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S U M M A R Y
This paper proposes a novel approach to the joint inversion of gravity and magnetic data
based on multinary transformation of the model parameters and Gramian constraints. The
concept of multinary transformation is a generalization of the binary density inversion for
models described by any number of discrete model parameters, while the Gramian constraint
enforces the linear relationships between the different model parameters and their attributes
or transforms. By combining these two concepts, the joint multinary inversion using Gramian
constraints not only makes it possible to explicitly exploit the sharp contrasts of the density and
magnetic susceptibility between the host media and anomalous targets in the inversion of grav-
ity and magnetic data, but also provides uniform spatial boundaries of the anomalous targets
in the distributions of density and magnetic susceptibility. The novel joint multinary inversion
algorithm is demonstrated to be effective in determining the shapes, locations and physical
properties of the anomalous targets. We show that this method can be effectively applied to
the joint inversion of the full tensor gravity gradiometry data and the total magnetic intensity
data, computer simulated for 3-D synthetic models using ternary model transformation. We
also tested this joint inversion algorithm in the area of the McFaulds Lake in northwestern
Ontario, Canada, and the joint inversion results provide a reasonable geological model with
high resolution for the exploration of magmatic chromite deposits.
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1 I N T RO D U C T I O N

It is well known that the inversion of potential field data is a non-
unique problem. One approach to reduce the non-uniqueness is
based on the joint inversion of the multimodal data (e.g. gravity
and magnetic), if the corresponding physical properties (e.g. den-
sity and magnetic susceptibility) are mutually correlated. Over the
years, different techniques have been developed for joint inversion
algorithms. For example, if the direct functional relationships be-
tween the different physical properties are known a priori, then one
can apply a method based on the direct joint parameter inversion
(e.g. Vozoff & Jupp 1975). In a case where different physical proper-
ties can be expressed by different functionals of the same intrinsic
petrophysical properties (e.g. porosity, water saturation), one can
invert the different observed geophysical data jointly for these in-
trinsic properties (e.g. Abubakar et al. 2012; Gao et al. 2012). The
cross-gradient constraint is a popular solution for the joint inverse
problem when the different physical properties are not correlated but
have similar geometrical structures. The cross-gradient constraint
enforces the structural similarities between the different physical

properties by minimizing the parametric functional with the cross-
gradient term (Haber & Oldenburg 1997; Gallardo & Meju 2003,
2004, 2011; Colombo & De Stefano 2007).

Zhdanov et al. (2012) introduced a unified approach to the joint
inversion of different geophysical data using Gramian constraints.
By imposing an additional requirement of minimizing the Gramian
during the regularized inversion, one can recover multiple model
parameters with enhanced correlation between the different physical
properties and/or their attributes (Lin & Zhdanov 2017).

Another complication of geophysical inversion is that the tra-
ditional inversions of potential field data usually characterize the
distributions of physical properties by a function, which varies con-
tinuously within the given bounds (Zhdanov 2002, 2015). In order
to improve the resolution of the inversions of potential field data,
several techniques have been developed which aid the recovery of
anomalous targets with high contrasts between physical properties
and sharp boundaries. For example, one can use focusing regular-
ization (Portniaguine & Zhdanov 1999; Zhdanov 2002, 2015) to
recover model parameters with sharp physical property contrasts.
However, all these methods still produce a continuous distribution
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Joint multinary inversion of geophysical data 1541

Figure 1. An example of the multinary model transform: (a) multinary
function of the third order, E(ρ), (b) its derivative, G(ρ). The values of the
discrete densities are as follows: 0, 0.2 and 0.6 g cm−3, and σ = 0.02.

of the physical properties, even if the inverse images become more
focused and sharp.

In the papers by Zhdanov & Cox (2013) and Zhdanov & Lin
(2017), the multinary inversion algorithm was proposed to explicitly
exploit the sharp contrasts of the density between the host media and
anomalous targets in the inversion of gravity data. This method is a
generalization of binary density inversion for models described by
any number of discrete model parameters (e.g. Bosch et al. 2001;
Krahenbuhl & Li 2006) or of a level set method (e.g. Osher &
Sethian 1988; Santosa 1996; Dorn & Lesselier 2006).

In the mineral exploration, one would expect the recovered
boundaries of ore body derived from different geophysical data
sets to be consistent, as they represent the same geological struc-
ture. Recently Zheglova & Farquharson (2018) proposed a multi-
ple level-set algorithm for joint inversion of traveltime and gravity
data. By combining the seismic and gravity data, the resolution of
the results of joint inversion was improved compared to separate
inversions. However, due to the known limitations of the level-set
method, each local field anomaly should correspond to one initial
convex anomalous model, which may require using some a priori
information for the joint inversion (e.g. spatial locations, physical
properties, approximate sizes, etc.), which is not always available.
To this end, we propose a novel approach to the joint inversion of
gravity and magnetic data based on multinary transformation of the
model parameters and Gramian constraints. By combining these two
concepts, the joint multinary inversion using Gramian constraints
makes it possible not only to provide sharp contrasts of the density
and magnetic susceptibility between the host media and anomalous
targets in the inverse models, but also to recover the same spatial
boundaries of the anomalous targets in the distributions of density
and magnetic susceptibility.

We have developed an algorithm for the joint multinary inver-
sion for gravity and magnetic data using Gramian constraints. The
method was tested on 3-D synthetic models with different combina-
tions of densities and magnetic susceptibilities using ternary model

transformation. We have also tested this algorithm in the joint in-
version of gravity and magnetic data in the area of McFaulds Lake
of northwestern Ontario of Canada.

2 P O T E N T I A L F I E L D F O RWA R D
M O D E L L I N G

The forward modelling of gravity and magnetic responses can be
expressed by linear operators with respect to density ρ and magnetic
susceptibility χ , as follows:

dg = Ag(ρ), dm = Am(χ ), (1)

where Ag and Am are the linear forward modelling operators for
gravity and magnetic fields, respectively.

