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S U M M A R Y
The finite-element (FE) method is one of the most powerful numerical techniques for modelling
3-D electromagnetic fields. At the same time, there still exists the problem of efficient and
economical solution of the respective system of FE equations in the frequency domain. In this
paper, we concentrate on modelling with adapted hexahedral or logically rectangular grids.
These grids are easy to generate, yet they are flexible enough to incorporate real topography
and seismic horizons. The goal of this work is to show how a finite-difference (FD) solver can
be used as a pre-conditioner for hexahedral FE modelling. Applying the lowest order Nédélec
elements, we present a novel pre-conditioned iterative solver for the arising system of linear
equations that combines an FD solver and simple smoothing procedure. The particular FD
solver that we use relies on the implicit factorization of the horizontally layered earth matrix.
We assessed runtime and accuracy of the presented approach on synthetic and real resistivity
models (topography of the Black Sea continental slope). We further compared performance of
our program versus publicly available Mare2DEM, ModEM and MUMPS programs/libraries.
Our examples involve plane-wave and controlled source modelling. The numerical examples
demonstrate that the presented approach is fast and robust for models with moderate contrast,
supports highly deformed cells, and is quite memory-economical.

Key words: Controlled source electromagnetics (CSEM); Electromagnetic theory; Magne-
totellurics; Numerical modelling; Numerical solutions.

1 I N T RO D U C T I O N

The role of 3-D electromagnetic (EM) forward modelling can hardly
be overestimated nowadays as it is used in EM survey design as well
as in EM data interpretation. In the frequency domain, the imple-
mentation of a forward modelling routine generally involves the
following steps: computational grid generation, conductivity (and
possibly permittivity and susceptibility) averaging, system matrix
preparation, solution of the system of equations and interpolation
of the solution to the receiver locations. In this paper, we address
the problem of efficient solution of the finite-element (FE) system
of equations as it is the most computationally demanding step.

FE modelling on rectangular, more general hexahedral and tetra-
hedral grids was discussed in a large number of relatively recent
publications (e.g. Silva et al. 2012; Cai et al. 2014, 2017; Li et al.
2016, among many others); however, pre-conditioned iterative solu-
tion is rarely considered, though we should note the work of Puzyrev
et al. (2013), Um et al. (2013) and Ren et al. (2014).

Some authors studied the use of sparse direct solvers (Kordy
et al. 2016) appealing to their universality and robustness. These

solvers require hundreds of Gb of auxiliary memory and hours
of CPU time at the factorization step for typical modelling. With
parallelization, this dramatic computational burden is somewhat
reduced but remains significant.

To minimize the size of the FE system, grids with hanging nodes
or octree grids can be used (Haber & Heldman 2007; Grayver &
Kolev 2015). This kind of grids eliminates highly stretched cells
outside the survey area. Although attractive in principle, solution of
the respective system requires incorporation of a diffusion equation
solver, which ultimately raises computational complexity of a single
iteration.

Let us limit our consideration to adapted hexahedral grids
or logically rectangular grids (see Fig. 1a for 2-D illustration),
that is, every cell in such a grid is received by finite deforma-
tion of the respective cell of a rectangular grid (Fig. 1b). Log-
ically rectangular grids directly accommodate land or seafloor
topography or seismic horizons. It can be easily noted that
the respective FE matrix shares many properties with the FE
or finite-difference (FD) matrix constructed on the rectangular
grid.
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Figure 1. 2-D counterpart of an adapted (deformed) hexahedral grid or logically rectangular grid (a), (undeformed) rectangular grid (b), horizontally layered
earth model on the rectangular grid (c). Different filling pattern corresponds to conductivity values.

Figure 2. Six edges meeting at an internal node j of the hexahedral grid.

The key point of this paper is to check if an FD solver may be
used as a pre-conditioner in FE modelling on logically rectangular
grids. As far as the authors are concerned, this type of solution
method was not published earlier. The particular FD solver that we
will test is based on the implicit and economical factorization of
the horizontally layered earth matrix (Fig. 1c, see Appendix A or
Yavich et al. 2020).

