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Robust Synthetic Aperture Imaging of Marine
Controlled-Source Electromagnetic Data

Xiaolei Tu and Michael S. Zhdanov

Abstract— The synthetic aperture (SA) method has recently
found applications in the analysis of the low-frequency marine
controlled-source electromagnetic (MCSEM) data. It has been
shown that this method can enhance the response from an
anomalous target. However, in a SA method, anomalous EM
fields and the noise will be equally steered and focused, leading
to amplifying the noise and introducing artifacts into the images.
In addition, the current realizations of the SA method are very
sensitive to the noise in the data and the parameters of the
SA. In this article, we address these difficulties by introducing
a robust SA (RSA) method. The RSA method consists of three
steps, namely, robust smoothing of the background field, robust
interpolation of EM fields from the real receiver positions to the
virtual receiver positions, and estimating the SA weights with a
robust optimization scheme. The synthetic model studies show
that this method is stable to noise and has a relatively high
spatial resolution. We have also applied this method to the towed
streamer data collected in the Barents Sea. The generated pseudo-
3-D images accurately reveal the locations of the salt domes and
fault structures known from the seismic data.

Index Terms— Marine controlled-source electromagnetic
(MCSEM), robust norm, synthetic aperture (SA), towedstreamer.

I. INTRODUCTION

SENSITIVE to resistive gas-or-oil-saturated reservoir
rocks, marine controlled-source electromagnetic

(MCSEM) methods have been widely used in
hydrocarbon (HC) exploration and production for derisking
and monitoring of the HC deposits [1]–[10]. The recent
development of MCSEM survey systems, especially towed
streamer acquisition systems, enables the rapid survey of
vast areas to locate the potential HC targets [11]–[14]. The
development of effective interpretation technique of such
massive multitransmitter and multireceiver EM data sets is,
therefore, critical for the success of the practical application
of the marine EM methods. Numerous research articles have
been published on the topic of rigorous inversion of marine
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EM data to build a 3-D model of subsurface conductivity
[15]–[20]. However, large-scale 3-D inversion is still a very
challenging problem, and it usually takes several days or
even weeks to run the full 3-D inversion on supercomputers.
A fast imaging tool is, therefore, preferable, especially for
real-time data processing.

Zhdanov et al. [21] introduced a rapid imaging method
based on the concept of optimal synthetic aperture (OSA),
where the map of amplitudes of SA data provides an image
of the horizontal distribution of the subsurface geoelectrical
structure. The SA is a wave-based concept widely used in
radar and sonar imaging. It has been extended to the case
of low-frequency diffusive EM field in marine geophysical
exploration over the last several years [22], [23]. In the
framework of the SA method, the interference effect of EM
fields generated by different sources is employed to construct
a virtual source with a specific radiation pattern, which would
create a constructive interference and increase the signal
collected in the area of interest. Fan et al. [24] used this
technique to steer and focus the EM fields to increase the
detectability of the HC reservoir. To determine the optimal
parameters of the SA method for marine EM surveys, Yoon
and Zhdanov [25] developed an OSA method. They showed
that the OSA method would not only improve the resolution
of the EM data to the potential targets but also reduce the
airwave effect associated with the shallow water EM data.
Zhdanov et al. [21] adopted the OSA approach to fast imag-
ing the towed streamer EM data by introducing the virtual
receivers.

One practical difficulty of the OSA method, however, is that
it is sensitive to the background geoelectrical model, which
may include varying bathymetry and small local anomalies
in the sea-bottom conductivity distribution [26]. A distorted
geoelectrical background model unavoidably introduces the
artifacts into the OSA image, which may mislead the sub-
sequent data interpretation. In addition, in the OSA method,
a constructive interference effect tends to occur where the
recorded EM fields are different from what is generated by the
background model. The anomalous EM fields and the noise
could be equally steered and focused. The area with high noise
level but without a subsurface target might be highlighted
due to the constructive interference of the noise, leading to
a false geological model. The MCSEM surveys, however, are
always contaminated by the noise caused by positioning errors,
cable tugging, and current flow [27], [28], thus increasing the
uncertainty of interpretation.
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We propose a robust SA (RSA) method, which is less
affected by the choice of the background model and the noise.
This new method consists of three steps: 1) robust estimation
of the background or reference field; 2) interpolation of the
observed data from the real local receivers to the global virtual
receivers in a robust way; and 3) calculation of the OSA
weights for every source using a robust optimization algorithm.
Robust norms are used in all three steps to further suppress
the noise. The mathematical representation of the robust norms
is provided in the Appendix. For completeness, in Section II,
we will review the SA method in common receiver gather
and extend it to the common middle point (CMP) gather. The
three steps of the RSA method will also be discussed in detail
in Section II. We illustrate the effectiveness of the developed
method carefully with the synthetic models. We also present a
case study for towed streamer EM data collected in the Barents
Sea.

II. SA METHOD

The fundamental concept of the SA method is based on
simultaneously processing all geophysical EM survey data via
a carefully designed combination of the fields produced by all
sources. The superposition of those sources creates a particular
interference pattern highlighting the area of interest. We first
review the application of the SA method to the common
receiver gather considering the case of a typical sea-bottom
MCSEM survey.

