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Summary 
 
In this paper, we develop and study a novel approach to numerical modeling the visco-acoustic 
wave phenomena and complex 3D rock formations. We examine performance of the solver 
based on the contraction operator (CO), introduced  by the authors,  as applied to 3D time-
harmonic visco-acoustic wave propagation problem.  We demonstrate that, the performance 
of the CO solver significantly depends on the efficiency of the corresponding FFT operation 
used in the code. The latter has rough dependence on the array size. The results of numerical 
experiments indicate, however,  that the optimal grid dimensions could be selected at every 
8-10 points, reducing modeling time dramatically. These optimal dimensions have a minor or 
no dependence of particular machine architecture and, thus, could be hardcoded or calculated 
on-the-fly. We have implemented this approach in the developed CO based solver and 
illustrated its effectiveness by numerical modeling examples. 
 



Introduction 

Acoustic modeling plays significant role in geophysical exploration, especially due to today’s interest 

in full waveform inversion. The main computational challenge in 3D frequency-domain modelling is 

related to the need of solving a large ill-conditioned system of linear equations. A novel 

preconditioned iterative solver was earlier designed and tested by the authors [Yavich et al, 2018]. 
The solver combines the shifted-Laplacian preconditioner [Erlangga et al, 2004] with a special 

contraction operator (CO) transformation. We have demonstrated that our preconditioning scheme 

provides a fast convergence of the iterative solver when modeling complex high-contrast velocity 
models at different frequencies. 

The arithmetical complexity of a single iteration of the CO solver behaves  asymptotically as 

𝑂(𝑛 𝑙𝑜𝑔 𝑛), where 𝑛 is the number of computational cells. In practice, however,  CPU time has a very 

rough dependence of 𝑛. This is related to the performance  of the 2D fast Fourier transform (FFT) 

operation, which is involved in the preconditioner. The 2D FFT is known having complex 

dependency of the speed versus the array size [Baksheev et al, 2010].  In this paper, we investigate 
how the parameters of the FFT impact modeling time and develop the recommendations  to minimize 

this time, which is critical in the solution of the full-waveform inverse problems  

Modeling Method Based on the Contraction Operator 

Propagation of a time-harmonic visco-acoustic wave of angular frequency 𝜔 in a medium of velocity 

𝑐 = 𝑐(𝑥, 𝑦, 𝑧) can be described by the following partial differential equation: 

−𝛥𝑃 −
𝜔2

𝑐2
(1 − 𝑖𝑞)𝑃 = 𝐹, 

(1) 

where 𝑃 = 𝑃(𝑥, 𝑦, 𝑧) is acoustic pressure, 𝐹 = 𝐹(𝑥, 𝑦, 𝑧) is the pressure source,  and 𝑞 is attenuation. 

Numerical solution of equation (1) is typically defined on a rectangular modeling domain, 𝐷. 

Equation (1) is completed with zero Dirichlet boundary condition on the top face of the modeling 

domain, while some absorbing boundary conditions are commonly applied on the other five faces. We 
apply the PML boundary condition introduced by [Berenger, 1994]. 

The second-order cell-centered FD discretization of equation (1) completed with the introduced 
boundary conditions results in a system of the following linear equations: 

𝐴 𝑝 = 𝑓,    𝐴 = 𝐿𝑃𝑀𝐿 − 𝜔2(1 − 𝑖𝑞)Σ, (2) 

where 𝐴 is a large sparse complex-valued symmetric matrix; 𝑓 ∈ ℂ𝑛 is a discrete representation of the

source, 𝐹; 𝐿𝑃𝑀𝐿  is the matrix of the discrete second derivatives, with seven nonzero diagonals; and  Σ 

is a diagonal matrix of averaged squared slowness, 1/𝑐(𝑥, 𝑦, 𝑧)2, over each cell. The main algorithmic

challenge in numerical modeling of visco-acoustic wave propagation is to efficiently solve the system 
of equations  (2).  

In [Yavich et al, 2018], we have presented a preconditioned iterative solver for system (2) which is 

based on the solutions of an auxiliary system of equations, 

(𝐼 − 𝐶)𝑝′ = 𝑓′, (3) 

where 𝐶 is a contraction operator, which norm tends to unity in the limiting cases corresponding to 
high horizontal contrast of the velocity. We have demonstrated that this preconditioning scheme 

provides a fast convergence of an iterative solver when modeling the wavefield propagation complex 

high-contrast velocity models at different frequencies.  The arithmetical complexity of solving 
equations (3) is dominated by the complexity of 2D fast sine transforms, making the overall 

complexity  estimate as 𝑂(𝑛 𝑙𝑜𝑔 𝑛).  



