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ABSTRACT

Geological interpretation based on gravity gradiometry data constitutes a very chal-
lenging problem. Rigorous 3D inversion is the main technique used in quantitative
interpretation of the gravity gradiometry data. An alternative approach to the quan-
titative analysis of the gravity gradiometry data is based on 3D smooth potential field
migration. This rapid imaging approach, however, has the shortcomings of provid-
ing smooth images since it is based on direct integral transformation of the observed
gravity tensor data. Another limitation of migration transformation is related to the
fact that, in a general case, the gravity data generated by the migration image do not
fit the observed data well. In this paper, we describe a new approach to rapid imag-
ing that allows us to produce the density distribution which adequately describes the
observed data and, at the same time, images the structures with anomalous densities
having sharp boundaries. This approach is based on the basic theory of potential field
migration with a focusing stabilizer in the framework of regularized scheme, which
iteratively transfers the observed gravity tensor field into an image of the density dis-
tribution in the subsurface formations. The results of gravity migration can also be
considered as an a priori model for conventional inversion subsequently. We demon-
strate the practical application of migration imaging using both synthetic and real
gravity gradiometry data sets acquired for the Nordkapp Basin in the Barents Sea.
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1 INTRODUCTION and trial-and-error method (Yegorova et al., 1999; An and
Assumpg¢io, 2006; Yang et al., 2019). Recovering a 3D

Density distribution provides important information about . ) . . .
density model by 3D inversion of gravity gradiometry data

subsurface geological formations. In hydrocarbon explo- _ ] ] )
. . . (Dransfield, 2010) is considered as a practical approach
ration, 3D density models are used for resolving the non- T ) ) i
. . . . to quantitative interpretation. Successful 3D interpretation
uniqueness problem of recovering seismic velocity from i ) ) o
based on inversion with regularization has been reported
in the literature (e.g. Li and Oldenburg, 1998; Li, 2001;
Nagihara and Hall, 2001; Zhdanov et al., 2004; Hautot et al.,
2007; Isik and Senel, 2009; Silva Dias et al., 2011; Mammo,
2013; Ren et al., 2018). However, interpretation by 3D in-

version can be a complex and time-consuming task involving

acoustic impedances. In mineral exploration, locating min-
eralization zones is often dependent on the quantitative
interpretation of density properties. There are many methods
that use gravity data to explain subsurface density anomalies,
such as the direct interpretation of Bouguer anomaly data

calculations and transformations of large matrices. In seismic

*E-mail: le.wan@utah.edu depth conversion workflow, for example, extracting both
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density and velocity information from acoustic impedance
is hampered by non-uniqueness. Generating an independent
estimate of density distribution from gravity data can be very
helpful in reducing uncertainty in the analysis of the acoustic
impedance with respect to density with a proper scaling of
seismic images.

Many fast and semi-automated techniques have been de-
veloped to solve these problems, such as the Euler deconvo-
lution methods (Thompson, 1982; Stavrev, 1997; Fedi and
Florio, 2006), the continuous wavelet transform (Hornby
et al., 1999; Sailhac and Gibert, 2003), analytic signal func-
tions (Salem and Ravat, 2003; Smith and Salem, 2005), magni-
tude magnetic anomaly interpretation (Stavrev, 2006) and the
depth-from-extreme points (DEXP) method (e.g. Fedi, 2007;
Baniamerian et al., 2016; Liu et al., 2019). Analysis of theo-
retical responses from specific sources of the potential fields
has been the basis of these methods.

A novel approach to rapid imaging of gravity data, based
on a one-step 2D and 3D smooth gravity migration, was intro-
duced by Zhdanov (2002) and Zhdanov et al. (2010, 2011).
The concept of migration in geophysical fields was originally
developed for rapid seismic imaging (Schneider, 1978; Claer-
bout, 1985; Berkhout, 2012). It was demonstrated by Zh-
danov (2002, 2009, 2012) that this approach can be applied
to geopotential fields, such as gravity tensor field, as well. The
migration method enables rapid and stable imaging of sources
of potential field anomalies. A priori models of the sources of
the field, in a general case, are not required for gravity migra-
tion (Zhdanov et al., 2011).