This paper is organized as follows. At first, we formulate the
FE system on a hexahedral grid. Next, we introduce FD matrices
and discuss their relation to the FE system. After we describe a
smoothing procedure, which happens to be necessary to warrant
robustness of the FD pre-conditioner for the FE problem. Finally, we
present numerical examples that include both synthetic conductivity
models, as a model with real marine topography. Our examples
involve plane-wave and controlled source modelling.

2 F I N I T E - E L E M E N T S Y S T E M O F
E Q UAT I O N S

We consider a diffusion of EM field within 3-D heterogeneous
conducting media with triaxial-anisotropic electrical conductivity
tensor, σ (x, y, z):

σ (x, y, z) =
⎛
⎝

σx (x, y, z) 0 0
0 σy (x, y, z) 0
0 0 σz (x, y, z)

⎞
⎠ . (1)

The conductivity is assumed to be non-zero in the air. Within
forward modelling, we look for the electric field E(x, y, z) that
satisfies the following second-order system of partial differential

equations:

curl curl E − iωμ0σ E = iωμ0 J, (2)

where J is the source current density, i is the complex unity, ω

is the angular frequency and μ0 is magnetic permeability of the
vacuum (Zhdanov 2002, 2009). These differential equations are
solved in a rectangular hexahedral computational domain V . We
further preferred secondary field modelling and thus complemented
eq. (2) with zero Dirichlet boundary conditions,

E × ν = 0, (3)

where ν is the unit vector outward normal to the domain boundary
S.

We assumed that the computational domain is partitioned with
a non-overlapping deformed hexahedral grid (see Fig. 1a) for a
2-D illustration, and each cell will be denoted as Vj , j = 1..m.
We further denote as n the number of internal edges. To find an
approximate solution to eqs (2) and (3) on the introduced grid,
we follow the conventional FE technique. In this paper, we con-
sidered lowest-order Nédélec FE basis functions (Nédélec 1986).
For deformed hexahedra, they are completed by the covariant Pi-
ola transform (Falk et al. 2011), which preserves continuity of the
tangential components across interelement faces.

Using these basis functions, pk(x, y, z), k = 1..n, we expend
the unknown electric field, E, as follows:

E ≈
n∑

k = 1

ekpk, e = (· · · ek · · · )T ∈ C
n . (4)

This discretization results in the following system of linear equa-
tions:

A e = f, (5)

where A = R − iωμ0S, R = (Ri j ) , S = (Si j ), f = ( fi ) , i =
1..n, j = 1..n,

Ri j = ∫
V

curl pi · curl p j dV , Si j = ∫
V

pi · σ p j dV ,

fi = iωμ0

∫
V

pi · JdV .
(6)

The obtained system is characterized by a large sparse complex
symmetric square matrix. The corresponding matrix equation can
be solved with both iterative and direct methods.
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842 N. Yavich and M.S. Zhdanov

Figure 3. Part of the modelling domain and grid. The grey quarter-space had resistivity 1 �m, the magenta quarter-space had resistivity either 10, 100 or 1000
�m. Receivers are marked as white balls.

3 P R E - C O N D I T I O N I N G A P P ROA C H E S

3.1 Relation to the FD problem

The essence of pre-conditioning is to find a substitute matrix B for
the system matrix A such that it is of the same size, has similar
spectral properties, but easier to invert than A. After such a pre-
conditioner B was designed, it can be used directly (though this is
uncommon),

B−1A e = B−1 f, (7)

or incorporated into the Richardson iterative method,

ek+1 = ek + B−1 (f − Aek) , (8)

k = 0,1,. . . , and e0 is the initial guess, or more advanced Krylov
subspace iterative solvers, for example, BiCGStab or GMRes.

The pre-conditioning approaches discussed below employ a
rectangular hexahedral grid obtained by removing deformations
(Fig. 1b). On this rectangular grid, the FD discretization is applica-
ble. Introduce the FD matrix,

AFD = RFD − iωμ0SFD, (9)

where RFD is the FD curl–curl operator and SFD is a diagonal matrix
of averaged anisotropic conductivities multiplied by the volumes
around the respective edges. Note that the deformed and unde-
formed grids have the same number of edges, thus matrices A and
AFD are of the same size. Consequently, we can try to pre-condition
our FE system (5) with AFD in the following or other forms,

ek+1 = ek + A−1
FD (f − Aek) . (10)

However, inversion of a large FD matrix is a complex task by
itself.