A. SA Method for Common Receiver Gather

A typical MCSEM survey consists of a set of sea-bottom
receivers of the EM field and a horizontal electrical bipole
transmitter towed behind a ship. The receivers are fixed
at seafloor with the coordinates xl (l = 1, 2, . . . , L),
where L is the number of receivers. The transmitter, S j ,
injects a low-frequency current from different locations x j

( j = 1, 2, . . . , J ), where J is the number of source positions.
We denote the EM field recorded by the lth receiver
corresponding to the j th source injection by dl

j . The data set
{dl

1, dl
2, . . . , dl

j , . . . , dl
J } representing the data recorded by the

same receiver is, therefore, called a common receiver gather.
The constructed SA source, SSA, is expressed as follows:

SSA =
J∑

j=1

w̃ j S j (1)

where w̃ j are some optimal source-dependent weights, which
steer the EM fields into a designed pattern to illuminate a
potential subsurface target the best. The weights, w̃ j , are
complex numbers, which means that not only the amplitudes
of the sources are scaled but also their phases are shifted
and aligned to interfere constructively in the area of interest.
According to the superposition principle, the SA data, dl

SA,
can be expressed as follows:

dl
SA =

J∑
j=1

w̃ j d
l
j . (2)

For simplicity, we rewrite the last equation using the matrix
notations as follows:

dSA = dw (3)

where dSA = [d1
SA, d2

SA, . . . , d L
SA]T are the SA data;

w =[w̃1, w̃2, . . . , w̃J ]T are the weights to be determined; and
d is a matrix of the observed data

d =

⎡⎢⎢⎢⎣
d1

1 d1
2

d2
1 d2

2

· · · d1
J

· · · d2
J

...
...

d L
1 d L

2

. . .
...

· · · d L
J

⎤⎥⎥⎥⎦ . (4)

In the framework of the OSA method, the weights, w,
are optimized in order to keep the normalized SA data close
to the designed SA (DSA) gate if a subsurface anomaly
is present, and equal them to unit 1 in the absence of the
subsurface target [21], [25].

The SA concept can also be applied to the receivers by
creating the SA receiver. We construct the SA receiver in
the common source gather. In this case, the SA represents
spatially distributed receivers, which simultaneously record the
EM field generated by a transmitter from a single location.
Note that, Tu [29] employed a similar approach to reduce the
noise and improve the EM data quality in the time domain
by using the weights calculated in logarithmic space based on
Maxwell’s equation.

B. SA Method for CMP Gather

A CMP is a point on the surface halfway between trans-
mitter and receiver. In an MCSEM survey with regular offsets
and source intervals, there may be several transmitter–receiver
pairs sharing the same CMP. A CMP gather is a data set
associated with such transmitter–receiver pairs. Fig. 1 shows
four transmitter–receiver pairs of a towed streamer EM survey,
which generates a CMP gather of four data points. We can
compose an SA receiver from all four receivers and an SA
source from the four sources.

A general expression of SA data, dSA, incorporating both
SA source and receiver is presented as follows:

dSA =
J∑

j=1

w̃ j

(
L∑

l=1

wl
j d

l

j

)
(5)

where J denotes the number of sources; w̃ j are the same as in
(1); L represents the number of receivers; wl

j are the receiver-

dependent weights. The superposition,
∑L

l=1 wl
j d

l

j
, combines

an array of the receivers into one SA receiver. Note that the
SA receiver is created for the common source gather. The
SA weights, wl

j , can be source-dependent to accommodate
the survey configurations and to create a desired interference
pattern.

Setting wl
j = δ(i, j) (the Kronecker delta function), we

would arrive at an SA expression for CMP gather

dSA =
J∑

j=1

w̃ j d
j
j (6)
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Fig. 1. One CMP shared by four transmitter–receiver pairs in a towed steamer EM survey. The red point denotes the position of the CMP. Rx is the
abbreviation of receivers (denoted by big black squares) mounted in a towed steamer cable. We indicate the cable with a yellow dashed line to show that the
receiver could be both real and virtual. Transmitter, abbreviated to Tx, is towed by a ship, together with the cable. The CMP is the geometric middle point
of pairs (Tx#1, Rx#1), (Tx#2, Rx#2), (Tx#3, Rx#3), and (Tx#4, Rx#4).

where d j
j is the data recorded by the j th receiver, while the

EM field is generated by the j th source so that all J th data
points are associated with the same CMP.

Equation (6) can be rewritten in the same form as (2) or
more compactly as (3) with dl

j representing the data associated
with the lth CMP and j th transmitter position. The SA method
in the CMP domain, however, is physically different from
that for the common receiver gather. The former involves the
concept of constructing SA receivers from a known receiver
array, besides the designing OSA sources.

One should note that a similar technique of data processing
has been widely used in seismic methods to perform CMP
stacking to increase the signal-to-noise (SN) ratio. However,
(6) presents a more general approach by computing the optimal
amplitude scale and phase shift parameters according to a
predesigned interference pattern of the field.