A comprehensive review of noniterative imaging meth-
ods for potential field data and a detailed comparison about
similarities and differences among them were presented in an
excellent paper by Fedi and Pilkington (2012). They showed
that a proper selection of the depth weighting functions is
critical for correct location of the sources. For example, in
a case of the DEXP method, the weights are source sensitive
and defined depending on the type of the sources considered.
In other words, in order to optimize the weights, the DEXP
method requires some a priori information about the source
(e.g. line-mass or fault models, as discussed in Fedi and Pilk-
ington, 2012). The migration imaging does not have this lim-
itation because the weights are determined by the integrated
sensitivity of the field, which is independent on the type of the
specific source. At the same time, a limitation of migration
transformation is related to the fact that, in a general case, the
gravity data generated by the migration image do not fit the
observed data well. In addition, for some models, as shown

by Fedi and Pilkington (2012), one migration transformation

would not produce a good image. That is why, in order to
produce a correct image of the source, one should apply the
migration iteratively, which is the subject of our paper.

By analogy to iterative electromagnetic migration
(Mehanee and Zhdanov, 2002; Ueda and Zhdanov, 2008;
Zhdanov, 2002), Wan and Zhdanov (2013) introduced
a method of iterative migration of the full-tensor gradient
(FTG) data with a smooth stabilizer to obtain a more accurate
subsurface 3D density distribution. This method is generally
equivalent to regularized inversion. Traditional one-step mi-
gration or iterative migration based on the smooth stabilizer
functional has disadvantages, however, especially in delin-
eating abruptly changing structural boundaries of geological
formations. In this situation, it is important to develop an
alternative approach that can yield stable solutions while
honouring sharp petrophysical boundaries (Zhdanov et al.,
2004; Zhdanov, 2015).

In this paper, we outline the basic principles of 3D iter-
ative gravity migration and present a new approach to ob-
taining images with sharp boundaries based on potential field

iterative migration.

2 MIGRATION OF GRAVITY AND GRAVITY
TENSOR FIELDS AND 3D DENSITY
IMAGING

The gravity field can be expressed using the following integral
representation:

ga(r>=Aa(p)=y///D p(rr)|3Ka(r’—r)dv’, réD, (1)

v~

where g,(r), @ =x,y,z, are the calculated gravity re-
sponses for different components of the gravity field on
the observation surface; y is the gravitational constant
(y = 6.67384 x 107" m3/kgxs?); p represents the density
distribution within some anomalous domain, D, in the
subsurface; and A, are the corresponding linear operators
of forward modelling. The kernels K, (r' —r) are defined as

follows:
Ky (f'=r)=0d —a, a=x,yz (2)

In a similar way, the forward modelling of the gravity

tensor field can be expressed as follows:

8up (1‘)=Aaﬂ(p):}’///D p(r)ngaﬂ(r’—r)dv’, r¢ D, (3)

[t/ —r

where gus(r), @, B = x,, 2, are the calculated gravity tensor

field responses and A,s(p) are the linear operators of the
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gravity tensor field. The kernels, K,4(r' —r), are defined as

follows:
37(%'(1/,)7(72_[1,), a#p
Kug (r/ _ r) = (a—a'}? o, B=x,v2 (4)
|r/—r|2 _1’ O[:ﬂ

In addition to the gravity tensor components described by
equations (3) and (4), the gravity gradiometers also measure
the difference between the gradients:

ga (1) = 1/2 (gex — 8 - (S)

This difference can be calculated as follows:

ga (1) = Ax (p) =y///D |rf’fr)|3KA (f —r)dv, r¢ D,
(6)

(7)

Following Zhdanov (2002) and Zhdanov et al. (2011),
the migration gravity field, g”(r), is presented as a result of
application of the adjoint gravity operator, A%, to the observed

components of the gravity field:

8 (1) = A&, (8)

where the adjoint operator, A*, for the gravity migration prob-
lem is given by the following integral (Zhdanov et al., 2011;
Zhdanov, 2015):

AL (f) =)///S ’[(I)PKQ (' — 1) ds. (9)

It —r

In a similar way, the migration gravity tensor fields, gs
and g7, have the following expressions, respectively:

8up (1) = ALp8up, (10)

Gravity gradiometry, iterative migration 3

7

A (1) = A8, (11)

where the adjoint operators for gravity gradients are defined
by the following formula (Zhdanov et al., 2011; Zhdanov,
2015):

A5, (f) =y//8|rf_i:|31<aﬁ (v — 1) ds, (12)

AL (f) =V//S |r,f_(rr)|3

From a physical point of view, the migration field can be

K, (r’—r) ds. (13)

presented as the gravity field of the virtual sources, which are
the mirror images of the true sources with respect to the ob-
servational surface. Nevertheless, the migrated gravity fields
retain information about the initial density distribution in the
lower half-space, which highlights why they can be used in
imaging of the sources of the gravity field.

