always have pyrite but not all are mineralised with
Cu-bearing sulfides. Discrimination between pyrite and chal-
copyrite could be considered as an important application of
the induced polarisation (IP) survey.

Mineralogical analysis using the quantitative evaluation
of minerals by scanning electron microscopy

The mineralogical analyses of mineral and host rock samples
were performed using the quantitative evaluation of minerals
by the scanning electron microscopy (QEMSCan) system, de-
veloped from the research pioneered by the Commonwealth
Scientific and Industrial Research and Organisation (CSIRO)
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Figure 7 Plots of the observed and predicted complex resistivity data for case #7 (1.4- to 2.0-mm pyrite (10%) and magnetite (20%) with 1-mm
glass beads). The white triangle dots with solid line show the complex resistivity data predicted from the GEMTIP inversion with elliptical
grains, whereas the asterisk dots with dashed line show the complex resistivity data predicted from the GEMTIP inversion with spherical grains.

in Australia. QEMSCan combines features found in other an-
alytical instruments such as a scanning electron microscope or
electron probe micro-analyser into a next-generation solution
designed for automated analysis of minerals, rocks, and ma-
terials. QEMSCan uses electron beam technology combined
with high-resolution backscattered electron and secondary
electron imaging and state-of-the-art energy-dispersive spec-
trometers to analyse minerals.

QEMSCan provides detailed particle mineralogical anal-
ysis, including quantification of mineral proportions, average

Table 5 Inversion result for case #7 with elliptical GEMTIP model
(10% and 20% of volume weight of pyrite and magnetite, respec-
tively, mixed with glass beads)

ρ0(	m) 23
Mineral 1: Pyrite Mineral 2: Magnetite

e1 3.6 e2 4.2
τ1 (sec) 1.40 × 10−3 τ2 8.01 × 10−6

C1 0.80 C2 0.46
f1, % 4.16 f2, % 8.08

grain size for selected mineral, average grain density, estimated
minerals fraction volume, etc.

Rock samples were first cut in the middle to obtain a
typical cross section. Following cutting, areas were marked
on each sample for mounting as thin-film sections. The final
QEMSCan images were used for determination of the fraction
volume of different minerals. We should note that the miner-
alogical analysis of mineral proportions, average grain sizes
for selected minerals, and estimated mineral volume fractions
was based on the QEMSCan study of multiple parts of the thin
sections of the rock samples in order to provide a statistically

Table 6 Inversion result for case #7 with the spherical GEMTIP model
(10% and 20% of volume weight of pyrite and magnetite, respec-
tively, mixed with glass beads)

ρ0(	m) 23
Mineral 1: Pyrite Mineral 2: Magnetite

e1 1 e2 1
τ1 (sec) 4.61 × 10−3 τ2 8.29 × 10−5

C1 1.00 C2 0.67
f1, % 4.16 f2, % 8.08
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Figure 8 A QEMSCan image of rock sample #40
from the Au–Cu deposit, with a phase analysis
shown on the right. Calcite and quartz are des-
ignated by the dark and light pink colours, re-
spectively, whereas dolomite is shown by blue,
chalcopyrite by orange, and pyrite by yellow in
this image.

reliable mineralogical description of the entire sample, which
could be used for a comparison with the generalised effective-
medium theory of induced polarisation (GEMTIP) analysis.
The images shown below represent just the examples of the
QEMSCan analysis.

As an example, Figs. 8 and 9 present the typical images
and the results of the QEMSCan analysis for rock samples
#40 and #50.

Note that, according to the QEMSCan results, all samples
contain more than one type of minerals. The major sulfide
minerals present in these samples are chalcopyrite and pyrite.
Therefore, in all these samples, we consider the structure that
contains two different mineral phases and a host matrix phase,
i.e., a total of three phases. Thus, the three-phase GEMTIP
model was utilised for the analysis of complex resistivity.