2.1 Gravity forward modelling

The gravity field can be computed as the gradient of the gravity
potential U:

g(r) = ∇U (r) = γ
�

D

ρ(r′)
r′ − r

|r′ − r|3 dv, (2)

where the gravity potential, U, has the following form:

U (r) = γ
�

D

ρ(r′)
|r′ − r|dv. (3)

The second spatial derivatives of the gravity potential U can be
expressed as follows:

gαβ (r) = ∂2

∂α∂β
U (r), α, β = x, y, z. (4)

They form a symmetric gravity tensor

ĝ =
⎡⎣ gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

⎤⎦ . (5)

The expressions for the gravity tensor components can be written
as follows:

gαβ (r) = γ
�

D

ρ(r′)

|r′ − r|3 Kαβ (r′ − r)dv, (6)

where kernels Kαβ are equal to

Kαβ (r′ − r) =
⎧⎨⎩

3(α−α′)(β−β ′)
|r′−r|2 , α �= β

3(α−α′)2

|r′−r|2 − 1, α = β
, α, β = x, y, z. (7)

2.2 Magnetic forward modelling

Generally, it is assumed that the self-demagnetization effects can be
negligible and the magnetic susceptibility is isotropic, so that there
would be no remanent magnetization. Under this assumption, the
intensity of magnetization, I(r), is linearly related to the inducing
magnetic field, H0(r),

I(r) = χ (r)H0(r) = χ (r)H0l(r), (8)

where χ (r) is the magnetic susceptibility and l(r) = (lx , ly, lz) is
the unit vector along the direction of the inducing field. Assuming
that the x-axis is directed eastwards, the y-axis has a positive direc-
tion northwards, and the z-axis is downwards, the direction of the
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1542 W. Lin and M.S. Zhdanov

Figure 2. Model study 1. A 3-D view of the synthetic model. The rectangular contour outlines the location of the cross-section shown in the next figures. The
black dots show the locations of the receivers of the gravity and magnetic data.

Figure 3. Model study 1. Panel (a) shows a cross-section of the synthetic
density distribution of the model; panel (b) presents a cross-section of the
synthetic magnetic susceptibility distribution.

inducing magnetic field can be computed as follows:

lx = cos(I ) sin(D − A),

ly = cos(I ) cos(D − A),

lz = sin(I ),

(9)

for given inclination (I), declination (D) and azimuth (A) from the
International Geomagnetic Reference Field.

Thus, the anomalous magnetic field can be represented in the
following form:

H(r) = − H0

4π

�
D

χ (r′)

|r′ − r|3 [l−3(l · (r′ − r))(r′ − r)

|r′ − r|2 ]dv. (10)

In the airborne magnetic survey, the total magnetic intensity
(TMI) field is measured, which can be computed approximately
as follows:

T (r) ≈ l · H(r) = − H0

4π

�
D

χ (r′)

|r′ − r|3 [1−3(l · (r′ − r))2

|r′ − r|2 ]dv.

(11)

One can use the point-mass approximation to calculate formulae
(7) and (11) in the discrete form by considering each cell as a point
mass (Zhdanov 2009).

3 J O I N T I N V E R S I O N U S I N G G R A M I A N
C O N S T R A I N T S

In this section, we will summarize the theory of joint inversion using
Gramian constraints. One can find more details about this method
in Zhdanov et al. (2012), Zhdanov (2015), Zhu (2017) and Lin &
Zhdanov (2017).

Consider two different geophysical data sets, d( j) (j = 1, 2),
representing gravity and magnetic data, respectively, and the related
two physical properties, m( j) ( j = 1, 2) , $ representing density (ρ)
and magnetic susceptibility (χ ), respectively. The joint inversion for
these two model parameters can be formulated as a minimization of
a single parametric functional according to the following formula
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Figure 4. Case 1 of model study 1: separate minimum norm inversions.
Synthetic data (dashed line) versus predicted data (dotted line) along the
cross-section in Fig. 2 for the FTG components, (a) Gzz, (b) Gzx, (c) Gzy

and (d) TMI data. Panel (e) shows the cross-section of the recovered den-
sity distribution; panel (f) shows the cross-section of the inverse magnetic
susceptibility model.

(Zhdanov et al. 2012; Zhdanov 2015):

Pα(m(1), m(2)) =
2∑

j=1

ϕ( j)
w (m( j)) +

2∑
j=1

α( j)sMN(m( j))

+βSG(Lm(1), Lm(2)), (12)

where ϕ( j)
w (m( j)) are the misfit functionals of the weighted data:

ϕ( j)
w (m( j)) =

∥∥∥W( j)
d (A( j)(m( j)) − d( j))

∥∥∥2

L2

, j = 1, 2, (13)

and the data weighting matrix, W( j)
d , is selected as the inverse norm

of each geophysical data set,
∥∥d( j)

∥∥−1

L2
.

In formula (12), the coefficients α(j) and β are chosen as follows:

α( j) = ϕ( j)
w (m( j))

sMN(m( j))
, j = 1, 2; (14)
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Figure 5. Case 2 of model study 1: joint minimum norm inversion with
structural Gramian constraint. Synthetic data (dashed line) versus predicted
data (dotted line) along the cross-section in Fig. 2 for the FTG components,
(a) Gzz, (b) Gzx, (c) Gzy and (d) TMI data. Panel (e) shows the cross-section
of the recovered density distribution; panel (f) shows the cross-section of
the inverse magnetic susceptibility model.

β =
∑2

j=1 ϕ( j)
w (m( j))

SG(Lm(1), Lm(2))
. (15)

The minimum norm stabilizing functionals in the weighted model
space, S( j)

MN, are calculated as follows:

S( j)
MN = ∥∥W( j)

m (m( j)−m( j)
apr)

∥∥2

L2
, j = 1, 2. (16)

Note that, the model weighting matrix, W( j)
m , is defined as a square

root of the integrated sensitivity matrix, which can be treated as a
depth weighting factor in the inversion algorithm (Zhdanov 2002).