To avoid inversion of AFD, we perform another substitution. At
this point, any available FD pre-conditioner would be applicable,
provided it is robust enough. The particular FD pre-conditioner we

used in our implementation relies on a background conductivity
model. Introduce σ b(z), a possibly anisotropic conductivity that de-
pends on the vertical coordinate only (Fig. 1c). Following Yavich &
Zhdanov (2016), we define matrix corresponding to the FD problem
of the background media, Ab FD,

Ab FD = RFD − iωμ0Sb FD, (11)

where Sb FD is a diagonal matrix corresponding to σ b(z).
We should note that matrix Ab FD is of the same size as A and

multiplication of the inverse matrix A−1
b FD with a given vector can be

rapidly (in at most O(n
4
3 ) arithmetical operations) and economically

performed, see Appendix A. Therefore, it is practical to apply A−1
b FD

as a pre-conditioner to eq. (5) as described in eq. (8) or using
BiCGStab. We will refer Ab FD as FD GF pre-conditioner since
A−1

b FD implements FD Green’s functions.
Pre-conditioning of an FE problem with an FD matrix is known

to work efficiently for diffusion and acoustic problems (Heikokla
et al. 1999). Interestingly, this does not work for EM problems (see
Numerical Examples). We regard this to the rich null spaces of ma-
trices R and RFD. It can be easily noted that whenever at least one
hexahedron is deformed (rather than just stretched or squeezed), the
null spaces of these matrices are different. Consequently, the respec-
tive error components are not reduced within the pre-conditioned
iterative solver (the importance of the null space within iterative
solution of Maxwell equations is discussed for example in Hiptmair
1998).

3.2 Smoothing procedure

Since the appearance of multigrid methods for EM problems
(Arnold et al. 2000), several procedures to reduce null-space er-
ror components of the curl–curl operator are known. They enforce
the charge conservation law either globally (in the whole compu-
tational domain) or locally (in points, lines, or plains). The latter
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Finite-element EM modelling on hexahedral grids 843

Figure 4. Electric field responses due to plane wave at 1 Hz for two-quarter-space model. Responses were computed using hexahedral FE program (Hex3D)
and ModEM. The resistivity of the west quarter-space was 1 �m, the resistivity of east quarter-space was either 10, 100 or 1000 �m. (a)Ex component of the
response due to x-polarized plane wave; b) Ey component of the response due to y-polarized plane wave.

Table 1. Iteration count and CPU time of hexahedral FE program (Hex3D)
and ModEM. Iterative solver tolerance was 1e−7. The resistivity of the west
quarter-space was 1 �m; the resistivity of east quarter-space was either 10,
100 or 1000 �m.

East quarter-space
resistivity (�m)

Hex3D Iteration
count/CPU time (min)

per polarization
ModEM CPU time

(min) per polarization

10 58/2.86 3.86
100 211/10.46 3.92
1000 433/21.71 3.92

Table 2. Iteration count and CPU time of hexahedral FE program (Hex3D)
for a sequence of grids. Iterative solver tolerance was 1e−7. The resistivity
of the west quarter-space was 1 �m; the resistivity of east quarter-space was
100 �m.

Modelling grid Discrete problem size

Hex3D Iteration
count/CPU time (min)

per polarization

136 × 56 × 75 1 669 835 211/10.46
68 × 28 × 37 200 565 197/0.80
34 × 14 × 18 23 090 142/0.03
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844 N. Yavich and M.S. Zhdanov

Figure 5. Model with simple seafloor bathymetry: sea-water layer (grey), sediments (red), source (leftmost white disk) and receivers (the other white disks).
The modelling grid was adapted to the seafloor (blue lines).