The RSA method consists of three steps. We describe these
steps for CMP gather based on the case of a towed streamer
EM survey.

C. Robust Background Field Smoothing

The EM field decays rapidly in seawater with the increase
of the transmitter–receiver distance (i.e., offset), making it
challenging to identify an anomaly associated with the HC
reservoir. The observed and SA data have to be normalized by
a background field to improve the detectability of a reservoir.

There are two different ways to determine the background
EM field [21]. One is based on a background geoelectrical
model, which is usually set as a horizontally layered medium.
The background model can be built using the 1-D inversion of
the observed data. Another way is to use the EM field observed
far enough from the area of interest as the reference field. This
method does not need any prebuilt model or 1-D inversion.
Such a reference field, however, is always contaminated with
the noise and effects of local geoelectrical inhomogeneities
in the location of the reference observation point. This noise
and the effects of the local anomalies can then be steered and
amplified by subsequent SA steps, leading to artifacts in the
SA images. Denoising should be applied to the reference field
before further processing.

We apply the robust smoothing to the background field
before performing the normalization. The robust smoothing

can be formalized as the minimization of the following para-
metric functional:

pα(db, d̃b) = ‖d̃b − db‖2 + α‖Rd̃b‖2 → min (7)

where db and d̃b are the vectors of original and smoothed
background fields, respectively; R is the roughness operator,
which is the second-order differential operator; and α is a regu-
larization parameter. This optimization problem is solved using
the reweighted regularized conjugate gradient (RRCG) method
developed in [30]. The robust smoothing acts in a way similar
to the spatial low pass filter [31]. The environmental noise
and responses from the local geoelectrical inhomogeneities are
removed as well.

D. Robust Interpolation of EM Fields

In a real marine survey, the configuration is seldom regular,
especially for a towed streamer EM survey. The receiver
positions vary from one transmitter position to another, and
their intervals are irregular due to cable feathering. The CMPs,
therefore, change with the transmitter positions. A shared
CMP is required for a set of transmitter–receiver pairs to
apply the SA method for a CMP gather. The fundamental
concept of the SA method is that the signals generated by the
sources at different positions are measured at the same receiver
positions, so that they can be integrated to increase the poten-
tial anomaly [21]. Unlike the conventional MCSEM system,
the towed streamer system consists of a set of towed receivers,
which can measure a signal generated at a certain transmitter
position only. In order to integrate the signals generated by
different sources at the same receiver positions in the towed
streamer EM system, we have to interpolate and/or extrapolate
the fields from each source to the virtual receiver positions,
which can be shared by all the transmitter shots. Note that the
concept of a virtual receiver is also quite common in radar
applications [21].

Even if we have applied denoising to the background field,
the normalized field is nevertheless not noise-free. The noise
from the total field and the remnants of background field
denoising together add up to the noise level of the normal-
ized field. The conventional interpolation operators are local
operators, and they are usually very sensitive to the noise in the
data. A small amount of noise or a few outliers in the data will
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distort the interpolated fields in the virtual receivers. This is
especially the case for the data with a strong spatial variation,
which usually corresponds to the lateral contrast in the sea-
bottom geoelectrical properties in our case. The variations
in the interpolated field would be blurred and have fuzzy
boundaries. Thus, the spatial resolution of the SA method
would be damaged. Furthermore, the distortions could also
be amplified by the SA weights, propagate to the SA data,
and result in fictitious EM anomalies.

Alternatively, a global interpolation operator, which we call
robust smoothing interpolation, introduced to make the field
interpolation from the actual receiver positions to the virtual
receivers is more robust. The robust smoothing interpolation
is defined as the minimization of the following parametric
functional:

pα(d, dv ) = ‖dv − Pd‖2 + α‖Rdv‖2 → min (8)

where dv is the vector of the interpolated fields in the virtual
receivers, and d is the vector of original fields at the actual
receivers. P denotes the conventional interpolation (linear or
spline) operator. R is the roughness operator. The optimization
problem is also solved using the RRCG method.

The robust smoothing interpolation is a global operator,
which relates the current interpolated value to not only its
neighbors but also to all the sampling points involved. Thus,
the interpolated field is enforced to follow a general trend
in the data without being affected by the local outliers.
The smoothing regularization term can also help denoise the
interpolated field. In this way, the fields calculated in the
virtual receivers are less biased by the noise.

Note that, in (7), (8), and (10), one should select the
proper value of the regularization parameter, α. This para-
meter is adaptively determined by the RRCG method. The
basic idea is that it is calculated at the first iteration so
that the misfit and regularization terms are equally weighted,
and then, α gradually decreases in the following iterations
using the geometrical progression until the misfit condition is
reached [30].

E. RSA Weights

To steer the EM fields toward the potential targets, we fol-
low the idea of the OSA method [21], [25] by designing
the RSA weights that automatically enhance the anomalous
field from the potential HC reservoir. As demonstrated in
the refereed articles, this can be effectively achieved by
minimizing the misfit between the normalized SA data, dR,
and a pre-DSA gate.