Examples of the QEMSCan images of rock samples #40
and #50 from the Au–Cu deposit are shown in Figs. 8 and 9,
with a phase analysis shown on the right. A QEMSCan image
of rock sample #40 contains minerals shown in Fig. 8, with
the major concentration of calcite (dark pink, matrix),
dolomite (dark blue, veins), and quartz (light pink, veins),
and there are some inclusions of pyrite (0.58%, yellow) and
chalcopyrite (0.38%, orange). These sulfides are located in
the proximity of dolomite veins.

A QEMSCan image of rock sample #50 (Fig. 9) contains
quartz (light pink, veins) and feldspar (light green, matrix)

with 2.64% of pyrite (yellow) and 0.15% of chalcopyrite
(orange). The sulfides are located inside of quartz veins in
this sample.

Measurements of complex resistivity and analysis of the
induced polarisation effect

The system for measuring complex resistivity of the rock sam-
ples was developed based on our experience on working with
Zonge International’s complex resistivity system, which was
used routinely for measuring the low-frequency (DC to 100
Hz) complex resistivity spectra of mineral rocks. In order
to prevent the so-called spurious electrode polarisation effect
at the electrode–sample interface, we used the non-polarised
OYO electrodes; in addition, we placed the PVC cartridges,
which were filled with distilled water between the electrodes
to separate them. It was experimentally demonstrated that by
using these modifications, the polarisation of the electrodes
was within the instrumental error (Burtman, Gribenko and
Zhdanov 2010; Burtman, Endo and Zhdanov 2011).

The complex resistivity measurement system operates in
the frequency domain to avoid errors related to the conversion
from the time domain to the frequency domain. The measure-
ment setup contained two channels. We placed a rock core
in one channel (called “test channel” ) and reference resistor
Rref in the other channel (called “reference channel” ). The
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Figure 9 A QEMSCan image of rock sample #50
from the Au–Cu deposit, with a phase analysis
shown on the right. Feldspar and quartz are des-
ignated by the dark green and light pink colours,
respectively, whereas dolomite is shown by blue,
chalcopyrite by orange, and pyrite by yellow in
this image.

value of Rref was selected to be approximately half of the
core resistivity. We began complex resistivity measurement
from a high frequency (e.g., 1 kHz) and then decreased the
frequency to 0.01 Hz. During the complex resistivity mea-
surements, the sin wave was generated using Agilent wave-
form generator (33521a) unit and sent through both the test
and reference channels and recorded by Agilent two-channel
digital Scope (dso-x-2012A) to evaluate the difference in am-
plitudes and phases between these two channels. The num-
ber of frequencies and the number of repeated measurements
at each frequency could vary. The experimental results pre-
sented in this paper were based on using 36 frequencies and
3 repeated measurements per frequency to gain reliable com-
plex resistivity data. We developed the LabVIEW program,
which automatically applied the described measurement pro-
tocol and recorded the data. The amplitudes and phases of
the recorded signals were examined by a spectrum analyser
and converted into the real and imaginary parts of complex
resistivity at each frequency. These individual complex resis-
tivity measurements were then collated to form the complex
resistivity spectrum of the sample. Additional experimental
details of the complex resistivity measurement system can be
found in Burtman et al. (2010 and 2011). To the best of
our knowledge, our complex resistivity measurement system
operates in a similar way as one that was recently indepen-
dently developed by Prof. Lee Slater for Ontash & Ermac, Inc.
(http://www.ontash.com/products.htm#PSIP )