It is known that the joint inversion of different geophysical data
sets may be unstable due to the fact that different physical properties
have different units and magnitudes. In order to eliminate these
negative factors, we work with the normalized dimensionless data
and model parameters.

In the formula (12), the coefficients α(j) and β are some pos-
itive numbers introduced for weighting the different parts of the
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Figure 6. Case 3 of model study 1: separate multinary inversions. Panels (a) and (c) show the approximate representations of the ternary model transforms
for density (ρ) and magnetic susceptibility (χ ), respectively, and panels (b) and (d) show their derivatives. The values of the discrete densities and magnetic
susceptibilities are as follows: 0, 0.2 and 0.6 g cm−3, and σ (1) = 0.06; 0, 0.02 and 0.06 SI, and σ (2) = 0.006. The dashed lines in these plots correspond to the
values of density and magnetic susceptibility outside of the upper and lower bounds imposed in the inversion.

parametric functional. The term SG(Lm(1), Lm(2))$is the Gramian
constraint (Zhdanov et al. 2012), which in a case of two physical
properties can be written, using matrix notations, as follows:

SG(Lm(1), Lm(2)) =
∣∣∣∣ (Lm(1), Lm(1))

(
Lm(1), Lm(2)

)(
Lm(2), Lm(1)

)
(Lm(2), Lm(2))

∣∣∣∣ , (17)

where operator L(j = 1, 2) represents some linear transformation of
the model parameters, and operation ( ·, ·) stands for the inner prod-
uct of two vectors in the corresponding Gramian space (Zhdanov,
2015). It is clear that the determinant, SG(Lm(1), Lm(2)), approaches
zero when the model parameters satisfy the following condition:

Lm(1) = k · Lm(2), (18)

where k is some real number.
Thus, by minimizing the parametric functional (12), we enforce

the linear correlation between the model parameters; however, dif-
ferent transforms of physical properties can be used as additional
parameters as well. For example, if operator L is selected as the gra-
dient operator, L =∇, then the Gramian requires that the gradients of
the different model parameters will be parallel to each other, which
is similar to the case of cross-gradient constraints (Zhdanov 2015).
Note that, minimization of the Gramian of the gradients imposes
the structural constraints which do not necessary require a direct
correlation between the physical properties themselves. Therefore,
the Gramian structural constraints can be used in the situation con-
taining the rock formations with different types of relationships
between density and susceptibility (e.g. igneous rocks with high
density and magnetization, and carbonates with high density and no
magnetization, χ = 0).

4 M U LT I NA RY M O D E L T R A N S F O R M

Consider a gravity inverse problem with multinary model transform.
It can be formulated as a solution of the following operator equation:

dg = Ag(ρ), (19)

where Ag is a linear operator for computing the gravity field; dg

are the observed gravity field data, which may include the gravity
field, Gz, and all components of the full gravity gradient tensor and
ρ represents the model density. In the case of a discrete inverse
problem, the density distribution ρ can be represented as a vector
formed by Nm components:

ρ = [ρ1, ρ2, ..., ρNm ]T , (20)

and the observed data d can be considered as an Nd -dimensional
vector,

d = [d1, d2, ..., dNd ]T , (21)

where Nm is the number of unknown model parameters (e.g. the
number of discretization cells in the inverse model); Nd is the num-
ber of data points; and superscript ‘T’ denotes the transposition
operation.

The nonlinear transformation of the continuous function into
the multinary function can be described as follows. The original
vector of anomalous density distribution, ρ = [ρ1, ρ2, ..., ρNm ]T , is
transformed into a new vector model space, ρ̃ = [̃ρ1, ρ̃2, ..., ρ̃Nm ]T ,
defined by a number of discrete (multinary) densities, ρ(j) (j = 1, 2,
...P), using a superposition of error functions:

ρ̃i = Eσ (ρi )

= cρi + 1

2

P∑
j=1

[
1 + erf

(
ρi − ρ( j)

√
2σ

)]
, i = 1, ..., Nm.

(22)

In the last formula, the error function, erf(z), $is defined as follows:

erf(z) = 2√
π

∫ z

0
e−t2

dt, (23)

where parameter σ is a standard deviation of the value ρ(j) , constant
c is a small number to avoid singularities in the calculation of
the derivatives of the quasi-multinary densities, ρ̃i , and P is a
total number of discrete (multinary) values of the model parameters
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Figure 7. Case 3 of model study 1: separate multinary inversions. Synthetic
data (dashed line) versus predicted data (dotted line) along the cross-section
in Fig. 2 for the FTG components, (a) Gzz, (b) Gzx, (c) Gzy and (d) TMI data.
Panel (e) shows the cross-section of the recovered density distribution; panel
(f) shows the cross-section of the inverse magnetic susceptibility model.

(densities), ρ(j). The discrete densities, ρ(j)(j = 1, 2, ..., P), can be
chosen a priori based on the known geological information (e.g.
core samples).

Note that the derivative of the error function (22) is equal to the
corresponding Gaussian function; therefore, the derivative of the
quasi-multinary densities, ρ̃i , can be calculated as a superposition

of the Gaussian functions, Gσ

(
ρi − ρ

( j)
i

)
, as follows:

∂ρ̃i

∂ρi
= ∂ Eσ (ρi )

∂ρi
= gσ (ρi ) =

P∑
j=1

Gσ

(
ρi − ρ

( j)
i

)
+ c, (24)

where

Gσ

(
ρi − ρ

( j)
i

)
= 1√

2πσi

exp

⎛⎜⎝−
(
ρi − ρ

( j)
i

)2

2σ 2
i

⎞⎟⎠ . (25)
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Figure 8. Case 4 of model study 1: joint multinary inversion with struc-
tural Gramian constraint. Synthetic data (dashed line) versus predicted data
(dotted line) along the cross-section in Fig. 2 for the FTG components, (a)
Gzz, (b) Gzx , (c) Gzy and (d) TMI data. Panel (e) shows the cross-section of
the recovered density distribution; panel (f) shows the cross-section of the
inverse magnetic susceptibility model.