The normalized SA data, dR , are defined as the element-
wise ratio between the SA data and the SA background fields

dR = [d1
SA/d1

B, d2
SA/d2

B, . . . , d L
SA/d L

B

]T (9)

where L denotes the number of CMPs; dl
B = ∑J

j=1 w̃ j d̃b
l
j

represents the SA background field with d̃b
l
j being the interpo-

lated smoothed background field associated with the lth CMP
and j th transmitter position; and dl

SA are the SA data in the
CMP domain, as defined in (2). Note that, by setting all the

SA weights w̃ j to 1, we arrive at the SA data, dR , without
steering. The SA data calculated with RSA weights are called
the RSA data.

The RSA weights can be found by solving a minimization
problem for the corresponding parametric functional

pα(D, w) = ‖D − A(w)‖2 + α‖RA(w)‖2 → min (10)

where A(w) = dR is the forward operator for the normalized
SA data, acting on the RSA weights, w; D represents the
pre-DSA gate, which is designed to enhance the anomalous
response from the potential targets. We can set it to a boxcar
function with a maximum over the expected area of an
HC reservoir. In the case of a reconnaissance survey, it is
reasonable to select a uniform DSA with the constant value
greater than one to enhance the anomalies, present in the
survey area. We also introduce a smoothing regularization term
that favors smoothed SA data. We still resort to the RRCG
method to solve the minimization problem (10).

One can easily calculate the SA data, dR, using (9), once
the optimal RSA weights are found.

III. ROBUST NORMS

The least-squares norm (L2-norm) is the most commonly
used metric in the solution of the geophysical inverse problem.
However, it has long been understood that the fundamental
underlying hypothesis (i.e., Gaussian uncertainties) for
least-squares criterion is generally not satisfied because of the
long-tailed density functions in data and model uncertainties
[32]. Alternatively, the L1-norm is considerably less sensitive
to large measurement errors and more appropriate to long-
tailed probability density functions. Considering the ill-posed
nature of the geophysical inverse problem, it is expected
that the less noise-sensitive metric generally yields a far
more stable estimation of the model parameters than the
least-squares norm [33], [34].

The L1-norm of the residual vector r = (r1, r2, . . . , rn)T is
defined as follows:

‖r‖L1 =
n∑

i=1

|ri |. (11)

This function is known to be nonsmooth: it is singular
where any of the residual components vanish [34], causing
difficulties for numerical optimization. These drawbacks of
L1-norm led to a group of robust norms, such as Huber norm,
Hampel norm, and Tukey bisquare norm. Their general idea is
to combine different treatments of residuals together. Usually,
small residuals are considered to be more “important” than
big ones. The robust norm is considerably less sensitive to
large measurement errors and more appropriate for a long-
tailed probability density functions [33]. Their applications
in geophysics are extensive. For example, Chave et al. [35],
Egbert and Booker [36], Jones et al. [37], and Sutarno and
Vozoff [38] introduced the robust M estimation of magnetotel-
luric impedance tensor based on the robust norm; Guitton and
Symes [34] applied the Huber norm to the velocity analysis of
seismic data. The robust norm can be introduced as a weighted
least-squares norm.

Authorized licensed use limited to: The University of Utah. Downloaded on June 28,2020 at 16:20:15 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TU AND ZHDANOV: RSA IMAGING OF MCSEM DATA 5

Fig. 2. Vertical section of Model 1. The second layer contains some
geological (model) noise and a small anomaly with a resistivity of 50 �-m.
A reservoir of 100 �-m is embedded in the basement layer. The dots denote
the transmitter positions. The electric field associated with the transmitter
position denoted by the red dots is chosen as the reference field.

In a general case, an arbitrary robust norm of the residual
vector r = (r1, r2, . . . , rn)T can be given by the following
formula:

‖r‖2
ρ =

n∑
i=1

|ρi (r)|2 (12)

where ρi (r) are the functions determining the properties of
the corresponding robust norm. Expression (12) can also be
written as a quasi-quadratic functional as follows:

‖r‖2
ρ = (Wρr, Wρr) (13)

where (. . . , . . .) represents the inner product in the correspond-
ing function space, and Wρ is a diagonal weighting matrix of
the robust norm with the following components:

Wρi (r) = ρi (r)

(|ri |2 + e)
1
2

(14)

where e > 0 is a small number introduced to avoid the
singularity.

The expression of general robust norms and their represen-
tations in the forms of quadratic functionals can be found in
Appendix.

Note that, the misfit functionals in (7), (8), and (10) were
calculated with L2-norm. We can make them more robust by
employing the robust norms introduced above.

IV. SYNTHETIC MODEL STUDY

A. Robustness to Noise

In this section, we demonstrate that the proposed method
has a strong resistance to the noise both in the data and in the
model.