Since the migrated field is inversely proportional to the
square (for gravity field components) or cube (for gravity ten-
sor components) of the depth (equations (9), (12) and (13)),
a correct depth distribution of the density anomaly cannot be
provided directly from the migration of the observed gravity
data. It is necessary to apply a suitable depth-weighting func-
tion to the migrated gravity fields to determine the correct
locations of their sources. To obtain an appropriate weight-
ing operator, the integrated sensitivity, S, = 18g«llp/I18p] of
the data to the density has to be used (Zhdanov, 2015).

As a result, the migration density is defined as follows:

P x) = ko (W, W) T ALgy = kaw” (2) g2 (), (14)
where k, can be obtained using a linear line search:

Aw* o 2
ky = H‘Xi‘gHMz (15)
|AzALgal)

AV =AW, (16)

and W,, = W,, « = x,y, z, is the weighting operator of
multiplication of the density p by a function w, defined for the

corresponding components of the gravity field, g,, as follows:

W =V/Sa, @ =x,y,2. (17)

In the last formula, S, denotes the integrated sensitivity
which can be calculated by the following formula:

1
Soe =ce—, 2<0, a =x,9,2, (18)

]

© 2020 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1-15



4 Z. Xu, L. Wan and M.S. Zhdanov

where ¢, are the corresponding constants for different com-
ponents of the gravity field equal to

T
Cx:Cy:y\/;’ CZ:V\E' (19)

Using equations (17), (18) and (19), migration density,
p2(r), defined by equation (14), can be rewritten as follows:

g (r) = l%: |zl g (x). (20)

Thus, the migration transformation with the depth
weighting provides a stable algorithm for calculating migra-
tion density. We should emphasize that the depth weighting
in migration imaging does not depend on the source property,
which is the case, for example, in other fast imaging methods,
such as the DEXP method (Fedi and Pilkington, 2012). That
is why in order to produce a correct image of the source one
should apply the migration iteratively, as discussed in the next
sections.

In a similar way, the tensor field migration density can be
expressed as follows:

P (1) = kag (W W) AL pap = kapw, 7 (2) gl (1), (21)

P2 (r) = ka (W, W) 'Asga = kaw}? (2) g2 (1), (22)
where

A% g 5

O 7.7 ¥ _
o A — 5
|AzA gl

= ="M (23)
| A2 AL gus )

and functions wep and w, represent the weighting oper-
ators, respectively:

wp = \[Sup. wa = 5a. (24)

The integrated sensitivity of the gravity tensor field is cal-
culated using the following formulas:

1 1
Sep = caﬁz—z, Sa = cAz—Z, a, f=x,92, (25)

where ¢, and ¢, are the corresponding constants for different
components equal to

37 37
czzzczxzczyzYT, Cax = Cyy = Cxy = Ca =TTf. (26)

Substituting equations (24) and (25) for the weighting
function, weg, back into equations (21) and (22), we obtain

k, k
Pl (r) = ﬁzzngﬁ (1), pf (r) = —=2gh (). (27)

A

3 ITERATIVE GRAVITY MIGRATION WITH
FOCUSING STABILIZER

Zhdanov (2002, 2011) introduced a rapid imaging of the den-
sity distribution in the lower half-space, based on migration
transformation. The migration images, however, do not re-
solve well the boundaries of the density anomalies due to the
diffusive nature of the potential fields and migration itself. A
better-quality migration image could be produced by repeat-
ing the migration process iteratively using the conjugate gradi-
ent method (Wan and Zhdanov, 2013; Zhdanov et al., 2020).

For example, at the second iteration, we apply the mi-
gration to the gravity tensor residual field, [g‘;r;d(r) - uE}f(r)],
(where subscripts ‘obs’ and ‘pred’ correspond to the observed
data and numerically simulated data for the migration density
model, respectively) and produce the density variation, § oy, of
the first migration density model (p;) generated by the same
transformation. By adding 81, we arrive at the second itera-
tion of the migration density model:

p2=pi+8p1 = p1 — ki¥ (W, W,,) 17", (28)

where k‘;ﬁ is step length, and [} is the steepest ascent direction

at the first iteration:
7 () = Ay [~y (0] (29)

and W, is the weighting operator of multiplication of the den-
sity p by spatial weighting functions w,s and w, defined by
equations (24) and (25).

A general scheme of the iterative migration can be de-
scribed as follows:

Pt = Pu + 8pu = pu — k2P (W, W, ) L. (30)

n

where k%f is the step length, and " is the steepest ascent
direction at the nth iteration, defined as follows: I/'(p) =
Asglhs’ (r) — g (0)].