Figure 6. BiCGStab convergence history pre-conditioned with either Ab FD matrix only (GF), or combined with pre-smoothing (S + GF), or pre- and
post-smoothing (S + GF + S) for the model with simple seafloor bathymetry

Table 3. Performance of the BiCGStab solver pre-conditioned with either
Ab FD matrix only (GF), or combined with pre-smoothing (S + GF), or
pre- and post-smoothing (S + GF + S) for the model with simple seafloor
bathymetry.

Pre-conditioned
BiCGStab solver

Iteration
count

CPU time
(min)

CPU time (min)
per iteration

S + GF + S 6 0.16 0.026
S + GF 9 0.17 0.019
GF 16 0.22 0.014

procedures are referred to as smoothers within multigrid methods
because they smooth out spatial error components.

The smoothing procedure that has the smallest arithmetical com-
plexity performs point smoothing in the block Jacobi fashion. Let
p be the number of internal grid nodes. At any internal node of
a logically rectangular hexahedral grid, six edges meet (Fig. 2).
Consider a node j . Let B j be an n × n matrix that coincides
with A at those columns and rows which correspond to the six
edges, while coinciding with the identity matrix at the rest of the
entries.
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Finite-element EM modelling on hexahedral grids 845

Figure 7. Real and imaginary parts of the inline electric field components tangential to the seafloor. Hexahedral FE modelling (Hex3D) compared with 2-D
FE modelling (M2D) of mare2DEM for the model with simple seafloor bathymetry

Note that the matrix B j is easy to invert and solution of a system
with matrix B j enforces the charge conservation law in the point j .
Now, the block Jacobi smoother can be written as follows:

ek+1 = ek + η

p∑
j = 1

B−1
j (f − A ek) . (12)

This procedure has linear arithmetical complexity and naturally
parallelizable. The scalar parameter η should be positive and less
than 1. In our experiments, we picked η = 0.5 as this choice takes
in account the fact that each edge is involved at most twice in the
stencils, Fig. 2. (Yavich & Scholl 2012).

Now we have to combine the pre-conditioning step (eqs 10 and
11) with the smoothing step (eq. 12). The next three-step algorithm

resulted in a robust solver,

ek+1/3 = ek + η
p∑

j = 1
B−1

j (f − A ek) ,

ek+2/3 = ek+1/3 + A−1
b F D

(
f − A ek+1/3

)
,

ek+1 = ek+2/3 + η
p∑

j = 1
B−1

j

(
f − A ek+2/3

)
.

(13)

Practically, we do not implement eq. (13) as is, rather these
three steps were implemented as a pre-conditioner to the BiCGStab
iterative solver. Following the multigrid terminology, the first step
we will be referred to as pre-smoothing, the last step we will be
referred to as post-smoothing.
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846 N. Yavich and M.S. Zhdanov

Figure 8. Seafloor bathymetry.

To wrap up this section, let us summarize the properties of the
designed pre-conditioner. Arithmetical complexity of a single ap-
plication of eq. (13) is O(n

4
3 ). Initialization is momentary since it

involves manipulation with 1-D discrete problems only, needed to
prepare for multiplication of A−1

b FD by a vector. Inversion of 6 × 6
block arising in B−1

j is performed on-the-fly to minimize storage
expenses.

4 N U M E R I C A L E X A M P L E S

In this section, we present the results of 3-D numerical modelling ex-
periments with the pre-conditioning scheme (13) introduced earlier.
The scheme was incorporated into the BiCGStab iterative solver.
The finite-element system of equations (5) was implemented in
Matlab (program of Cai et al. 2014). The finite-difference pre-
conditioner introduced in eq. (11) (Yavich & Zhdanov 2016) and
smoother (12) were implemented in C/C++ and linked to the Mat-
lab code. Computations were performed on a Linux cluster node.
All the presented results involve sequential computations.

4.1 Modelling on rectangular grids

We start off our experiments with a simple model (Fig. 3) consisting
of two quarter-spaces of different resistivity. The west (x < 0) has
resistivity 1 �m, while the resistivity of the east quarter-space (x >

0) was different in different tests, 10, 100 and 1000 �m, respectively.
A plane-wave electric field response at 1 Hz was recorded along a
12 km profile, perpendicular to the contact interface. The resistivity
of the air was 106 �m.