We consider a three-layered shallow water model consisting
of 200-m sea-water layer with a resistivity of 0.33 �-m,
a sediment layer with a thickness of 300 m, and a half-space
basement of 3 �-m. Fig. 2 presents a vertical section of the
model. We assume a random resistivity distribution for the
sediment layer to simulate the real-world model noise. This
layer also contains a shallow small anomaly of 50 �-m.
The sizes of the anomaly are 350 m × 500 m × 100 m.
A reservoir with sizes of 2 km × 1 km × 3 00 m is located
at a depth of 600 m below the sea level. The resistivity of
the reservoir is 1000 �-m (see Fig. 2). The towed streamer
EM survey consists of one survey line, running in the
x-direction at y = 0. A horizontal electric dipole transmitter
oriented in the x-direction with a moment of 1 Am is towed

Fig. 3. Amplitude of normalized Ex field in (a) CMP and (b) CRP domains.
The gray areas represent the horizontal locations of the two anomalies. The
red lines denote the amplitudes of the corresponding SA data in CMP and
CRP domains, respectively.

from −7 to 11 km in the x-direction at a depth of 10 m below
sea level. The transmitter is set to inject 1-Hz EM signal
into the seawater at every 500 m. Thirty-one receivers with
offsets between 1 and 7 km are towed at a depth of 100 m
and measure the in-line electric fields at a frequency of 1 Hz.
We have contaminated the synthetic data with the Gaussian
noise with a spectral density of 4 × 10−14 V/[m · √Hz] [27].

Totally 37 transmitter positions along the survey line were
employed to construct the SA source. The data observed for
the first source located at −7 km (denoted by the red dot
in Fig. 2) were selected as the reference fields. We present the
amplitudes of the normalized fields in the CMP and the com-
mon receiver point (CRP) domain in Fig. 3. Responses in the
CMP domain show a better correlation with the true horizontal
location of the resistors. We also observed a strong correlation
between the SN ratio of the normalized fields and offset.
The SN ratio is lower for large offsets. We could, therefore,
assign smaller weights to large offsets data to decrease their
influence on the SA images. This could be more conveniently
implemented with the CMP domain representation than that
of the CRP domain. We calculated the OSA weights and the
SA data both in CMP and CRP domain for comparison. The
amplitudes of SA data are shown with red lines in Fig. 3.
The CMP domain responses correlate with the true horizontal
location of the anomalies much better and are less affected by
the noise. We also present a comparison of the SA results
computed with different methods both in CMP (left) and
CRP (right) domains in Fig. 4. The red lines in Fig. 4(a) and
(b) represent the amplitude of OSA data following [25]. The
amplitude of RSA data produced using L2-norm and Huber
norm for the misfit functionals are plotted in Fig. 4(c)–(f),
respectively. We also computed the SA data with the RSA
method without steps 1 and 2, with their amplitudes shown
in Fig. 4(g)–(j), respectively. The DSA gate is presented in the
cyan solid line. The response of the big reservoir is enhanced
in all methods in both CMP and CRP domains. The shallow
small anomaly is only well imaged by the RSA method in the
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Fig. 4. Amplitudes of the SA data with different methods in (Left) CMP and
(Right) CRP domains. The gray areas show the horizontal locations of the
two anomalies. The Blue line in all panels represent the result of SA method
without steering. The green line denotes the designed SA. The red lines in
(a) and (b) are the results of OSA method; in (c) and (d) are results of RSA
method with L2 norm. The results obtained with RSA method with Huber
norm are shown by red lines in (e) and (f). The results of RSA method with
Huber norm but without steps 1 and 2 are also presented in (g) and (h), (i)
and (j), respectively.

CMP domain. The RSA method with the Huber norm produces
the best result. We also observed that CRP domain methods
are more resistive to noise than those in the CMP domain.

B. Spatial Resolution

In the next synthetic study, we consider a series of models
containing two anticline-associated reservoirs with different
horizontal distances to demonstrate the spatial resolution of the
RSA method. We should note that in a general case, the RSA
method could smooth out small local anomalies because we
employ a robust interpolation in the second step, which works
like a low pass filter. However, the parameters of the RSA
method could be adjusted by choosing a proper robust norm
in order to resolve the closely located targets.

The background of the models consists of four layers: a
200-m seawater layer with a resistivity of 0.33 �-m, the sec-
ond layer of a 300-m thickness with a random distribution of
resistivity, a basement of 10 �-m, and a relatively conductive
3-�-m layer embedded in the basement with a depth from
1200 to 1400 m. Two anticline-associated reservoirs of the
same sizes, about 2 km × 1 km × 0.3 km, are buried at a
depth from 700 to 1000 m. They are aligned with each other
in the y-direction centered at y = 0. We also set a shallow
small resistive lens structure at a depth of about 600 m. In our
model study, we gradually decrease the distance between the
two reservoirs from 3 to 0 km. The observed data were all
contaminated with the Gaussian noise with a noise level of
4×10−14 V/[m ·√Hz] and processed using different versions
of the SA method.