The iterative migration is terminated when the normal-
ized misfit, e?, between the observed and predicted data is less

than or equal to the level of the noise, §2, in the data:

=2 <5 (31)
b
el
where ¢ is a misfit functional, ¢ = ||g§r/3ed - ;%SH%).
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This new approach, as an alternative solution of the in-
verse problem, is similar to the algorithm of basic regularized
steepest descent inversion. In a similar way, iterative migra-
tion could also be implemented in the framework of the con-
jugate gradient method. The density perturbation updated by
migration on each iteration depends on the application of the
adjoint operator to the corresponding gravity or gravity gra-
dient residual field. This procedure, as demonstrated by Zh-
danov et al. (2011), is essentially a depth-weighted upward
analytical continuation of the potential field generated by the
sources located in the lower half-space. The last transforma-
tion is well developed in potential field theory. In other words,
iterative migration makes it possible to use the powerful and
stable technique of upward continuation as a key step in the
solution of the inverse problem.

Similar to inversion, iterative migration can be imple-
mented with regularization (Zhdanov, 2015), which allows an
application of both the smooth and focusing stabilizers, s. In

this case, equation (30) can be rewritten as follows:

Pust = Pu+ 80, = pu— k(W W,,) T, (32)
where
iZM lrm + ﬂ”l;rml7 ign)\ — lgnk’ (33)
L
B =
I |

In the last formulas, A is the optimal regularization pa-
rameter; [ is the regularized direction of steepest descent on
the nth iteration. The principles for selecting the regulariza-
tion parameter, A, are exactly the same as in a case of regular-
ized inversion and involve an adaptive decrease of the regular-
ization parameter with the iteration number (Zhdanov, 2002,
2015). On the first iteration of migration, the regularization
parameter is set to zero, A; = 0. On the second iteration, the
regularization parameter is selected by balancing the values
of the misfit functional, ¢(p;), and the stabilizing functional,
s(p1), computed for the migration image, p; produce on the
first iteration, A, = @(p1)/ s(p1). On the following iterations,
the values of A, decrease according to a geometrical pro-
gression, as A,,41 = ¢ A, where g < 1.

In the case of a smooth stabilizer, the regularized gradient

direction, /", can be calculated by the following formula:
l;nk = l:,” + A (pn - papr) s (34)

where the direction of steepest ascent, I, is computed based

on migration of the corresponding gravity tensor residual field

Gravity gradiometry, iterative migration 5

component:

)bs
Ly =17 —V//gaﬂ P ()Ka,g(r’—r)ds

= ALy [gan (1) — 25 (0] (35)

In the case of the focusing stabilizer, equation (34) is mod-

ified as follows:
l:;nk = l:;n + AW, (pn - papr) . (36)

Here, p,, is a priori selected model of the density distri-
bution (it can be equal to zero if no a priori model is available);
W, is a diagonal focusing matrix (Portniaguine and Zhdanov,
1999):

W, = diag((pn —

and ¢ is a focusing parameter (a small positive number), which

1

2

pa) +e7) (37)

controls the degree of focusing (Zhdanov, 2015).

The determination of the step length, &, is based on the
optimization of the parametric functional P, (k,) (Mehanee
and Zhdanov, 2002):

P, (kn) =D (Pn - kz'gi:,m (Pn)) = (Awﬂ (Pn - kiﬁffk) - ga;s>T
Wi (Aaﬂ (Pn — k) if,") - gaﬂ)

+ A(pn — k2P — papy)TWj (pn — k2P — papf)
= min, (38)

where W7 and W are the weighting matrices of the data and
model parameters (Zhdanov, 2015).

The above functional can be replaced by the second-order
polynomial with respect to k7. Solving the minimization prob-

lem with respect to k%#, we find

~ T
Rne [RZWdz (Rn - Rﬂ+1 (6))] + )\6(1:;”)\) Wé (pn - /Oapr)

kP =e —7
(Ry = Ryt (€)W (Ry = Ry (e)) + a2 (Im) W2,

n

(39)
and

Rﬂ = Auﬁ (/On) — 8up> (40)
Rost (€)= Aug (00 = €} ) = gup. (41)

where e « 1 is a small positive number.
In a similar way, we can construct the algorithm of reg-

ularized focusing migration of the gravity tensor field. The
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corresponding formulas can be obtained by a direct substi-
tution of the forward and adjoint operators of the gravity
tensor field for the corresponding operators of the gravity
field in equations (32) through (41). The process of iterative
migration is repeated until the normalized misfit, e, between
the observed and predicted data, reaches the pre-assigned
level.