Figures 10 and 11 show the real and imaginary parts of
the complex resistivity spectra measured for the same samples
#40 and #50, respectively. Remarkably, all the complex re-
sistivity curves for the mineral rock samples are very similar
to those for artificial rock sample, containing two minerals
(Fig. 7). The major difference is that, in the case of the ar-
tificial rocks, those two minerals were pyrite and magnetite,
whereas in the case of mineral rock samples #40 and #50, the
IP generating minerals are pyrite and chalcopyrite. We can see
also that the maximum IP response in the imaginary part of
the complex resistivity curves (the minimum of the imaginary
part) corresponds to a frequency of around 1 Hz in the case
of mineral rock samples, whereas for the artificial rock sam-
ple, the negative “peak” in the imaginary part of the complex
effective resistivity happens at a frequency of around 100 Hz.
This shift of the frequency of the maximum IP response can be
explained by a known fact that the peak in IP response tends
to move to a higher frequency with the decrease in the size
of the grains of the corresponding minerals (Ostrander and
Zonge 1978; Zhdanov 2008a). The results of the QEMScan
analysis show that the size of the pyrite grains varies within
the range of 20–500 μm, whereas the chalcopyrite has small
grains with a size less than 20 μm.

We have applied the inversion algorithm, SAAGA-RCG,
to the observed complex resistivity data using a three-phase
GEMTIP model. In this case, we have assumed, based on
the results of the QEMScan analysis, that one phase was
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Figure 10 (Top panel) Real and (bottom panel) imaginary parts of (black dots) the observed complex resistivity spectrum and (black line) the
data predicted based on the GEMTIP model for rock sample #40. The predicted data were obtained using the three-phase GEMTIP model.

Figure 11 (Top panel) Real and (bottom panel) imaginary parts of (black dots) the observed complex resistivity spectrum and the data predicted
based on (black line) the GEMTIP model for rock sample #50. The predicted data were obtained using the three-phase GEMTIP model.
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Table 7 GEMTIP parameters for modelling of sample #40 from the
Cu–Au deposit

ρ0(	m) 400
Pyrite Chalcopyrite

e1 6.6 e2 9.6
τ1 (s) 0.02 τ2 0.55
C1 0.57 C2 0.55
f1, % 0.51 f2, % 0.46

represented by pyrite, another phase was represented by
chalcopyrite, and the third phase was formed by other
non-polarisable minerals. The predicted data obtained using
the three-phase GEMTIP model are shown by the black lines
in Figs. 10 and 11. Tables 5 and 6 present the corresponding
GEMTIP parameters, produced by the inversion for samples
#40 and #50, respectively. We should note that the values
given in Tables 7 and 8 represent the parameters of the
corresponding global minima determined by a SAAGA-RCG
method.

The three-phase GEMTIP analysis of the real and imag-
inary parts of the complex resistivity spectrum (Fig. 10) of
sample #40 demonstrates that the GEMTIP model correctly
revealed the presence of two minerals, pyrite and chalcopyrite,
in good agreement with the QEMSCan analysis of this sam-
ple (Fig. 8). The GEMTIP analyses provided larger values for
the relaxation coefficient of pyrite grains than for chalcopy-
rite, and the time constant for pyrite was smaller than that
for chalcopyrite. Therefore, the lower frequency minimum in
Fig. 10 (top panel) is associated with pyrite, whereas the higher
frequency increase is associated with chalcopyrite.

The three-phase GEMTIP analysis of the real and
imaginary parts of the complex resistivity spectrum of sample
#50 (Fig. 11) demonstrates that the GEMTIP model correctly
represented the presence of pyrite in agreement with the
QEMSCan analysis of this sample (Fig. 9). The GEMTIP

Table 8 GEMTIP parameters for modelling of sample #50 from the
Cu–Au deposit

ρ0(	m) 68
Pyrite Chalcopyrite

e1 3.0 e2 7.5
τ1 (s) 0.02 τ2 0.18
C1 0.56 C2 0.88
f1, % 2.78 f2, % 0.49

analyses provided approximately the same values for the
relaxation coefficient for the pyrite as for the chalcopyrite
grains, whereas the chalcopyrite grains had larger time con-
stant than the pyrite grains. Therefore, the lower frequency
inflection point in Fig. 11 is associated with chalcopyrite,
whereas the higher frequency increase is associated with
pyrite.