In this case, we used an FE grid that matched the FD grid. The
modelling domain occupied the volume [−85; 85] × [−80; 80] ×
[−53; 71] km3 and cells in the central part had the size 125 × 125
× 50 m3. Part of the grid is shown in Fig. 3. The grid had 136 × 56
× 75 cells, making the discrete problem size 1 669 835 unknowns.

We compared accuracy and runtime of our program versus those
of ModEM 2019, Egbert & Kelbert (2012) and Kelbert et al. (2014).
ModEM has implemented Fortran 95 and its solver part combines
QMR iterations with ILU pre-conditioner and static divergence cor-
rections. ModEM supports transfer function computation only, thus
minor edits were implemented to obtain the electric fields due to a
particular polarization.

Both of the programs used the same modelling grid and accu-
racy of the iterative solvers was set to 1e−7. Fig. 4 illustrates the

computed responses by the two programs for the three different
resistivities of the east quarter-space. The Ex component of the re-
sponse due to x-polarized plane wave is shown in Fig. 4(a), while
Ey component of the response due to y-polarized plane wave is
shown in Fig. 4(b). The electric fields were normalized so that they
would pass through the unity at x = 0.

We observe a fairly good match of the responses. Though, some
discrepancies are notable in the 1000 �m case. We regard this
to different incorporation of the quarter-space: our program uses
secondary field modelling, while ModEM uses primary field mod-
elling.

Smoothing was not applied in this test since hexahedrons were
not deformed. Table 1 presents iteration count and CPU time of our
hexahedral FE program and ModEM. Our program was faster in
case of moderate resistivity contrast, while in other cases, the num-
ber of iterations tends to grow. For this model, the pre-conditioning
matrix Ab FD corresponds to a uniform half-space model. Conse-
quently, this approach loses robustness. On the other hand, ModEM
performs fairly invariant to resistivity increase. We should note
that our program is experimental and involves Matlab code, nev-
ertheless, in some cases, its performance is competitive with the
industry-standard program.

We also investigated the impact of the discrete problem size
in Table 2. The originally generated grid 136 × 56 × 75 was
coarsened either two or four times in each direction by remov-
ing the respective grid lines. The table reports iteration count and
CPU time required for modelling with these grids. We see that
the grid size has a small impact on the iteration count, imply-
ing that the resented approach is applicable for large-scale prob-
lems.

4.2 Simple bathymetry modelling

In this section, we illustrate performance of the designed algorithm
applied for marine CSEM modelling in the presence of 2-D simple
seafloor topography. We considered a model formed by a 1000 m
deep sea-water layer and of 0.3 �m and homogenous seafloor of
1 �m. The seafloor contains an elevation of 110 m uniform in
the y-direction (Fig. 5). The top of the elevation is located along
x = 0 and it spans approximately from x = −500 m to x =
500 m.

We modelled a response of a x-directed dipole source centred in
[−1500; 0; 900] m, that is, 100 m above the seafloor and 1.5 km
to the west of the elevation. The source was emitting at 1 Hz. The
seafloor receivers were inline to the source, along y = 0 and
tangential to the seafloor.

For this set-up, a hexahedral grid was generated. The modelling
grid covered the volume [−3; 4] × [−3; 3] × [−5; 3] km3, had the
smallest cell size 100 × 100 × 50 m3 and was adapted to seafloor
topography (Fig. 5). The grid had dimensions 70 × 36 × 81, making
the size of the discrete problem 590 335.

Fig. 6 shows BiCGStab convergence history pre-conditioned with
either Ab FD matrix (11) only, or combined with pre-smoothing, or
pre- and post-smoothing (13). See also Table 3. In all of the three
cases, the iterative solver converged to the target residual of 1e−7
quite fast: 16, 9 and 6 iterations respectively. Though, we should
note that the use of smoothing increased convergence speed con-
siderably. Also, note that smoothing steps increased computational
complexity of a single iteration (Table 3). Nevertheless, the shortest
CPU time was received when two smoothing steps were performed
per iteration.
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Finite-element EM modelling on hexahedral grids 847

Figure 9. Hexahedral grid adapted to seafloor bathymetry. The source is marked as a blue ball, receivers are marked as white balls.