We should note in the conclusion of this section that,
in the framework of iterative migration, it is also possible
to transfer the original model into logarithmic space to en-
sure that the corresponding parameters remain within reason-
able boundaries, as it is done in conventional inversion (e.g.
Zhdanov, 2015). However, the results presented in this paper
were produced without this transformation.

4 MODEL STUDY

We have examined the effectiveness of the iterative migration
using synthetic gravity gradiometry data computed for a sim-
ple model, shown in Fig. 1. For testing the algorithm, the ‘ob-
served data’, g., gx. and g,., generated for this model, were
contaminated by 5% random noise. The model consists of two
rectangular bodies with the sides of 200, 400 and 200 m in the

0.5
(a) 0.
_200 "’g
E )
400 .
N 3
600
1000 05
50
0 o 500 1000
(b) 0 0.5
= [ 3
£ 0 B
N L
400 4
600 -0.5
0 200 400 600 800 1000
x (m)

Figure 1 The synthetic model: (a) 3D view of the density model and
(b) X-Z section view of the density model along the Y = 500 m profile.

x,y and z directions, respectively. The top surface of one body
is at a depth of 100 m, while the top surface of another body is
at a depth of 200 m below the ground surface. The upper and
lower bodies have a density of 0.4 and —0.4 g/cm?, respec-
tively. Figure 1 shows the 3D view of the model and a vertical
X-Z section (Y = 500 m) across the bodies. The observation
surface is a horizontal plane (z = 0 m). The area of observa-
tion extends from 0 to 1000 m in the x direction and from 0
to 1500 m in the y direction, with a 20-m interval between the
data points. There are 51 x 51 = 2061 data points for each
component of the gravity gradiometry tensor. The 3D volume
of the migration domain was divided into 6400 cells (20 x
20 x 16), with each cubic cell having 50 m side.

The observed and predicted data (produced by smooth
and focusing migrations) of the g,, component are shown
in Fig. 2. The first panel from the top shows the observed
field; the second panel presents the predicted field calculated
from the density distribution derived by smooth iterative mi-
gration; the third panel represents the predicted field pro-
duced using focusing iterative migration; and the last panel
presents a comparison between the observed and predicted
data for the g., component along the profile y = 500 m. One
can see that the predicted field calculated using both smooth
and focusing stabilized functionals matches the observed data
well.

Figure 3 shows the results of iterative migration using
both smooth (Fig. 3a) and focusing (Fig. 3b) stabilizers for
g« component data. The iterative migration was terminated
when the normalized misfit reached 5% (noise level). The
black dashed lines represent the true location of the anoma-
lous bodies. One can see that iterative focusing migration re-
covers a more ‘focused’ image of the target than the smooth
migration.

Figure 4 presents a comparison between the predicted and
observed fields for the g,, component. The first panel on the
top left shows the observed field; the second panel on the top
presents the predicted field calculated from the density distri-
bution derived by smooth iterative migration; the third panel
on the bottom left represents the field produced by focusing
iterative migration; and the last panel presents a comparison
between the observed and predicted data for the g,, compo-
nent along the profile y = 500 m. One can see again a good
fit between the predicted and observed data for both smooth
and focusing migrations.

Figure 5 demonstrates the results of iterative migration
using both smooth (Fig. 5a) and focusing (Fig. 5b) stabiliz-
ers for the g.., component. The iterative process was termi-

nated when the normalized misfit reached the 5% noise level.
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Obs. g,x (b) Pred. (smooth) g,,

1000 20 1000
E o E o
< 500 < 500
> w - w
-20 =20
-40 0
0 500 1000 0 500 1000
x (m) x (m)
(©)  Ppred. (focusin (d)
1000 ( 9) 9xx 20 -
10~
0 = or
- . °
5 500 UOJ Ex' or ~-Observed
> X = -Pred. (smooth) g,,
=20 o, 0 - ~ -Pred. (focusing) g,
-30 -
-40 . I . .
0 500 1000 200 400 600 800 1000
x (m) x (m)

Figure 2 Observed and predicted gy component data. (a) Observed field, (b) predicted field derived by smooth iterative migration, (c) predicted
field corresponding to focusing iterative migration and (d) comparison of the observed and predicted data for the gy, component at profile

y =500 m.