We should note that the time constant and the relaxation
parameters for pyrite, determined independently for two dif-
ferent rock samples, #40 and #50, are practically the same,
which reflects the common properties of the pyrite’s grains
in both samples, taken from the same deposit. However, the
shapes of the grains for two different rock samples, #40 and
#50, are quite different, as one can see in Figs. 8 and 9. This
difference in the shape is reflected in the different values of
the recovered ellipticity. Chalcopyrite has a significantly larger
time constant, which corresponds to relatively larger size of
the grains.

DISCUSS ION AND C ONCLUSIONS

In this paper, we have analysed the generalised effective-
medium theory of induced polarisation (GEMTIP) for the rock
models with elliptical grains. This model is a generalisation
of the classical Cole–Cole model, which appears in a special
case of inclusions with spherical shape. The elliptical GEMTIP
model provides analytical expressions connecting the effective
electrical parameters of the rocks with the intrinsic petrophys-
ical and geometrical characteristics of the composite medium:
the mineralisation of the rocks, the matrix composition, and
the polarisability of the formations.

We have successfully applied the new elliptical GEMTIP
model to predict the IP effect in the artificial rock samples,
formed by pyrite and magnetite particles mixed with glass
beads, and inverted the experimental complex resistivity data
observed in the artificial rock samples for the correspond-
ing GEMTIP parameters. The inversion results indicate that
the mineral type, the size of the particles, and the content of
the minerals are the major factors that affected the time con-
stant and relaxation parameters. Based on the inversion re-
sults of the complex resistivity data measured for the artificial
rock samples, we have determined that the approximate range
of the time constant for magnetite is 5 × 10−6 to 1 × 10−4 ,
whereas the time constant of pyrite decreases from 5 × 10−3 to
4 × 10−4 with the increase in the weight content of pyrite. The
ranges of the relaxation parameter for pyrite and magnetite
are 0.7–0.9 and 0.3–0.5, respectively. Therefore, it is possible
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to distinguish pyrite and magnetite from the observed complex
resistivity data using the GEMTIP model.

Thus, we have experimentally demonstrated that the
complex resistivity spectrum of the mineral rocks can be de-
scribed well by a GEMTIP model with elliptical inclusions.

The results of the QEMSCan mineralogical, complex re-
sistivity, and GEMTIP analysis of representative mineral rock
samples collected from the Cu–Au deposit in Mongolia have
shown that the elliptical GEMTIP model can be effectively
used to model the IP effect in mineral rocks. Moreover, we
have found that the different types of mineralisations are char-
acterised by different behaviours of the parameters of the
GEMTIP model. These results open the possibility for mineral
discrimination based on complex resistivity measurements.

Future research should be focused on expanded experi-
mental study of representative mineral rock samples from dif-
ferent mineral deposits using QEMSCan mineralogical anal-
ysis, complex resistivity measurements, and GEMTIP mod-
elling and inversion.
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APPENDIX A: DEF INITION OF THE
DEPOLARISATION TENSORS

Following Zhdanov (2008a), we introduce the volume �̂ and
surface �̂ depolarisation tensors as follows:

�̂ =
∫∫∫

V
Ĝb

(
r | r′) dv′, (A1)

and

�̂ =
∫∫

S
Ĝb

(
r | r′) · n

(
r′) n

(
r′) ds ′, (A2)

where V is the volume occupied by the grain, S is the surface
of the grain, n(r′) is a unit vector of the outer normal to
the surface S, and n(r′)n(r′) denotes a dyadic product of two
normal vectors.

Tensor function Ĝb(r | r′) is a Green’s tensor for the ho-
mogeneous anisotropic full space, which can be represented
in the form of a dyadic Green’s function:

Ĝb

(
r | r′) = ∇∇′gb

(
r | r′),

where ∇∇′ stands for a dyadic product of two operators ∇
and ∇′.