Fig. 1(a) shows an example of the multinary model transform of
three discrete densities, while Fig. 1(b) presents its derivative, where
values of the discrete densities are as follows: 0, 0.2 and 0.6 g cm−3,
and σ = 0.02. One can see from this figure how a continuous dis-
tribution of the anomalous density along the horizontal axis can be
transformed into the step-wise distribution, E(ρ), along the vertical
axis. It is important to note that the range of the parameters in the
multinary model space depends on the order number of the multi-
nary function. For example, the value of multinary model transform
in Fig. 1 ranges from 0 to 3 for the case of ternary transformation
with three discrete densities.

We can see from Fig. 1 that the multinary model transform (22)
provides some flexibility of the transformed parameters which is
required in practical applications in order to fit the observed data
with the proper accuracy (Zhdanov & Lin 2017).
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Figure 9. Model study 2. Panel (a) shows a cross-section of the synthetic
density distribution of the model; panel (b) presents a cross-section of the
synthetic magnetic susceptibility distribution.
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Figure 10. Case 1 of model study 2: separate multinary inversions. Synthetic
data (dashed line) versus predicted data (dotted line) along the cross-section
in Fig. 2 for the FTG components, (a) Gzz, (b) Gzx, (c) Gzy and (d) TMI data.
Panel (e) shows the cross-section of the recovered density distribution; panel
(f) shows the cross-section of the inverse magnetic susceptibility model.
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Figure 11. Case 2 of model study 2: joint multinary inversion with struc-
tural Gramian constraint. Synthetic data (dashed line) versus predicted data
(dotted line) along the cross-section in Fig. 2 for the FTG components, (a)
Gzz, (b) Gzx , (c) Gzy and (d) TMI data. Panel (e) shows the cross-section of
the recovered density distribution; panel (f) shows the cross-section of the
inverse magnetic susceptibility model.

5 J O I N T M U LT I NA RY I N V E R S I O N
U S I N G G R A M I A N C O N S T R A I N T S

In this section, we combine the above two concepts of Gramian
constraints and multinary transform for the joint inversion of gravity
and magnetic data.

First, we rewrite eq. (1) as follows:

d = A(m). (26)

In the last formula, we use the following notations: d is a vector of
the observed gravity and magnetic data,

d = [
d(1), d(2)

]T = [dg, dm]T ; (27)

m is a vector of the model parameters (density and magnetic sus-
ceptibility),

m = [
m(1), m(2)

]T = [ρ, χ ]T ; (28)
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Joint multinary inversion of geophysical data 1547

Figure 12. Geological sketch map with known mineralization in the Ring of Fire region. The pink area shows the inferred extent of gneiss domes with
Mesoarchean crust formation ages, the green area shows the Neoarchean greenstones and the purple area indicates the Ring of Fire ultramafic-mafic intrusions
(Mungall et al. 2010).

and A is a combined matrix of the linear forward operators,

A =
[

Ag

Am

]
. (29)

As a result of the multinary model transform, the original den-
sity and magnetic susceptibility distribution, m = [ρ, χ ]T , have
become the transformed distribution, m̃ = [̃ρ, χ̃]T . Therefore, the
original inverse problem (26) takes the following form:

d = A[E−1
σ (m̃)] = Ãσ (m̃), (30)

where Ãσ is the new forward modelling operator acting in the trans-
formed model spaces, m̃.

Following Zhdanov & Lin (2017), one can demonstrate that the
Fréchet derivative F̃σ with respect to the new model parameters, m̃,
can be derived as follows:

F̃σ =
[

Agg−1
σ (1)

Amg−1
σ (2)

]
, (31)

where gσ ( j) is a diagonal matrix formed by the scalar components
gσ ( j) (m( j)

i ), i = 1, 2, ...Nm, j = 1, 2; defined above in expressions
(24) and (25).

By combining the multinary transformation and the Gramian
constraints, we solve the inverse problem (26) based on the mini-
mization of the following Tikhonov parametric functional:

Pα
σ (m̃(1), m̃(2)) =

2∑
j=1

∥∥Wd( j) (Ãσ ( j) (m̃( j)) − d( j))
∥∥2

+
2∑

j=1

α( j)
∥∥W̃m( j) (m̃( j) − m̃( j)

apr)
∥∥2

+βSG(Lm̃(1), Lm̃(2)) −→ min . (32)

In the case of joint multinary inversion with structural constraint,
one can apply the gradient operator, L = ∇, to enhance the similar-
ities of physical boundaries of anomalous bodies.