The true location of the bodies is shown by the black dashed
squares. Compared with the results shown in Fig. 3, the itera-
tive focusing migration based on the g,, component produces
a more contrast image of the density anomalies and also re-
covers the density of both targets close to their true value (0.4
and —0.4 g/cm?).

Baniamerian et al. (2016) demonstrated that one could
increase the compactness of the source through weighting
the model produced by the DEXP method with a compact-
ing function. This paper develops a different algorithm based

on the focusing iterative migration. The result will be simi-

(@ 0.5
200
L)
: :
E400 0 B
" q
600
-0.5

200 400 600 800
x (m)

lar in some cases, where the migration and DEXP method
generate the same initial models. However, while the ‘com-
pact depth from extreme points’ is still a fast imaging algo-
rithm, focusing iterative migration represents a more general
approach because it delivers a rigorous solution of the inverse
problem.

Finally, we applied the iterative migration to the vertical
gradient of the gravity field. Figure 6 shows a comparison be-
tween the predicted and observed g, field data. One can see
that the predicted field comfortably matches the observed data
under 5% data fitting.

(b) 0.5
200 {
- ”5
Ea00 0o S
N QU
600 <
0.5

200 400 600 800
x (m)

Figure 3 The iterative migration results using gy, component data. (a) X—Z section of the smooth migration density result along y = 500 m and
(b) X~=Z section of the focusing migration density result along y = 500 m.
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(@

Obs.
1000 9z
20
S | O
< 50
g w
-20
0
0 500 1000
x (m)
(c) Pred. (focusin (d)
1000 ( 9) 9x:
20
—_— o . ?
= | St
> o
-20
0
0 500 1000

x (m)

(b) Pred. (smooth) g,,

1000

20

E 0 4

< 500

=20
0

0 500 1000
x (m)
-*-Observed

- -Pred. (smooth) g,,
- “Pred. (focusing) g, |

600 800

x (m)

0 200

1000

Figure 4 Observed and predicted gy, component data. (a) Observed field, (b) predicted field derived by smooth iterative migration, (c) predicted
field corresponding to focusing iterative migration and (d) comparison of the observed and predicted data for the gy, component at profile

y =500 m.

Figure 7 presents the results of iterative migration of
the g,. component using both smooth (Fig. 7a) and focusing
(Fig. 7b) stabilizers. The true position of the bodies is repre-
sented by the dark dashed lines. The migration of the g,, com-
ponent delineates relatively well the boundaries of the anoma-
lous bodies and provides an accurate estimate of the density
contrast. The different components of the gravity tensor have
different sensitivities to the sources. This is reflected in the mi-
gration images.

In general, the results of the synthetic study demonstrate
that smoothing iterative migration generates a very diffuse im-
age with the boundaries of the two anomalies being blurred

(a) 0.5
200
™
= §
E400 0 B
) q
600
05

200 400 600 800
x (m)

and hard to distinguish. Using focusing iterative migration
helps produce a more focused image which captures the spa-
tial position of the anomalous bodies and provides a reason-
able estimate of the density contrast

5 CASE STUDY: MIGRATION OF
FULL-TENSOR GRADIENT DATA
COLLECTED IN THE NORDKAPP BASIN

The Nordkapp Basin is a deep, narrow salt basin in the south-
ern Barents Sea shown in Fig. 8, which also depicts the main
structural elements in the target area. The southwestern part

(b) 0.5
- L l e
£ 400 L
- o =
600 4
0.5

200 400 600 800
X (m)

Figure 5 The iterative migration results using gy, component data. (a) X-Z section of the smooth migration density result along y = 500 m and
(b) X~Z section of the focusing migration density result along y = 500 m.
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(b) Pred. (smooth) g,

000
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~ -Pred. (focusing) g,,

200 400 600 300
x (m)

1000

Figure 6 Observed and predicted g.. component data. (a) Observed field, (b) predicted field derived by smooth iterative migration, (c) predicted
field corresponding to focusing iterative migration and (d) comparison of the observed and predicted data for the g,, component at profile

y =500 m.

of the Nordkapp Basin (the Obelix survey location) is a nar-
row, northeast-oriented sub-basin approximately 150 km long
and 25-50 km wide. It contains 17 salt diapirs located along
its axis (Fig. 9). The northeastern part of the basin is a wider
east-oriented sub-basin approximately 200 km long and 50—
70 km wide. More than 16 salt diapirs occur west of the 32° E
meridian line. Exploration in the Nordkapp Basin started in
the 1980s but remained relatively limited until the early 1990s.
Recent improvements in the interpretation of the basin’s struc-

tural history and discovery of hydrocarbons in wells outside

(@) 0.5
200
]
= 5
E400 0o S
N Q
600 <
0.5

200 460 660 860
x (m)

the basin suggest that it is a promising target for further ex-
ploration.

