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ABSTRACT
In this paper, we develop a general approach to integrating petrophysical models in
three-dimensional seismic full-waveform inversion based on the Gramian constraints.
In the framework of this approach, we present an example of the frequency-domain
P-wave velocity inversion guided by an electrical conductivity model. In order to in-
troduce a coupling between the two models, we minimize the corresponding Gramian
functional, which is included in the Tikhonov parametric functional. We demonstrate
that in the case of a single-physics inversion guided by a model of different physical
type, the general expressions of the Gramian functional and its gradients become
simple and easy to program. We also prove that the Gramian functional has a non-
negative quadratic form, so it can be easily incorporated in a standard gradient-based
minimization scheme. The developed new approach of seismic inversion guided by
the known petrophysical model has been validated by three-dimensional inversion
of synthetic seismic data generated for a realistic three-dimensional model of the
subsurface.

Key words: Full-waveform inversion, Joint inversion, Electromagnetics, Seismics,
Gramian constraints.

INTRODUCTION

The methods of integrated interpretation of multiphysics geo-
physical data have been advanced considerably in recent years.
One of the most widely used methods in geophysical commu-
nity is based on imposing so-called structural constraints. The
concept itself and its numerical implementation, known as
the cross-gradient inversion, have been introduced in a semi-
nal paper of Gallardo and Meju (2003a). For a recent review
of this approach in a broad geophysical context, we refer the
reader to the paper by Moorkamp et al. (2016). The cross-
gradient method, as well as its numerous modifications, has
some difficulties both from theoretical and practical stand-
points. For example, the cross-gradient functional does not
provide a unique solution; it is non-quadratic, which makes
it difficult to find the Fréchet derivative of this functional
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without an approximation; it is a non-trivial task to extend
the method to more than two types of data. Nevertheless,
the most prominent examples of geophysical multiphysics in-
version have been obtained by this approach. Several exam-
ples, which demonstrate recent developments, can be found
in the papers by Hu, Abubakar and Habashy (2009), De
Stefano et al. (2011), Molodtsov et al. (2013), Um, Com-
mer and Newman (2014), Gessner et al. (2016), Rittgers
et al. (2016), Manukyan, Maurer and Nuber (2018), Gao
and Zhang (2018), Gross (2019), Lan et al. (2019), Zhang
et al. (2019), among many others.

Another approach to the coupling joint inversion is
based on the Gramian constraints introduced in Zhdanov,
Gribenko and Wilson (2012) and Zhdanov (2015). This
method exploits both the existence of petrophysical and/or
structural relationships between the different physical prop-
erties of the subsurface, assuming that they reflect the same
geologic formation; however, the relations between different
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1362 M. Malovichko et al.

Figure 1 The true models used in the numerical experiment 1: (a) velocity model and (b) conductivity model.

Figure 2 Data for a representative source in the first numerical experiment. The source was located at (–1, 1); receivers are marked with crosses.
The black square in the middle outlines the border of the anomalous domain. (a) The real part of anomalous pressure response, Re(pa), (b)
Re(pa) at the end of inversion with 90% impact of the Gramian term (see forth row in Table 1) and (c) normalized difference between input

data and data at the end of inversion, that is | pend
a −pini

a
pini

a
|.

physical parameters are not necessary to be known and are
restored during inversion. The mathematical formulation
of the Gramian method is very general, which allows us to
incorporate both conditions of the petrophysical and struc-
tural relationships in the Gramian stabilizing functional of a
unified type. The other advantage of this approach is that the
Gramian stabilizing functional is always quadratic, similar to
the conventional minimum norm functional. This makes it
easier to calculate the derivatives of the Gramian functional
and provides the basis for a relatively simple numerical im-
plementation. Another advantage of the Gramian constraints
is that they can be easily extended to any number of the
model parameters by simple construction of the Gramian
matrices of size N × N, where N is the number of different
physical domains used in the inversion. The approach has
been applied to joint inversion of potential (Zhdanov et al.

Table 1 Parameters of four inversion runs

Run
Number c1 c2 c3

No. of
Iterations

1 0.9 0 0.1 45
2 0.7 0 0.3 43
3 0.3 0 0.7 53
4 0.1 0 0.9 56

2012; Zhu et al. 2015; Čuma and Zhdanov 2017; Zhdanov
and Cai 2017; Lin and Zhdanov 2018), electromagnetic (Zhu
and Zhdanov 2015; Jorgensen and Zhdanov 2019; Ogunbo
2019), and seismic field data (Lin and Zhdanov 2019).

Note that, in this paper, for simplicity, we use the
Gramian constraints to enforce the petrophysical correlations
only. However, the Gramian approach can be easily extended
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Figure 3 Results of seismic inversion stabilized with the conductivity model with different contributions of the Gramian term. Each cube has a
side length of 1.5 km; it is divided into 187.5 m cubical cells. (a) Run #1, Gramian contribution was 10%; (b) run #2, Gramian contribution
was 30%; (c) run #3, Gramian contribution was 70% and (d) run #4, Gramian contribution was 90%.

to enforce the structural constraints if one would use the
gradients of physical properties instead of physical parame-
ters themselves (e.g. Jorgensen and Zhdanov 2019; Lin and
Zhdanov 2019).