We apply the regularized conjugate gradient (RCG) method to
find the global minimum of the parametric functional, Pα

σ (Zhdanov
2002, 2015):

rn = Ãσ (m̃) − d,

lσn = F̃T
σ,nW2

drn + αnW2
m(m̃n − m̃apr) + βn l( j)

Gn,

l̃σn = lσn +
∥∥lσn

∥∥2∥∥lσn−1

∥∥2
l̃σn−1 ,̃ lσ0 = lσ0 , (33)

kσ
n = (̃lσn , lαn )/

[∥∥WdF̃σ,ñ lσn
∥∥2 + αn

∥∥Wm̃lσn
∥∥2 + βn

∥∥Gmn l̃αn
∥∥2
]
,

m̃n+1 = m̃n − kσ
n l̃σn ,

where the steepest ascent directions of the Gramian stabilizing func-
tionals , l( j)

Gn, are given in the Appendix. The regularization param-
eters, αn and βn, are usually selected as αn = α1 · qn − 1 and βn =
β1 · qn − 1, where constant q is a small number, 0 < q < 1. In the
following sections, q was set at 0.9, and the initial coefficients, α

( j)
1

and β1, are chosen as follows:

α
( j)
1 =

∥∥∥Wd( j) (Ãσ ( j) (m̃( j)
1 ) − d( j))

∥∥∥2

∥∥∥W̃m( j) (m̃( j)
1 − m̃( j)

apr)
∥∥∥2

, j = 1, 2, (34)

β1 =
∑2

j=1

∥∥∥Wd( j) (Ãσ ( j) (m̃( j)
1 ) − d( j))

∥∥∥2

SG(Lm̃(1)
1 , Lm̃(2)

1 )
. (35)

In some circumstances, we would like to constrain the inverted
parameters within the given boundaries, [m̃( j)

min, m̃( j)
max]. For example,
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1548 W. Lin and M.S. Zhdanov

Figure 13. Target area (rectangular box) of the Ring of Fire zone overlapped with regional geological sketch map (adapted from Balch et al. 2010; Zhu &
Zhdanov 2013).

the magnetic susceptibility obtained from the inversion of TMI data
should be non-negative. These constraints can be implemented re-
placing the transformed parameters, m̃( j), with the new parameters,
x( j):

x( j) =
[
x ( j)

1 , x ( j)
2 , ...x ( j)

Nm

]
, j = 1, 2; (36)

where

m( j)
k = m( j)

maxex
( j)
k + m( j)

min

ex
( j)
k + 1

, j = 1, 2; k = 1, 2, ..., Nm. (37)

As a result, the inversion should be run for the new model pa-
rameters, x( j). In this case, the Gramian term SG(Lm̃(1), Lm̃(2)) has
to be modified as follows:

SG(Lm̃(1), Lm̃(2))

= SG

(
L

[
m(1)

maxex(1) + m(1)
min

ex(1) + 1

]
, L

[
m(2)

maxex(2) + m(2)
min

ex(2) + 1

])
. (38)

In order to obtain the physical properties in reasonable ranges,
we will apply some reasonable boundaries to the transformed model
parameters (m̃( j)) in the following sections.

This concludes a description of the method of joint multinary
inversion using Gramian constraints.

6 S Y N T H E T I C M O D E L S T U DY

In this section, we will test the developed algorithm of joint multi-
nary inversion using 3-D synthetic models with two dipping dikes,
which have different sizes, physical properties and burial depths.
We will present two model studies for the anomalous targets based

on different combinations of densities and magnetic susceptibili-
ties. In this section, we will consider the following four cases for
the inversions of gravity and magnetic data:

1) separate minimum norm inversions,
2) joint minimum norm inversion with a structural Gramian con-

straint (L = ∇),
3) separate multinary inversions, and
4) joint multinary inversion with a structural Gramian constraint

(L = ∇).

6.1 Model study 1

In this model study, the depth of the top of left-dipping dike is
set as 100 m, while the bottom boundary is at a depth of 300 m;
the relatively large right body vertically ranges from 200 to 600
m. The density and magnetic susceptibility of the left dike are
0.2 g cm−3 and 0.02 SI, respectively, while the right dike has a
density of 0.6 g cm−3 and the magnetic susceptibility of 0.06 SI.
The values of the background’s physical properties were set at 0.
The magnetic field was computed for H0 = 50 000 (total magnetic
field), I = 90◦ (inclination) and D = 0◦ (declination). We use ternary
transformation for this model study in the following cases involving
multinary inversion.

Fig. 2 presents a 3-D view of the model. The rectangular contour
outlines the location of the cross-section shown in the next figures.
We set 100 × 100 measurements on the ground for both gravity
and magnetic data, shown as black dots in this figure. Figs 3(a) and
(b) show the density and magnetic susceptibility distributions of
the corresponding cross-section. The synthetic gravity gradiometry
data (Gzz, Gzx and Gzy) and TMI data (T), contaminated by the
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Figure 14. Case 1: panels (a1)–(d1) and (a2)–(d2) show the data fittings for the selected gravity gradiometry components (Gzz, Gzx and Gzy)
and the TMI data along the cross-sections, L1 and L2, respectively, while panels (e1)–(f1) and (e2)–(f2) present the corresponding vertical cross-
sections of the recovered anomalous density and magnetic susceptibility distributions, respectively. The results were obtained from the separate
inversions.

random noise levels of 1 Eo and 5 nT, respectively, were used as the
synthetic data.

6.1.1 Case 1: separate minimum norm inversions

In case 1, we applied the minimum norm stabilizing functional for
separate inversions of the gravity and magnetic data. The iterative
processes for both gravity and magnetic inversions took 37 iter-
ations to reach the misfit level of 4 per cent. Figs 4(a)–(d) show
the synthetic data (dashed line) versus the predicted data (dotted
line) along the cross-section in Fig. 2 for the full tensor gravity
gradiometry (FTG) components, Gzz, Gzx, Gzy and TMI data; while

Figs 4(e) and (f) present the cross-sections of the recovered density
and magnetic susceptibility distributions, respectively. As we can
see, the inversion images present the right dike well, however, the
distributions of the physical properties are diffused and unfocused.
Meanwhile, the left recovered anomalous body was almost burried
in the background.