Figure 9 also depicts the main structural elements in the
target area and the full-tensor gradient (FTG) survey location.
The predominant exploration characteristics of this area are
the complexity of the salt diapirs and their associated geo-
logical structural traps. With improvements in the quality of
seismic methodologies and structural interpretation, the map-
ping of hypothesized salt structures in the Nordkapp Basin
has advanced from broad salt stocks with vertical flanks to

(b) ‘ 0.5
200 r I
‘ e
E 400 S
~— o -]
) )
600
0.5

200 400 600 800
x (m)

Figure 7 The iterative migration results using g, component data. (a) X-Z section of the smooth migration density result along y = 500 m and
(b) X~Z section of the focusing migration density result along y = 500 m.
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Figure 8 Main structural elements in the Barents Sea area showing
the location of the Nordkapp Basin and the 3D FTG survey. Modified
from Nilsen et al. (1995).
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geometries with increasing complexity with wide diapir angles
over narrow stems (Koyi et al., 1993a; Henriksen and Vor-
ren, 1996; Bugge et al., 2002; Gernigon et al., 2011; Stadtler
et al., 2014; Mattos et al., 2016; George et al., 2017; Koehl
et al.,2018; Rojo and Escalona, 2018; Rojo et al., 2019). The
uncertainty and exploitation risk in the area result from in-
tense seismic imaging distortion due to these salt features (es-
sentially the challenge of mapping the salt base using seismic
methods).

In 2008, a 3D ship-borne FTG survey was acquired in
the area shown in Fig. 9 with line spacing of 25 m and the in-
line sample spacing of 25 m by Bell Geospace on behalf of
StatoilHydro. The gravity corrections, including instrument
drift, tidal correction, theoretical gravity correction, free air
correction, terrain correction and isostatic correction were
applied to the FTG data, and the observation surface was
shifted down to the horizontal datum below bathymetry after
correction.

The expectation was that the FT'G data would provide a
means both to successfully evaluate the complex salt overhang
geometries (defining the salt base, flank and salt base) and to
improve the seismic imaging process (via Prestack Depth Mi-

gration and PSDM methods). The FTG anomalies, by their
very nature, could help to identify, map and examine the
geometries and edges of salt dome which plays a vital role
in the comprehensive geological interpretation. The density
range of the base Tertiary rocks in the study area is approxi-
mately 2.30-2.38 g/cm? (Koyi et al., 1993b), and the salt di-
apirs are normally manifested by density anomalies with neg-
ative values (around —0.2 to —0.4 g/cm?) (Zhdanov et al.,
2010).

The purpose of the FTG survey was to produce extra in-
formation for the assessment of these complex salt overhang
structures. FTG is an intrinsically suitable solution to such
problems, being highly sensitive to detect geological anomalies
with significant density contrasts.

A 3D inversion was implemented for the FTG data by
Wan and Zhdanov (2008), who described the results of inver-
sion using the focusing regularization. The goal of our study
is to image the geometry of salt diapirs G2 and F2 by using
focusing iterative migration of the FTG survey data. In order
to achieve the computational efficiency while producing cor-
rect imaging of the subsurface density distribution, the gravity
tensor component g, was selected for the migration analysis.
The map of the observed data set is given in Fig. 10(a). There
is a profile A-A’ running across the salt diapir G2. Profile S-S’
shows the location of the seismic section across the salt diapir
F2. The seismic depth migration section along S-S is mainly
used for further validation of the migration results. The mi-
gration modelling domain had the size of 20 km (east—west)
x 10 km (north-south) and a depth of 8 km. The volume
of migration domain was discretized into 50 x 28 x 32 =
44,809 cells, where the size of the cells was 400 m x 400 m x
250 m.

Wan and Zhdanov (2008) applied the regularized focus-
ing 3D inversion to the same FTG data which made it possible
to make a comparison with the migration results. The inver-
sion modelling domain had the size of 28 km (east-west) x
17 km (north—south) and a depth of 8 km. The volume of
inversion domain was discretized into 281 x 171 x 59 =
2,835,009 cells, with the cell size equal to 100 m x 100 m x
100 m.