A rigorous numerical study of the performance of the developed CO solver versus the grid size 
indicated a very rough dependence, inherited from the FFT routine [Baksheev et al, 2010]. More 

interestingly, a minor increase in the size of the grid easily resulted in the decrease of CPU time. We 

thus looked for a strategy that would result in the shortest CPU time while increasing the resolution of 

the modeling grid. We tested the following strategy: dividing the sizes of the grid  axis into ranges of 
8-10 consecutive points and selecting the optimal size within every range. Fig. 1 illustrates this

strategy for 2D FFT performance. In the next section, we present numerical examples of using this

strategy in modeling the visco-acoustic waves in 3D structures.

Figure 1 2D FFT CPU time of a 3D array 𝑛𝑓𝑢𝑙𝑙 × 𝑛𝑓𝑢𝑙𝑙 × 𝑛𝑓𝑢𝑙𝑙 of random numbers. Optimal 

dimensions are marked by magenta dots. 

Numerical Modeling Examples 

In this section, we present the results of studying a sequential version of the developed CO 

preconditioned iterative solver which is implemented in C/C++ with FFTW3 library [Frigo and 
Johnson, 2005]. In particular, we trace the impact of the grid size on the modeling speed. The velocity 

model (Figure 2) occupies the volume [-1; 1]x[0; 1]x[0; 1] km
3
 and is formed by three curved layers 

with velocities of 1500, 3000, and 6000 m/s, respectively, and attenuation 𝑞 is 0.05. An acoustic 

source is located at a point with coordinates (0, 0, 255) m and operates with a frequency of 10 Hz.  

The performance of the solver at a sequence of grids was recorded (Figure 3). Each grid was further 

completed with 20 PML layers in the five directions. We see that the performance dependence of the 
grid size is very rough though the optimal grid dimensions can be picked in this plot. In particular, 

switching from the grid size of 292×292×146 to the size of 296×296×148 resulted in a dramatic 

decrease of the CPU time (Table 1) – from 26.8 s per iteration to 5.7 s, i.e. the decrease of 4.7 times. 

Note that, modeling with both grids resulted in identical responses (Figure 4). We conclude that 
selecting an optimal size in every range of 8-10 points results in dramatic optimization of the 

performance of the solver.  It is commonly assumed that rounding array size to the nearest power of 2 

minimizes run-time. However, from the example with the 256×256×128 grid (Table 1) we see that 
this not the case. 



Table 1 Performance of the solver on 256×256×128, 292×292×146 and 296×296×148 grids; 

horizontal grid dimension 𝑛𝑓𝑢𝑙𝑙 , grid step h, number of steps per minimum wavelength 𝑛𝜆, iteration 

count 𝑁𝑖𝑡, solver CPU time 𝑡𝑐𝑝𝑢, and CPU time per iteration 𝑡𝑖𝑡 . 

𝑛𝑓𝑢𝑙𝑙  h, m 𝑛𝜆 𝑁𝑖𝑡 𝑡𝑐𝑝𝑢, s 𝑡𝑖𝑡 , s 

256 9.26 16.2 76 847 11.2 

292 7.93 18.9 77 2065 26.8 

296 7.81 19.2 78 446 5.7 

Figure 2.  Velocity model formed by three curved layers 
with velocities of 1500, 3000 and 6000 m/s, respectively. 

Figure 3 CPU time per iteration of a CO solver versus modeling grid size  𝑛𝑓𝑢𝑙𝑙 × 𝑛𝑓𝑢𝑙𝑙 ×
1

2
𝑛𝑓𝑢𝑙𝑙   in 

the horizontal direction.  



Figure 4 Acoustic pressure modelled within the plane Y=100 m with different sizes of the grid 292× 

292×146 (left panel) and 296×296×148 (right panel). 

Conclusions 

This paper demonstrates that the preconditioned iterative solver based on the contraction operator 

transformation [Yavich et al., 2018] depends heavily on the performance of the  FFT transform used 

in the code. The latter has a rough dependence of the size of the modeling grid. Our numerical 
experiments indicate that by selecting the optimal grid dimensions one could reduce modeling time 

dramatically. These optimal dimensions are of minor or no dependence of the particular machine 

architecture and thus could be hardcoded or calculated on-the-fly. The developed algorithm, if 
incorporated in the solution of the inverse problem, can dramatically reduce the computational time of 

full-waveform inversion as well. Future research will be aimed at application of the developed method 

in seismic full waveform inversion. 
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