In the case of a quasi-static model of the field and
isotropic homogeneous full space (σ̂ b = Îσb) :

gb

(
r | r′) = 1

4πσb |r − r′| . (A3)

Note that the volume depolarisation tensor �̂ can be rep-
resented in the form of a surface integral as well. Indeed,
according to the Gauss theorem, the volume depolarisation
tensor �̂ is equal to

�̂ =
∫∫∫

V
Ĝb

(
r | r′) dv′ =

∫∫∫
V

∇∇′gb

(
r | r′) dv′

∇
∫∫∫

V
∇′gb

(
r | r′) dv′ = ∇

∫∫
S

gb

(
r | r′) n

(
r′) ds ′. (A4)

APPENDIX B: CALCULATION OF THE
VOLUME DEPOLARISATION TENSOR �̂ FOR
AN ELLIPSOIDAL GRAIN

The volume depolarisation tensor �̂ of an ellipsoidal grain can
be determined as (Stratton 1941; Landau and Lifshitz 1982,
pp. 37-44) a diagonal tensor with the components equal to

�αα = −axayaz

2σb

∫ ∞

0

ds
(s + aα) Rs

=

− 3V
8πσb

∫ ∞

0

ds
(s + aα) Rs

= − 1
σb
γα, (B1)
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where ax, ay, and az are the semi-axes of the ellipsoidal grain;
V = 4πaxayaz/3 is a volume of the ellipsoid; and γα are depo-
larisation factors:

γα = 3V
8π

∫ ∞

0

ds
(s + aα)Rs

, Rs =
√

(s + ax)(s + ay)(s + az).

(B2)

Note that the depolarisation factors satisfy the following
condition:

γx + γy + γz = 1. (B3)

In particular, for a spherical grain, we immediately obtain
the known result:

�xx = �yy = �zz = − 1
3σb

. (B4)

For a cylindrical inclusion with the axis parallel to the
z-axis (az → ∞), we have

�zz = 0, �xx = �yy = − 1
2σb

. (B5)

In the case of the inclusion represented by the flat horizontal
thin sheet (ax, ay → ∞), one can find

�xx = �yy = 0, �zz = − 1
σb
. (B6)

Note that, for ellipsoids of revolution (spheroidal-shaped
particles) with the z-axis aligned with the axis of revolution
of the ellipsoid, the horizontal semi-axes of the ellipsoid are
equal (ax = ay = a, and az = b). In this case, the elliptical inte-
grals in equation (B1) can be expressed by analytical functions
(Landau and Lifshitz 1982, pp. 37-44), with

γz = γ, γx = γy = 1
2

(1 − γ ) (B7)

and

�zz = � = − γ

σb
, �xx = �yy = − 1

2σb
(1 + σb�). (B8)

The value of γ is determined by the eccentricity of a
spheroid.

For example, in the case of the prolate spheroid (b > a)
with e =

√
1 − a2/b2, we have

γ = 1 − e2

e3
(tanh−1 e − e). (B9)

Note that, if e → 1, the spheroid transforms into a long
thin rod.

For the oblate spheroid (b < a), with eccentricity e =√
a2/b2 − 1, we have

γ = 1 + e2

e3
(e − tan−1 e). (B10)

APPENDIX C: CALCULATION OF THE
SURFACE DEPOLARISATION TENSOR �̂

FOR AN ELLIPSOIDAL GRAIN

Now let us calculate the surface depolarisation tensor for ellip-
soidal grains. To simplify the calculations, we will consider the
ellipsoids of revolution only. Introducing a system of coordi-
nates x, y, z with the z-axis aligned with the axis of revolution
of the ellipsoid, we represent the equation of the surface of
the ellipsoid as

x2

a2
+ y2

a2
+ z2

b2
= 1,

where a = ax = ay and b = az are the equatorial and polar
radii of the ellipsoid, respectively.

In particular, we can write the equation for the surface
of the ellipsoid in cylindrical coordinates (ρ, ϕ, z) as

x = ρ cosϕ; y = ρ sinϕ; ρ = (a/b)
√

b2 − z2; z ∈ [−b, b].