6.1.2 Case 2: joint minimum norm inversion with structural
Gramian constraint

In case 2, we applied the joint inversion algorithm with structural
Gramian constraints (L = ∇) to the synthetic gravity and magnetic

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/215/3/1540/5078354 by H

ope Fox Eccles C
linical Library - U

niversity of U
tah user on 31 O

ctober 2018



1550 W. Lin and M.S. Zhdanov

Easting / km

N
or

th
in

g 
/ k

m

 

 

550 552 554 556
5843

5845

5847

5849

5851
ρ (g/cm3)

−0.6

−0.3

0.0

0.3

0.6

Easting / km

N
or

th
in

g 
/ k

m

 

 

550 552 554 556
5843

5845

5847

5849

5851
χ (SI)

0

0.08

0.16

0.24(a) (b)

Figure 15. Case 1: horizontal cross-sections of the recovered anomalous density (panel a) and magnetic susceptibility (panel b) distributions corresponding to
the depth of 350 m, generated by the separate inversions.

data. The inversion process converged until the misfit reached the
level of 4 per cent at the iteration number, 65. Figs 5(a)–(d) provide
the data fittings, while Figs 5(e) and (f) show the vertical sections
of the inverse density and magnetic susceptibility models, respec-
tively. We can see that, after applying the Gramian constraints, the
recovered distributions of the physical properties became slightly
compact, however, the resolution of the anomalous bodies is still
low.

6.1.3 Case 3: separate multinary inversions

In this test, we applied separate inversions with ternary transfor-
mation. The ternary functions were set to recover three discrete
densities of 0, 0.2 and 0.6 g cm−3, and three discrete magnetic sus-
ceptibilities of 0, 0.02 and 0.06 SI (where value 0 represents the
background model) with fixed standard deviations of σ (1) = 0.06
and σ (2) = 0.006, respectively. The representations of the ternary
model transforms for density (ρ) and magnetic susceptibility (χ )
and their derivatives are shown in Fig. 6. In order to keep the recov-
ered physical properties within a reasonable range, we implemented
some boundaries to the model parameters, as shown in Fig. 6. The
solid lines indicate the actual multinary functions and their deriva-
tives applied to the separate inversions. In such case, the derived
physical properties would be always non-negative but not larger
than the third discrete values (0.6 and 0.06). The iterative processes
of the RCG algorithm were terminated when the misfit reached
the level of noise, 4 per cent. Figs 7(a)–(d) indicate same data fit-
tings as the previous cases, and Figs 7(e) and (f) show the vertical
cross-sections of the recovered density and magnetic susceptibility
distributions, respectively. It is obvious that the spatial boundaries
of the anomalous bodies recovered from the gravity and magnetic
data are not consistent with each other. The multinary inversion
of gravity data reconstructed the two anomalous bodies very well,
however, the magnetic inversion recovered only the right body with
sharp boundaries.

6.1.4 Case 4: joint multinary inversion with structural Gramian
constraints

In the final case, we analysed the joint multinary inversion with
structural Gramian constraints. We used the same ternary transfor-
mations as in case 3. The joint inversion reached the misfit level of
4 per cent at the iteration number, 60, which shows a faster conver-
gence than in the case of separate multinary inversions. Figs 12(a)–
(d) provide data fittings for the selected gravity gradiometry data
(Gzz, Gzx and Gzy) and TMI data, while Figs 12(e) and (f) present the
vertical sections of the inverse models for the density and magnetic
susceptibility distributions, respectively. We can find the consistent
boundaries of the anomalous bodies in both inverse models, as well
as the similar geological trends of the two anomalous bodies in
comparison to the synthetic models in Fig. 3. These results demon-
strate that the joint multinary inversion not only makes it possible to
improve the resolution of the inverse images, but also recovers the
anomalous bodies at their physical properties, approximate shapes
and locations.

6.2 Model study 2

In model study 2, we applied the same 3-D model except the
left dike is not magnetic. The goal of this study was to investi-
gate if coincident features in the two solutions can be fabricated
by the Gramian method. Figs 9(a) and (b) show the density and
magnetic susceptibility distributions within the cross-section in
Fig. 2. Again, the synthetic gravity gradiometry data (Gzz, Gzx

and Gzy) and TMI data (T) were computed by contaminating the
random noise levels of 1 Eo and 5 nT, respectively. We will com-
pare the inversion results between separate multinary inversions
and joint multinary inversion with structural Gramian constraint.
To keep the transformed physical properties having the consis-
tent boundaries in the multinary model space, we applied the
same ternary functions and their derivatives as in the previous
model study even though there were only two discrete magnetic
susceptibilities.
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Figure 16. Case 1: panels (a1)–(d1) and (a2)–(d2) show the data fittings for the selected gravity gradiometry components (Gzz, Gzx and Gzy) and the TMI
data along the cross-sections, L1 and L2, respectively, while panels (e1)–(f1) and (e2)–(f2) present the corresponding vertical cross-sections of the recovered
anomalous density and magnetic susceptibility distributions, respectively. The results were obtained from the joint inversion without multinary transformation.

6.2.1 Case 1: separate multinary inversions

In case 1, we applied the separate inversions with ternary trans-
formation. The iterative processes for both gravity and magnetic
inversions were terminated at the misfit level of 4 per cent. Fig. 10
shows the data fittings (panels a–d) and the cross-sections of the
recovered density and magnetic susceptibility distributions (pan-
els e–f). As we can see, the distributions of the recovered physical
properties are similar to those in case 3 of the previous model study,
except the left anomalous body was not shown in Fig. 10(f). This
is reasonable because the left dike in the synthetic model was set

to be non-magnetic. Next, we will apply the joint multinary inver-
sion algorithm to see how the developed approach can improve the
inversion results.