The full joint inversion, that is, with all involved models
being updated simultaneously, is a very promising but chal-
lenging problem. However, the guided inversion, when some
parameters of petrophysical models are known beforehand
and are fixed, is also of significant practical importance. It can
be considered as a tool to incorporating a priori information
in the inversion. Electromagnetic inversion tied to a known
velocity model through the Gramian term has been reported
in Zhdanov et al. (2016). However, the question of applica-
bility of this approach to seismic data has not been studied in
full extent yet (an introduction to this approach was presented
by the authors at the EAGE conference (Malovichko, Yavich
and Zdanov 2017b)).

In this paper, we use the concept of guided inversion
to incorporate the known petrophysical model in the three-

dimensional (3D) seismic frequency-domain full-waveform in-
version (FWI). As an illustration of this approach only, we
consider the electrical conductivity distribution as a reference
petrophysical model. We also assume that the geoelectrical
model is well defined by the resistivity well-logging data or by
a very detailed and dense controlled-source electromagnetic
survey. In practical applications, the reference petrophysical
model can be constructed based on all available surface and
borehole geological/geophysical data. The goal of our paper is
to demonstrate how the available subsurface information can
be incorporated in the full-waveform seismic inversion using
the Gramian constraints. At the same time, if for any reason
the available a priori information is not consistent with the
seismic data, the Gramian term will not decrease during the
inversion, thus manifesting that integration is not feasible in
that case.

We have derived simple explicit expressions for the gra-
dient of the Gramian functional for the models characterized
by two physical properties. We demonstrate that the Gramian
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Figure 4 Cross plots of anomalous square slowness against loga-
rithmic conductivity. The percentage in the legend stands for rela-
tive contribution of the Gramian term and corresponds to those in
Fig. 3. The two stars indicate the correspondence between the true
velocity and true conductivity. The black line connecting these two
stars indicates a linear relationship between the true model parameters
described by formula (28).

stabilizing functional has an appealing property from numer-
ical standpoint – it has a non-negative quadratic form, so it
can be easily incorporated in a standard gradient-based min-
imization scheme. The forward modelling of seismic data is
performed by a parallel implementation of the method of inte-
gral equations. The inversion is based on the regularized con-
jugate gradient algorithm. The developed method and com-
puter code were tested on 3D models containing both seismic
and geoelectric inhomogeneities. The results of this study pro-

vide the building blocks for the full joint inversion and also
provide the means of introducing an a priori information in
the seismic FWI.

FORWARD MODELLING

The time-harmonic acoustic wavefield of angular frequency ω
propagating in a medium of primary velocity c = c(r) satisfies
the following partial differential equation:

−�p − (ω2/c2)p = δ
(
r − r′) , (1)

where p = p(r) is the pressure, � is the Laplacian; δ is the
Dirac delta-function; r is the position vector, primed coordi-
nates denote the source location. Throughout this paper we
use the right-handed coordinate system with Z-axis point-
ing downward. Equation (1) is supplemented with the radia-
tion conditions on infinity or with boundary conditions in a
bounded domain, D. In this study, we solve problem (1) by the
integral equations (IE) method. This choice is motivated by the
fact that the system matrix arising from discretization of IE is
better conditioned comparing to the finite-difference system
matrix. Also, this choice of the forward modelling operator
allows us to use the same discretization both for forward and
inverse problems, simplifying the numerical implementation
(this point is commented in the next section).

We assume that domain D with arbitrary velocity
distribution, c(r), is submersed into a layered background
model with a piecewise constant velocity, cb, varying in the
vertical direction, z, only: cb = cb(z). The pressure response,
p, can be represented as a sum of two parts: the background
(incident) part, pb, due to the background medium, and the
anomalous (scattered) part, pa , due to the anomalous velocity

Figure 5 True 3 km × 3 km × 1.875 km models: (a) the velocity model and (b) the conductivity model obtained from the velocities after
smoothing and applying the conversion formula.
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Figure 6 Cross plot of the true conductivity versus true velocity mod-
els against formula (30).

distribution. The solution for p is given by the following
expression (Zhdanov 2002):

p (r) = pb (r) + ω2
∫

D
g
(
r|r′) ( 1

c2 (r′)
− 1

c2
b (z′)

)
p
(
r′)dV′, (2)

where g is the background Green’s function. This expression
becomes an integral equation when r, r′ ∈ D (termed a do-

main equation). After determining the pressure filed, p, in D,
expression (2) is used again to map the pressure field to the
receivers (in this case it is termed a field equation).

We emphasize that in the framework of the IE method
the background velocity, cb, must allow for analytical or semi-
analytical solution for the Green’s function, while ca = c − cb

can be a function of x, y and z. In exploration geophysics, the
obvious choice is a horizontally layered Earth. In this case, the
Green’s function is given by a numerical Hankel transform of
an analytically computed kernel (for example, Malovichko
et al. 2018; the Appendix). In the two special cases, which are
the constant velocity model, cb = const, and the half-space
model, cb(z ≥ 0) = const and cb(z < 0) = 0, the solution to
the Green’s function simplifies even more to a closed-form
expressions. In this paper, we use the half-space background
model.