(C1)

The expression for the surface depolarisation tensor (A2)
in the centre of the ellipsoid (r = 0) takes the following
form:

∧
� = − a

4πσbb2

2π∫
0

dϕ

b∫
−b

∧
g(r′) ·

∧
N(r′)Q(r′)dz′, (C2)

where

∧
N = n(r′)n(r′) (C3)

and

∧
g(r′) = ∇∇′ 1

|r′| . (C4)

Note that vector n(r′) = (nx, ny, nz) is a unit vector nor-
mal to the ellipsoid

nx = b
√

b2 − z′2

Q
cosϕ; ny = b

√
b2 − z′2

Q
sinϕ; nz = az′

Q
,

Q =
√

b4 − (b2 − a2)z′2.

Therefore, expression (C3) takes the following form:

∧
N =

⎛⎜⎜⎝
n2

x nxny nxnz

nxny n2
y nynz

nxnz nynz n2
z

⎞⎟⎟⎠ =

⎛⎜⎜⎝
n11 n12 n13

n21 n22 n23

n31 n32 n33

⎞⎟⎟⎠ , (C5)

where the scalar components nki are calculated as
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n11 = b2(b2 − z2)
Q2

cos2 ϕ; n12 = b2(b2 − z2)
Q2

sinϕ cosϕ;

n13 = abz
√

(b2 − z2)
Q2

cosϕ;

n21 = b2(b2 − z2)
Q2

sinϕ cosϕ; n22 = b2(b2 − z2)
Q2

sin2 ϕ;

n23 = abz
√

(b2 − z2)
Q2

sinϕ;

n31 = abz
√

(b2 − z2)
Q2

cosϕ; n32 = abz
√

(b2 − z2)
Q2

sinϕ;

n33 = a2z2

Q2
; Q =

√
b4 − (b2 − a2)z2. (C6)

We can write a similar matrix representation for tensor
∧
g

∧
g =

⎛⎜⎜⎝
g11 g12 g13

g21 g22 g23

g31 g32 g33

⎞⎟⎟⎠ , (C7)

where the scalar components gi j are calculated as

g11 = b3
[
3a2(b2 − z2) cos2 ϕ − R2

]
R5

;

g11 = b3
[
3a2(b2 − z2) sin2 ϕ − R2

]
R5

; g33 = b3[3b2z2 − R2]
R5

;

g12 = g21 = 3a2b3(b2 − z2)
R5

sinϕ cosϕ;

g13 = g31 = 3ab4z
√

b2 − z2

R5
cosϕ;

g23 = g32 = 3ab4z
√

b2 − z2

R5
sinϕ;

R =
√

a2b2 + (b2 − a2)z2. (C8)

Substituting expressions (C3)–(C8) into formula (C2), af-
ter some algebra, we will find

�̂ = − 1
σb

⎡⎢⎢⎣
λ 0 0

0 λ 0

0 0 λz

⎤⎥⎥⎦ ,
where

λ = ab3

2

b∫
0

[2a2b2 − (b2 − a2)z2](b2 − z2)

[a2b2 + (b2 − a2)z2]5/2
√

b4 − (b2 − a2)z2
dz (C9)

and

λz = ba3

b∫
0

[3b4 − b2a2 − (b2 − a2)z2]z2

[a2b2 + (b2 − a2)z2]5/2
√

b4 − (b2 − a2)z2
dz.

(C10)

Note that, in the case of a spherical grain with a
radius a,

λ = λz = 2
3a
,

and the surface depolarisation tensor takes the following
form:

�̂ = − 2
3σba

Î. (C11)

In a general case of the ellipsoidal grains, one should
numerically calculate integrals (C9) and (C10).

The surface depolarisation tensor for the spheroidal-
shaped grains is equal to

�̂l = − 1
σ0

⎡⎢⎢⎣
λl 0 0

0 λl 0

0 0 λlz

⎤⎥⎥⎦ ,
where λl = λlx = λly, and λlz can be calculated using integrals
(C9) and (C10).
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