6.2.2 Case 2: joint multinary inversion with structural Gramian
constraint

In the final case, we applied structural Gramian constraints to the
joint multinary inversion. The joint inversion reached the misfit
level of 4 per cent at iteration number, 64. Figs 11(e) and (f) present
vertical sections of the inverse models for the density and magnetic
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Figure 17. Case 1: horizontal cross-sections of the recovered anomalous density (panel a) and magnetic susceptibility (panel b) distributions corresponding to
the depth of 350 m, generated by the joint inversion without multinary transformation.
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Figure 18. Case 2: panels (a) and (c) show the approximate representations of the binary model transforms for density (ρ) and magnetic susceptibility (χ ),
respectively, and panels (b) and (d) show their derivatives. The values of the discrete densities and magnetic susceptibilities are as follows: 0 and 0.45 g cm−3,
0 and 0.2 SI; and σ (1) = 0.15 and σ (2) = 0.06. The dashed lines in these plots correspond to the values of density and magnetic susceptibility outside of the
upper and lower bounds imposed in the inversion.

susceptibility distributions, respectively. While the boundaries of
the right anomalous body in both inverse models were consistent,
the left body was shown only in the recovered density distribu-
tion but almost disappeared in Fig. 11(f). In other words, there
was no false structure generated in the cross-section of the inverse
magnetic susceptibility model. Thus, the results of model study 2
demonstrate that the Gramian constraints do not require a uniform
linear relationship between the parameters or their attributes within
the entire model domain. The Gramian constraints can be also ap-
plied to the case when multiple relationships between the parameters
exist.

7 C A S E S T U DY: J O I N T I N V E R S I O N O F
G R AV I T Y A N D M A G N E T I C DATA I N
T H E A R E A O F M C FAU L D S L A K E ,
O N TA R I O

7.1 Regional geology in McFaulds Lake area

McFaulds Lake is located in northwestern Ontario approximately
50 km east of Webequie, where the Eagle’s Nest nickel, copper and
platinum group element (Ni-Cu-PGE) deposit was discovered. This
area is part of a mantle-derived, highly magnetic ultramafic intrusion
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Figure 19. Case 2: maps of the observed and predicted data obtained from the joint inversion with multinary transformation. Panels (a1)–(d1) show the maps of
observed gravity components, Gzx, Gzy, Gzz and the TMI component, panels (a2)–(d2) show the corresponding maps of the predicted data and panels (a3)–(d3)
show the maps of the differences between the observed and predicted data.

known as the ‘Ring of Fire’ that has been emplaced along the
margin of a major granodiorite pluton within rocks of the Sachigo
greenstone belt (Balch et al. 2010). Fig. 12 shows a geological
sketch map with known mineralization in the Ring of Fire region
(Mungall et al. 2010). Several economic mineral deposits have been
explored in this area, including: magmatic Ni-Cu-PGE, magmatic
chromite mineralization, volcanic massive sulfide mineralization
and diamonds hosted by kimberlite. The Ring of Fire is composed of
mafic metavolcanic flows, felsic metavolcanic flows and pyroclastic
rocks and a suite of layered mafic to ultramafic intrusions that

trend subparallel with and obliquely cut the westernmost part of the
belt, close to a large granitoid batholith lying west of the belt. The
major layered intrusion at its base, hosts Ni-Cu-PGE deposits of
exceptional grade as well as overlying stratiform chromite deposits
further east and higher in the layered intrusion stratigraphy (Ontario
Geological Survey and Geological Survey of Canada, 2011; Zhu and
Zhdanov, 2013).

Chromite deposits usually occur in layered ultramafic intrusive
rocks, which is commonly associated with magnetite and serpen-
tine. Thus one can trace chromite magnetically through its possible
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Figure 20. Case 2: panels (a1)–(d1) and (a2)–(d2) show the data fittings for the selected gravity gradiometry components (Gzz, Gzx and Gzy) and the TMI
data along the cross-sections, L1 and L2, respectively, while panels (e1)–(f1) and (e2)–(f2) present the corresponding vertical cross-sections of the recovered
anomalous density and magnetic susceptibility distributions, respectively. The results were obtained from the joint inversion with multinary transformation.

host rock. On the other hand, since the density of chromitite ranges
from 3.6 to 4.0 g cm−3, chromite can be also found in the areas
which have large positive gravity anomalies. Accordingly, the air-
borne geophysical surveys were conducted in the area of McFaulds
Lake in 2010, where the airborne gravity gradiometer (AGG) and
magnetic data were collected (Ontario Geological Survey and Ge-
ological Survey of Canada, 2011). For the preliminary study, we
selected a subset of the AGG and magnetic data covering the known
chromite mineralization, as shown in Fig. 13 (adapted from Balch
et al. 2010; Zhu and Zhdanov, 2013). In the target area, there are
four chromite deposits: Big Daddy, Black Creek, Black Thor and
Black Label. In the following section, we will apply the gravity

inversion and magnetic inversion jointly with and without multi-
nary transformation. We will show the cross-sections of two se-
lected lines, L1 and L2 in Fig. 13, which vertically cross the Black
Creek.

7.2 Case 1: joint inversion of gravity and magnetic data
without multinary transformation

The size of the target area (rectangular box in Fig. 13) was set
to be 7 km × 8 km × 2 km and the domain was discretized by
prismatic cells of 50 m × 50 m × 50 m. The gravity and gravity
gradiometry components, Gzz, Gzx and Gzy, as well as the TMI data
were selected for the inversions. The numbers of measurements
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Figure 21. Case 2: horizontal cross-sections of the recovered anomalous density (panel a) and magnetic susceptibility (panel b) distributions corresponding to
the depth of 350 m, generated by the joint inversion with multinary transformation.

for the gravity and magnetic surveys in the domain are 963 and
1197, respectively. The stopping criterion of normalized misfit is
set as 2 per cent. First we ran the gravity and magnetic inversions
separately using the minimum norm stabilizer. The left and right
columns of Fig. 14 show the data fittings for the selected data
sets and the vertical cross-sections of the predicted density and
magnetic susceptibility distributions along the lines, L1 and L2, re-
spectively. Fig. 15 shows the horizontal cross-sections of the recov-
ered density and susceptibility models at a depth of 350 m. All the
cross-sections can only provide limited resolution of the geological
targets.