A sufficient number of migration iterations were carried
out such that the normalized misfit between the observed and
predicted data reached the noise level (below 5%). Figure 10
shows a comparison between the observed (upper panel) and
predicted (lower panel) g,. data produced by iterative mi-
gration. One can see a very good data fitting corresponding

to a misfit of 5%. Figure 11 presents vertical sections along
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Figure 9 Simplified structural map of the Nordkapp Basin showing the salt diapirs and the main fault zones. Black areas indicate sub-crops of

diapirs at or near Pliocene—Pleistocene unconformity. Modified from Nilsen et al. (1995).
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Figure 10 Maps of the observed (top panel) and predicted (bottom
panel) g, component of the full-tensor gradiometry (FTG), produced
by iterative migration.

profile A-A’ and horizontal slices of recovered density pro-
duced by focusing migration and inversion, respectively. Fig-
ure 11(a) shows the observed data (solid red line) in com-
parison with the predicted data (dashed green line) along the
profile. Figure 11(b) presents the vertical section of the den-
sity contrast produced by the focusing iterative migration, and
Fig. 11(c) shows the same density section generated by regu-
larized inversion. For comparison, one can see that the shape
of the salt diapir is consistent in both images. Figure 11(d,e)
shows two horizontal slices of the migrated and inverted den-
sity contrast at a depth of z = 3000 m. It demonstrates a sim-
ilarity in shape of both results.

Figure 12 shows a seismic depth migration section along
the profile S-S’ running across one of salt diapir F2, which out-
lines its horizontal extent very well; however, one can observe
some distortions around the salt diapir area due to strong free-
surface and internal multiples and large acoustic impedance
contrast between the salt diapirs and host rock (Wan and
Zhdanov, 2008). Figure 13 presents the density cross section
superimposed on the seismic depth migration image along the
profile S-S°. Unfortunately, seismically interpreted salt outline
was not available for this diapir structure. However, a visual
qualitative comparison shows that the top of salt is clearly
identified in the density model and both flanks of the salt
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Figure 11 The vertical sections along profile A-A’ and horizontal slices at a depth of z = 3000 m of the density models produced by focusing
migration and inversion, respectively. (a) Plots of the observed (red line) and predicted data for the results of migration (green line) and rigorous
inversion (dashed black line) along profile A-A’. (b,d) Vertical and horizontal sections, respectively, of the density model produced by focusing

migration, (c,e) similar sections of the inverse model produced by the focusing inversion.

diapir are, apparently, in good agreement with seismic image.
Moreover, the density distribution produced by focusing mi-
gration helps define the geometry of the salt diapir F2 on the
flanks more clearly than the seismic migration image.
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Figure 12 A seismic depth migration section S-S’ from seismic survey
running across salt diapir F2.
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Figure 13 The density cross section produced by gravity gradient mi-
gration superimposed on the seismic depth migration image along
profile S-S°, shown in Fig. 10.

6 CONCLUSIONS

The migration of potential field involves a direct integral
transformation of the gravity field and/or gradients, so that
an approximate 3D density distribution can be obtained. Iter-

ative migration is the practical equivalent to the gradient-type
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inversion algorithm but with one fundamental difference — the
density perturbation on each iteration can be determined
through the migration of the corresponding gravity or gravity
gradient residual field data. This has important significance
as the last transformation has a clear physical interpretation.
Specifically, iterative migration is based on the repeated ‘up-
ward continuations’ of the residual fields (actually directed
downward but away from the mirror sources of the field),
which is the stable and well-established transformation of the
potential fields.

Our numerical modelling and migration results show that
focusing iterative migration recovers the images with sharp
boundaries of the density anomalies and also provides a good
estimate of the density contrast which is difficult to achieve
using the smooth migration.

We have also demonstrated that focusing gravity migra-
tion could be considered an effective technique for identifying
sea-bottom salt diapir structures using the full-tensor gradient
(FTG) data. One can see that the geometry of the salt diapirs
recovered by the 3D migration imaging on a coarse grid is
almost equivalent to the one obtained by traditional 3D fo-
cusing inversion on a fine grid.

It is worth noting that the computational cost of the mi-
gration algorithm is lower than that of conventional inversion.
Hence, migration can be used to quickly image the geological
structures from the FTG data. Indeed, the results of 3D focus-
ing iterative migration presented in this paper were produced
on a personal computer with Intel Core i7 CPU running at 2.8
GHz and required less than half an hour for the case study.
In contrast, the 3D focusing inversion algorithm was run for
around 4 hours on the University of Utah Center for High Per-
formance Computing’s Ember cluster which had 260 nodes,
each equipped with two hexa-core Intel Xeon CPUs running
at 2.8 GHz with 24 GB of RAM and QDR InfiniBand inter-

connect.
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