Figure 10. BiCGStab convergence pre-conditioned with FD GF completed with either no smoothing (GF), pre-smoothing (S + GF) or pre- and post-smoothing
(S + GF + S).

Table 4. Performance of the pre-conditioned iterative and sparse direct
solvers.

Solver CPU time
Peak memory

usage

BiCGStab/S + GF + S 5.3 min 1 Gb
MUMPS factorize 8.0 hr

solve 0.7 min
56 Gb

To conclude this experiment, we illustrate and compare the com-
puted response with that of publicly available program 2.5-D finite-
element code Mare2DEM (Key 2016). We should note that the
model used in this experiment is 2-D with y being the strike direc-
tion, consequently such a comparison is fair. Fig. 7 shows real and
imaginary parts of the electric field components. We observe a good
match, though some inaccuracies are notable near sign reversals.
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Figure 11. Responses computed with the pre-conditioned iterative and sparse direct solvers. Real and imaginary parts of the inline electric field component
tangential to the seafloor are shown.

4.3 Real bathymetry modelling

We modelled a response of a horizontal electric dipole of 1 Hz towed
near the seafloor. We assumed a homogeneous 1 �m subsurface,
while seafloor bathymetry represents an 8 × 8 km2 area of the Black
Sea continental slope (Daudina et al. 2014; Yavich et al. 2019),
Fig. 8. In this area, depth varies from 450 to 1150 m. Sea-water
conductivity was 0.3 �m.

For this set-up, we generated a non-uniform 115 × 100 × 55 grid
(Fig. 9) with overall 1.851 million discrete electric field unknowns.
The grid was adapted to the seafloor bathymetry.

Fig. 10 illustrates convergence of the BiCGStab iterative solver,
pre-conditioned with Ab FD completed with either no smooth-
ing, pre-smoothing or pre- and post-smoothing. In the last case,
the pre-conditioned iterative solver converged in 53 iterations
in 5.3 min to the residual norm of 1e−6. In other cases, no
convergence was observed. We conclude that for realistic mod-
els, pre- and post-smoothing are necessary to gain robustness.
Note that both smoothing and the FD GF pre-conditioner are
naturally parallelizable (Yavich & Scholl 2012; Yavich et al.
2017).

Finally, we linked to the commonly used MUMPS sparse direct
solver (Amestoy et al. 2001) to assess their performance versus the
discussed approach. In this study, we have looked at sequential per-
formance leaving investigation of scalability aside. MUMPS 5.1.1
was used and complex symmetricity of the matrix was employed
during factorization.

Table 4 shows CPU time and memory usage of the pre-
conditioned iterative and MUMPS sparse direct solvers. It took
8 hr and 56 Gb of memory for the direct solver to factorize the
matrix. In contrast, the designed pre-conditioned iterative solver re-
quired only near 1 Gb of memory. We conclude that in this example,
the iterative solver was roughly 90 times faster and 50 times more
memory-economical.

Both of the approaches can gain some speedup in a parallel
environment, but the computational burden of the sparse direct
factorization still will be significant.

Finally, Fig. 11 illustrates responses modelled with the two
solvers. The responses are essentially identical. This demonstrates
the fact that pre-conditioning eqs (10) and (12) corresponds to the
equivalent transformation of the original linear system (5).

5 C O N C LU S I O N S

We designed and tested a pre-conditioning scheme for the hexahe-
dral FE system of equations resulting from the discretization on a
logically rectangular grid. The approach combines the FD GF pre-
conditioner and pre- and post-smoothing procedures. Accuracy and
runtime were compared versus commonly used in the EM commu-
nity programs ModEM and Mare2DEM. The numerical examples
presented above demonstrate that the presented approach is fast and
robust for models with moderate contrast. As far as the authors are
concerned, this type of pre-conditioning has not been published ear-
lier. An attempt to further leverage the presented approach with the
contraction-operator transformation, which can potentially further
accelerate FE forward modelling, will be performed. Another way
to gain robustness would be to substitute point smoothing with line
smoothing (Mulder 2006).