We use the same survey design as for Model 1. Fig. 5
shows the SA results for four different spatial distances, 3,
2, 1, and 0 km, respectively. The blue solid lines denote the
RSA results with the robust Huber norm. The red solid lines

present the RSA results with L2-norm. The cyan solid lines
represent the conventional OSA results. The green solid lines
show the SA data without steering. The results demonstrate
that the RSA method generally has better spatial resolution
than the OSA method. At the same time, for the RSA method
with different norms, the robust norms work better than
the L2-norm. A comparison of SA responses with different
methods in both the CMP and CRP domains is also presented
in Fig. 6. The RSA results without either step 1 or step 2 again
show decreased resolution and SN ratio.

C. Salt Dome Model

We now report the results for SA imaging of a realistic
model. The marine model contains two deeply buried salt
domes and a shallow turtleback oil reservoir in between. Fig. 7
presents a 3-D view of the model. There is a conductive layer
embedded in the resistive basement. The layer is mostly flat
but folded to a shallower depth around the salts and in the cen-
tral minibasin. The second layer is also of random resistivity
distribution, as shown in the vertical section in Fig. 8(b).

As illustrated in Fig. 8(a), a 3-D survey consisting of 33
survey lines with a spacing of 500 m is designed to image
the geology. The transmitter is oriented in the x-direction
and towed from x = −9 km to x = 15 km with a source
interval of 400 m. The EM signal of six frequencies from
0.1 to 10 Hz is transmitted and received. The in-line electric
field was synthesized with the integral equation method and
contaminated with the Gaussian noise as in previous models.
We chose the data associated with the most southeast source
as the reference field [indicated by the black dot in Fig. 8(a)].
We selected a constant DSA of 1000 for a blind test (i.e.,
excluding any a priori information about subsurface geology).
We then applied different SA methods (SA without steering,
OSA, and RSA with different norms) to the synthetic data.
As a result, we obtained the SA data for all the survey
lines and frequencies. The map of amplitudes of SA data for
each frequency component constitutes an SA image, providing
horizontal distributions of geoelectrical structures at depth.

EM field of different frequencies penetrates the Earth into a
different depth and is sensitive to geoelectrical anomaly within
different depths. SA images of different frequencies can,
therefore, provide the depth information and have a vertical
solution. We transform frequency to pseudo depth based on
the integrated sensitivity of the common source gather to sub-
surface conductivity. Following [30], the integrated sensitivity
of the data to the conductivity of depth zk can be calculated
as follows:

Sk = ‖δd‖
δσk

=
√∑

i

|Fb
ik |2 (15)

where δd is the variation of a common source gather; δσk

denotes the perturbation of conductivity at depth zk ; and Fb
ik

represents the sensitivity of data point at the i th offset to
conductivity at depth zk calculated from the 1-D background
model. The pseudo depth for each frequency is defined as the
depth, where the integrated sensitivity decreases to 1% of its
maximum value, as illustrated in Fig. 9. The defined pseudo
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Fig. 5. Anticline models and the corresponding SA data amplitudes. The horizontal distances between the two anticlines are 3, 2, 1, and 0 km for (a1), (b1),
(c1), and (d1), respectively. There is also a lens structure at a shallower depth. The second layer is also contaminated with geological noise. The SA response
without steering (denoted by the green solid line) is too weak to be seen in the figure.

Fig. 6. Amplitudes of the SA data with different methods in CMP (left) and
CRP (right) domains for anticline model in Fig. 5(a1). The gray areas show
the horizontal locations of the anomalous targets.

depth is similar to skin depth, except that the former is based
on the sensitivity of a 1-D background model and a specific
survey configuration.

We present the SA images in pseudo-3-D maps, with the
frequency being the z-axis in frequency-decreasing order from
top to bottom. As lower frequencies are transformed into
deeper depths, such maps may well provide depth infor-
mation about the subsurface geoelectric structures. Fig. 10
presents the SA images obtained by the SA method with-
out steering. Figs. 11–13 show the SA images produced
by the OSA method, the RSA method with L2-norm, and
the RSA method with L2-norm, and with the RSA method
with Huber norm, respectively. Maps of the true resistivity

Fig. 7. 3-D view of the salt dome model. The two salt domes are symmetric
with each other, with a resistivity of 200 �-m. The conductive layer with
a resistivity of 4 �-m is almost flat but fold up around the salt domes and
in the center of the survey area. A turtleback oil reservoir with a resistivity
of 100 �-m is located in the center of the minibasin between the two salt
domes. The thickness of the second layer is about 130 m. It also contains
some geological noises as in previous studies.

model at the corresponding pseudo depths are also shown
in Fig. 14 for comparison. Although the horizontal locations
of the salt domes are reasonably recovered in Fig. 10, their
boundaries are blurred. Due to the weak amplitudes of the
response from the salt domes and the reservoir, the images
are fuzzy, especially for high-frequency components. The
amplitude of the response from the anomalies can be strongly
enhanced by the OSA method, as shown in Fig. 11. Note
the different colorbar scales used in Figs. 10 and 11. The
geometry of the salt domes is though not well-confined.
Figs. 12 and 13 depict the SA images by the RSA method
with L2-norm and Huber norm, respectively. Both recover
the shape of the salt domes very well and less affected by
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Fig. 8. (a) Horizontal and (b) vertical slices of the salt dome model. The turtle
back oil reservoir is located in the center of the minibasin. The transmitter
positions are also shown in (a); common source gather associated with the
black dot is chosen as the reference field.