Next, we applied the joint inversion of gravity and magnetic
data without multinary transformation (L = 
). Fig. 16 shows
the data fittings and the vertical cross-sections of the recovered
anomalous density and magnetic susceptibility distributions, re-
spectively. Compared to the previous results, the predicted anoma-
lous targets become slightly compact, but overall the targets are
still diffused. The horizontal anomalous density and magnetic sus-
ceptibility slices are shown in Fig. 17. For the mineral explo-
ration, one may expect a more compact predicted mineral body
with sharp boundary. In order to provide a more convincing ge-
ological model, we applied the joint inversion with multinary
transformation.

7.3 Case 2: joint inversion of gravity and magnetic data
with multinary transformation

In this section, we applied the joint inversion algorithm with multi-
nary transformation and structural Gramian constraint (L = ∇).
Based on the known geological information (e.g. borehole data),
the multinary functions were set to recover two discrete densities
of 0 and 0.45 g cm−3, and two discrete magnetic susceptibilities
of 0 and 0.2 SI (where value 0 represents the background model)
with fixed standard deviations of σ (1) = 0.15 and σ (2) = 0.06, re-
spectively. The representations of the multinary model transforms
for anomalous density (ρ) and magnetic susceptibility (χ ) and their
derivatives are shown in Fig. 18. The solid lines indicate the valid
ranges of the binary functions and their derivatives applied to the

inversions. The stopping criterion of the normalized misfit is also
set as 2 per cent.

Fig. 19 shows a comparison between the observed (panels a1–
d1) and predicted data (panels a2–d2) representing the files of the
selected gravity gradiometry components (Gzz, Gzx and Gzy ) and
the magnetic field (TMI). In this figure, we observe a good data fit-
ting, which is illustrated by the maps of the differences between the
observed and predicted data through Figs 19(a3)–(d3). Figs 20(e1)–
(f1) and (e2)–(f2) show the vertical cross-sections of the recovered
anomalous density and magnetic susceptibility distributions corre-
sponding to lines, L1 and L2 in Fig. 13, respectively. For the L1
cross-section, the upper boundaries of the recovered mineral body
can be clearly seen from the joint inversion results, while the lower
part of the body is less magnetic but much denser. For the L2 cross-
section, the gravity inversion result shows two vertically intrusive
dikes with higher anomalous densities, meanwhile the magnetic in-
version provides that the dike on the right contains more magnetic
minerals, which might correspond to the chromite mineralization
in the area of Black Creek. Fig. 21 shows the horizontal anomalous
density and magnetic susceptibility slices associated with the depth
of 350 m. All the cross-sections and slices illustrate the anoma-
lous targets with sharp and partially consistent boundaries, which
provides more details about the mineralizations compared to the
previous case.

8 C O N C LU S I O N

We have developed a method of joint inversion of multimodal
geophysics data based on the multinary transform and Gramian
constraints. This method was applied to the problem of the joint
inversion of potential fields. We have demonstrated that this in-
verse problem can be solved using a gradient-type optimization
method. We have tested this method with 3-D synthetic models
using ternary model transformation, which demonstrated that the
joint multinary inversion can recover the approximate sizes, loca-
tions and the physical properties of the anomalous bodies well.
We have also applied this method in the joint inversion of grav-
ity and magnetic data of the McFaulds Lake area in northwestern
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Ontario, Canada, and the joint inversion results provide a reason-
able geological model for the exploration of magmatic chromite
deposits.
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A P P E N D I X : S T E E P E S T A S C E N T
D I R E C T I O N S O F T H E G R A M I A N
S TA B I L I Z I N G F U N C T I O NA L

A stabilizing functional formed by the Gramian of the transformed
model parameters can be expressed, using matrix notations, as fol-
lows:

SG(Lm(1), Lm(2)) = SG(m̃(1), m̃(2))

=
[(

m̃(1)
)t (

m̃(1)
)] [(

m̃(2)
)t (

m̃(2)
)] −

[(
m̃(1)

)t (
m̃(2)

)]2
, (A1)

where L is a linear operator that determines the type of the con-
straints imposed by the Gramian stabilizer; m̃(1) and m̃(2) are the
vectors of the transformed model parameters within the inversion
domain, respectively, and upper script ‘t’ denotes transposition.

Let us calculate the first variation:

δSG(m̃(1),m̃(2)) = δm(1) SG(m̃(1), m̃(2))+δm(2) SG(m̃(1), m̃(2)). (A2)

The first variations of the Gramian stabilizer, δm(1) SG and δm(2) SG

can be calculated as follows:

δm(1) SG(m̃(1),m̃(2)) = 2
[(

δm̃(1)
)t (

m̃(1)
)] [(

m̃(2)
)t (

m̃(2)
)]

−2
[(

δm̃(1)
)t (

m̃(2)
)] [(

m̃(1)
)t (

m̃(2)
)]

, (A3)
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δm(2) SG(m̃(1),m̃(2)) = 2
[(

m̃(1)
)t (

m̃(1)
)] [(

δm̃(2)
)t (

m̃(2)
)]

−2
[(

δm̃(2)
)t (

m̃(1)
)] [(

m̃(1)
)t (

m̃(2)
)]

. (A4)

Taking
(
δm(1)

)t
out of the brackets in eq. (A3), we arrive at the

following formula:

δm(1) SG(m̃(1),m̃(2)) = 2
(
δm̃(1)

)t
l(1)
G ,

where the steepest ascent direction, l(1)
G , is given by the following

expression:

l(1)
G = (

m̃(1)
) [(

m̃(2)
)t (

m̃(2)
)] − (

m̃(2)
) [(

m̃(1)
)t (

m̃(2)
)]

. (A5)

Similarly, we can find

l(2)
G = (

m̃(2)
) [(

m̃(1)
)t (

m̃(1)
)] − (

m̃(1)
) [(

m̃(1)
)t (

m̃(2)
)]

. (A6)
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