Arbitrary unstructured tetrahedral and hexahedral grids or grids
with hanging nodes presumably cannot be used with the presented
approach. Our consideration was limited to lowest order Nédélec ba-
sis functions for logically rectangular grids, while the developed pre-
conditioner can be directly reused for higher-order basis functions.
We will also try to reuse this approach for time-domain modelling,
where accurate incorporation of land topography is of paramount
importance.
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A P P E N D I X A : FA S T I N V E R S I O N O F Ab FD

In this appendix, we describe an approach for direct factorization
of matrix Ab FD, an FD matrix corresponding to Maxwell equations
in a possibly anisotropic medium of conductivity σ b(z). Eq. (2) in
this case read as follows in explicit form:

−∂2 Ex

∂y2
− ∂2 Ex

∂z2
+ ∂2 Ey

∂x∂y
+ ∂2 Ez

∂x∂z
− iωμ0σbx (z)Ex = iωμ0 Jx ,

−∂2 Ey

∂x2
− ∂2 Ey

∂z2
+ ∂2 Ex

∂x∂y
+ ∂2 Ez

∂y∂z
− iωμ0σby(z)Ey = iωμ0 Jy,

−∂2 Ez

∂x2
− ∂2 Ez

∂y2
+ ∂2 Ex

∂x∂z
+ ∂2 Ey

∂y∂z
− iωμ0σbz(z)Ez = iωμ0 Jz .

(A1)

We assume that the non-uniform FD grid is formed by Nx ×
Ny × Nz cells. In complexity and size estimates, we assume the
numbers of grid cells in all directions are of the same order. We will
present an algorithm to efficiently solve

Ab FDv = g (A2)

for v while g ∈ C
n is given. For magnetic field modelling on Lebe-

dev grids, a similar algorithm was presented in Zaslavsky et al.
(2011). The below-described approach is analogous to using double
Fourier transform for solution of differential equation system (A1).

Matrix Ab FD inherits the structure of eq. (A1). It can be presented
in the following way:

Ab FD =
⎛
⎝

Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞
⎠ . (A3)
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We will use a special representation of matrix Ab FD. To introduce
it, we need some auxiliary notations. Note that discretization of eq.
(A1) involves backward, forward and central FE operators. The

Kronecker product (Appendix B) will let us write components of
Ab FD explicitly,

Axx = I z
d ⊗ Ay

d ⊗ I x
n + Az

d ⊗ I y
d ⊗ I x

n − iωμ0�
x ⊗ I y

d ⊗ I x
n ,

Axy = I z
d ⊗ F y

dn ⊗ F x
nd ,

Axz = I z
dn ⊗ I y

d ⊗ F x
nd ,

· · ·
Azz = I z

n ⊗ Ay
d ⊗ I x

d + I z
n ⊗ I y

d ⊗ Ax
d − iωμ0�

Z ⊗ I y
d ⊗ I x

n .

(A4)

Here, I x
d , I y

d , etc., are identity matrices; �x , � y and �z are diago-
nal matrices corresponding to σbx (z), σby(z) and σbz(z), respectively;
F x

nd and F y
dn are backword and forward difference operators result-

ing from discretization of ∂2

∂x∂y ; matrices Ax
d , etc., correspond to

discretization of ∂2

∂x2 . An important feature of all the matrices in-
volved in the right-hand side of eq. (A4) is that they are either
diagonal, bidiagonal or tridiagonal. Also they are relatively small
in size, O(Nx ), since they correspond to 1-D ordinary differential
operators. However, the blocks Axx , etc., are large and have a large
band.

We will now simplify the structure of Ab FD and invert it using
spectral and singular value decompositions of earlier introduced
matrices Ax

d , F x
nd , etc. This is achieved in three steps.