Fig. 9. 1-D reference model for the salt dome model and the integrated
sensitivity for each frequency component. Two panels share the same abscissa
of depth.

the noise. The latter produces a slightly higher contrast of the
reservoir and salt domes with background, is therefore more
robust to noise in the data.

As OSA method [21], the RSA method is computationally
efficient. It took only a few seconds using a PC with Intel
Core i7 CPU at 2.4 GHz and 8-GB memory to compute the
RSA data for the dense survey in this case, while a rigorous
3-D inversion of the same data set required several hours or
even days of computation on a cluster.

V. CASE STUDY

We have applied the OSA method to the towed streamer EM
data collected by PGS in the Barents Sea. There is a known
salt dome structure located at almost the center of the survey
area; however, its shape is unclear. We have investigated how

Fig. 10. SA images by the SA method without steering, where the decreasing
frequencies are transformed to increasing pseudo depths. Images of higher
frequencies corresponding to shallower depths are displayed on the top of the
3-D image volume, whereas those of lower frequencies are displayed on the
bottom.

Fig. 11. SA images by the OSA method.

the OSA method might help to enhance the EM response from
this salt dome, which is more resistive than the surrounding
sea-bottom sediment.

Fig. 15 presents a bathymetric map of the survey area.
The sea bottom is gradually west-dipping, with an uplift in
the central part and a subbasin to the west of the uplift.
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Fig. 12. SA images by the RSA method with L2-norm.

Fig. 13. SA images by the RSA method with the Huber norm.

Two northward trenches enclose the central uplift to the west
and east.

The towed streamer EM data used in this study were
collected at seven survey lines at six frequencies of 0.2, 0.4,
0.8, 1.4, 1.8, and 2.6 Hz. The 8700-m-long EM streamer
was towed at a depth of approximately 100 m below the sea
surface. Twenty-three receivers with offsets between 2057 and
7752 m were selected. The electric current source was towed
at a depth of approximately 10 m below the sea surface.
Fig. 16 presents the profiles of the amplitude of the observed

Fig. 14. Horizontal slices of true model at the corresponding pseudo depths
for six frequency components.

inline electric field for frequency components 0.2 and 1.4 Hz
with a common offset of 5.4 km.

We selected the source gather associated with a source
at the southmost survey line as the reference field (red dot
in Fig. 11). The reference source was located at the center
of the flat subbasin, far from any variation of the seafloor
terrain. The generated reference field is, therefore, supposed
to be least affected by the sea-bottom anomalies. To preclude
the influence of the bathymetry on the SA images and to
enhance the response from the salt dome in the central part
of the survey area, we chose a DSA as a boxcar function,
which is equal to 1 over the entire domain except for an
interval from X = 20 km to X = 60 km, where it is
equal to 1000.

We have applied the OSA and RSA methods with L2-norm
and robust norms to the survey data for each frequency. As a
result, we have received an SA image for each method and
each frequency. We have also transformed the frequencies to
pseudo depth via the 1% of maximum integrated sensitivity
criteria as in the previous model study.

The integrated sensitivity was calculated using a 1-D back-
ground geoelectrical model derived from the 1-D inversion of
the reference EM field. As shown in Fig. 17, the decreasing
frequency is associated with enhanced sensitivity at depth, par-
ticularly below 1.5 km, enabling a sensitivity-based transform
of frequency to pseudo depth.

We present the SA images in a frequency decreasing order
from the top to the bottom, as in the previous model study.
The images produced by the SA method without steering
reveal an anomaly in the central part of the survey area
(see Fig. 18); however, the magnitude of the anomalous
response is tiny, and its shape changes inconsistently with
the frequency. In addition, the images are dominated by the

Authorized licensed use limited to: The University of Utah. Downloaded on June 28,2020 at 16:20:15 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 15. Bathymetry of the survey area and the transmitter locations. Common source gather associated with the red dot is chosen as the reference field.

Fig. 16. Amplitude of the observed data of frequency components 1.4 and
0.2 Hz with a common offset of 5.4 km.

Fig. 17. Inverted 1-D model and the integrated sensitivity for each frequency
component based on it. Two panels share the same abscissa of depth.

response from the bathymetry and the noise in the data. The
OSA method enhances the response from the salt dome in the
central area and suppresses the influence of the bathymetry,
as demonstrated in Fig. 19. It also brings out two linear
structures (indicated by black dashed lines in Fig. 19), which

Fig. 18. SA images by the SA method without steering with a frequency
decreasing order from top to bottom. The frequencies as shown in the z tick
values on the left side are transformed to pseudo depths on the right side.

we interpreted to be two faults controlling the boundaries of
the salt dome. Their locations coincide well with those of
the two trenches on the bathymetric map. These geological
features are more prominent in the images produced by the
RSA method with Huber norm, as shown in Fig. 20. These
observations demonstrate well the ability of the OSA and RSA
methods to enhance the response from the target, while the
RSA images provide a slightly better horizontal resolution
compared to the OSA method.
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Fig. 19. SA images by the OSA method with a boxcar DSA uplifting the
response from the salt dome in the central part. The black lines denote the
interpreted locations of the two faults controlling the boundary of the salt
dome.

Fig. 20. SA images by the RSA method with the Huber norm. A boxcar
DSA is used to enhance the response from the salt dome in the central part.

VI. CONCLUSION

We have developed an RSA method by applying a robust
smoothing to the background field and robust interpolation of
the fields from the real local receiver positions to virtual ones.
Our model and case studies demonstrate that all the steps of the
RSA method outlined above are generally required to ensure
a robust solution. At the same time, the importance of one

step over another depends on the specific situation,
as explained below.

1) Background Field Smoothing: The importance of this step
depends on the background field behavior. If the background
field is selected in the area free from the influence of any
geoelectrical anomaly and the noise level is low, there is no
need in this step. Otherwise, it is recommended to smooth the
background field by using step 1.

2) Robust Interpolation of EM Fields: The importance of
this step also depends on the noise level and the presence of
local inhomogeneities in the sea bottom. The latter is critical
in the case of the MCSEM survey, where the EM fields in
the sea-floor receivers can be strongly distorted by the local
sea-bottom geoelectrical anomalies.

3) Robust Norms: The use of the robust norms is very
important when the data are noisy. The application of the
robust norms provides a higher spatial resolution as indicated
in the second model study.

We have also developed and applied a robust inversion
scheme to determine the RSA weights using the robust norms.
By transforming frequencies into the pseudo depth based on
the integrated sensitivity, the results produced by the RSA
method could be assembled as a pseudo-3-D image of the
subsurface geoelectrical structure. The synthetic model studies
have demonstrated that the RSA method is stable to the noise
in the data and also has a better spatial resolution with respect
to the sea-bottom geoelectrical structures than the original SA
technique. We have also applied the RSA method to the towed
streamer EM data collected in the Barents Sea. This study
shows that the RSA method enhances robustly the responses
from the targets.

One of the major advantages of this method is that it
can generate images of potential targets quickly for a large
survey area compared to the rigorous inversion. It takes only
a few minutes on PCs to run an SA imaging, while a full
3-D inversion would take several hours or even days on
supercomputers. At the same time, this method could not
be considered as a replacement of 3-D inversion because it
provides just an image of the sea-bottom formations without
reconstructing their electrical properties. This method is most
suitable for a quick interpretation of the results of a regional
reconnaissance survey and a real-time analysis of the acquired
data and refining the survey lines in the target areas.

Thus, the developed method can be considered as an effec-
tive technique for real-time evaluation of offshore HC reservoir
potential using the EM data.

APPENDIX

A. L1-Norm

The L1-norm of the residual can be reformulated as a
weighted least-square norm

‖r‖L1 = (WL1r, WL1r) (16)

with W L1 = diag( 1

|r| 1
2
). For L1-norm, bigger weights are

assigned to data corresponding to small residuals. However,
datum with residual close to zero will be extremely over-
weighted and leads to a singularity problem.
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B. Huber Norm

The kernel function for the Huber norm is defined as
follows:

ρi (r) =

⎧⎪⎨⎪⎩
ri , if |ri | < a(

a|ri | − 1

2
a2
) 1

2

, if |ri | ≥ a.
(17)

The diagonal weighting matrix can be calculated as follows:

Wρi (r) =

⎧⎪⎪⎨⎪⎪⎩
1, if |ri | < a(

a|ri | − 1
2 a2
) 1

2

[|ri |2 + e] 1
2

, if |ri | ≥ a.
(18)

The Huber norm combines different treatments of small
residuals and large ones. Only the part of data with residual
bigger than a threshold is down-weighted. It is, therefore, more
stable.

C. Hampel and Tukey Bisquare Norms

There are other robust norms, for example, the Hampel norm
and the Tukey bisquare norm with the following kernels:

ρ
Hampel
i (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri , if |ri | < a(
a|ri | − 1

2
a2
) 1

2

, if a ≤ |ri | < b(
a

c|ri | − 1
2 a2

c − b
− 7

6
a2

) 1
2

, if b ≤ |ri | < c

[a(b + c − a)] 1
2 , otherwise

(19)

ρ
bisquare
i (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
6

a

⎡⎣1−
(

1 −
[|ri |

a

]2
)3
⎤⎦ 1

2

, if |ri | < a

1√
6

a, otherwise.

(20)

The parameters in the robust norms, the coefficients a, b, c
in (17)–(20), are determined based on some preassumed sta-
tistic distributions of the misfit residuals, which is usually
a Gaussian distribution. For example, for the Huber norm,
we can choose a equal to 1.44 of the median of the residuals,
where the value 1.44 comes from the 85% confidence interval
for the corresponding Gaussian distribution. There are many
publications on robust estimation where the interested reader
can find more details about the robust norms. For example,
Huber’s famous article “Huber, P. J., 1973, Robust regression:
Asymptotics, conjectures, and Monte Carlo. Ann. Statist., 1,
799–821” is a perfect one.
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