Step 1–Symmetrization. Matrix Ab FD is not symmetric generally.
We can symmetrize it by using a diagonal matrix,

D = diag
(
Dz

d ⊗ Dy
d ⊗ Dx

n , Dz
d ⊗ Dy

n ⊗ Dx
d ,

Dz
n ⊗ Dy

d ⊗ Dx
d

)
. (A5)

Here, Dx
d , etc., are diagonal matrices of grid steps in the respective

directions. Now we can put,

Ã = D
1
2 Ab FD D− 1

2 . (A6)

Now solving (A2) is equivalent to solving

Ã ṽ = g̃ , (A7)

with

ṽ = D
1
2 v, g̃ = D

1
2 g. (A8)

After this scaling, matrix Ã is always symmetric.
Step 2–Diagonalization. Matrices involved in Ã can now be di-

agonalized using eigenvalue decomposition. At this step we diag-
onalize those matrices that correspond to FD differentiation in the
horizontal direction. The respective eigenvector basis is denoted as
W x

d , W y
d , etc. Define,

W = diag
(
I z

d ⊗ W y
d ⊗ W x

n , I z
d ⊗ W y

n ⊗ W x
d ,

I z
n ⊗ W y

d ⊗ W x
d

)
.

(A9)

and put

T = WT Ã W. (A10)

Matrix T benefits from the eigenvector basis and has the following
form:

T =
⎛
⎝

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

⎞
⎠ , (A11)

Txx = I z
d ⊗ �

y
d ⊗ I x

n + Az
d ⊗ I y

d ⊗ I x
n − iωμ0�

x ⊗ I y
d ⊗ I x

n ,

Txy = −I z
d ⊗ (�y

nd )
1
2 T ⊗ (�x

nd )
1
2 ,

Txz = −Fz
dn ⊗ I y

d ⊗ (�x
nd )

1
2 ,

· · ·
Tzz = I z

n ⊗ �
y
d ⊗ I z

d + I z
n ⊗ I y

d ⊗ �x
d − iωμ0�

z ⊗ I y
d ⊗ I x

n .

(A12)

Switching from Ã to T in (A7) gives us,

T u = f, f = WT g̃, u = WT ṽ. (A13)

An important feature of the above matrix is that all FD derivatives
with respect to x and y are gone. All of the nine blocks of T are
either diagonal, bidiagonal or tridiagonal. Consequently, we can
factorize it efficiently (see the next step).

Step 3–Factorization. In order to solve eq. (A13), it remains to
discuss an approach to factorize T. As it was noted above, matrix
T involves only FD derivatives with respect to z. Further note that
Tzz block is diagonal. Consequently, we can eliminate the respective
subset of unknowns while keeping sparsity of the remaining blocks
of the matrix. Under an appropriate renumbering, the obtained ma-
trix will be block diagonal with O(Nx Ny) blocks and each block
being a symmetric seven-diagonal matrix of size O(Nz). Thus, we
can factorize every block using L DLT -algorithm in linear time.
This is performed on-the-fly.

Solution of eq. (A2) can be summarized as follows: apply diag-
onal scaling D (A8), then perform conversion to the eigenvalue
basis (A13), after this, find the discrete harmonics, then perform
conversion from the eigenvalue basis, and finally remove diagonal
scaling.

All the operations performed in the algorithm above are linear
with respect to the problem size n except conversions from/to the
eigenvalue basis which require O(Nz Nx Ny(Nx + Ny)) or O(n

4
3 )

operations. Thus, the latter complexity dominates in the solution
of eq. (A2). At initialization, eigenvalue decomposition of four
tridiagonal matrices is performed. The overall complexity of this
step is O (n2

x ) = O(n
2
3 ).

A P P E N D I X B : K RO N E C K E R P RO D U C T
A N D I T S P RO P E RT I E S

Given an m × n matrix A = {ai j } and some matrix B, their Kro-
necker product matrix A ⊗ B is a block matrix defined as

A ⊗ B =
⎛
⎝

a11 B · · · a1n B
· · ·

am1 B · · · amn B

⎞
⎠ . (B1)

We used the following properties of this product within this note:

(A ⊗ B )T = AT ⊗ BT , (B2)

(A ⊗ B )−1 = A−1 ⊗ B−1, (B3)

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD) . (B4)

The identity (B3) holds under the assumption that A and B are
invertible, while (B4) holds under the assumption that the respective
matrix products are well defined.
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