The numerical method consists of iterative solution of
the system of linear equations arising from (2). The details of
the numerical method and its parallel implementation can be
found in Malovichko et al. (2018).

Figure 7 Acquisition grids. The red squares are sources and the blue
circles are receivers. The black square in the middle outlines the
boundaries of the true model.

FORMULATION OF THE INVERSE
PROBLEM

Let V ⊂ D be an inversion domain, discretized into M rect-
angular cells. The inverse model is described by the values of
P-wave velocity c(r) and electrical conductivity, σ (r), sampled
at the cell’s centres. The goal is to find c based on the mea-
sured values of p imposing the usual smoothness constraint on
c and also the structural coupling between c and σ . We define
a model vector, m ∈ R

M, which contains the values of anoma-
lous squared slowness, 1/c2 − 1/c2

b. This parametrization of
the velocity model is motivated by the choice of the forward
modelling operator. Additionally, we define vector s ∈ R

M

containing the values of decimal logarithm of electrical con-
ductivities in the cell’s centres, log σ . Let vector d ∈ C

N be the
values of the pressure response, measured at a finite number
of source–receiver positions and temporal frequencies, where
N is the total number of the data points. Formally, the cor-
respondence between d and m is established by a forward
operator, A, as d = A(m), which implies solving problem (1).

Here we comment on our choice of discretization
for both the forward and inverse problems. The forward
modelling grid is selected such that a discrete solution is a
good approximation to the continuous solution. For example,
for a second-order finite-difference scheme, a well-known
rule is to have not less than 12–14 grid points per shortest
wavelength. In contrast, the step size of the inversion grid is
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Figure 8 Example of simulated data for a single source location at three frequencies: (a) 0.1 Hz, (b) 0.5 Hz and (c) 1 Hz. The real part of
anomalous pressure response, pa , is shown in colour. Note the strong aliasing that is clearly visible in the 1 Hz data.

Figure 9 Final synthetic data at the end of the smooth inversion with αrel = 10−3. Panels (a) and (b) show the real part the final synthetic
wavefield, Re(pend

a ) at three representative frequencies for a single source position. Panels (d)–(f) show the real part of the difference between
the input and final acoustic fields, Re(pend

a − pa). The data correspond to the model shown in Fig. 12(d).

usually motivated by far looser requirements. For example,
by a required resolution of the final velocity model or by a
limit on the size of the normal system matrix in case when
optimization is performed by Newton’s method with direct
matrix factorization. Restrictions on the forward modelling
grid are usually much stricter, so it is generally accepted that

the forward modelling numerical grid should be finer than
the inversion one. Nevertheless, in this study we use the same
discretization for both forward and inverse problems. Both
grids had not less than 32 cells per shortest wavelength at the
highest frequency (see Numerical Experiments section). These
grids are excessively fine, which, apparently, increased the
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Figure 10 Normalized misfit at the end of the smooth inversion with αrel = 10−3. Each panel shows quantity ‖pa
end − pa‖/‖pa‖ for all 36

sources at a single frequency.

inversion run-time. On the other hand, this way we avoided
the use of interpolation operators (and their transposes)
acting from a forward modelling grid to the inversion grid
and from the receivers to a forward modelling grid (see, for
example, Malovichko et al. 2019; the Appendix). It greatly
simplified the programming implementation and made our
presentation clearer, leaving out unnecessary technical details.

We consider the following unconstrained minimization
problem for the parametric functional, Pα:

inf
m∈RM

Pα (m),

Pα = φ (m) + αψ (m),
(3)

with

φ (m) = ‖W(d − A (m)) ‖2
, (4)

ψ (m) = q1‖L1/2(m − m0) ‖2 + q2‖m − m0‖2 + q3γ (m, s), (5)

where φ is the misfit functional, ψ is the stabilizing functional,
W is the diagonal matrix with inverse standard deviations of
the noise on its diagonal, A is the forward modelling oper-
ator discussed above, α is the regularization parameter, L is
the finite-difference approximation of the Laplacian operator
with zero Dirichlet boundary conditions, m0 is the starting
model, q1, q2 and q3 are three positive numbers, which are
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Figure 11 Inversion progress in numerical experiment 2. (a) Plot of the misfit functional, φn, versus iteration number. Letter ‘S’ means the
smoothness constraint was enabled only (c1 = 1); letter ‘G’ means the Gramian constraint was enabled only (c3 = 1). The horizontal dashed
line corresponds to ERMS = 1. (b) Plot of the ratio αnψn/φn versus iteration number for several different inversion runs.

commented below and γ is the determinant of the Gram ma-
trix for a set of vectors {m, s} (Zhdanov 2015):

γ (m, s) = det

(
‖T[m]‖2 (T [m] ,T [s])
(T [m] ,T [s]) ‖T[s]‖2

)
, (6)

where T[·] is a given model transform, discussed later; (·, ·)
is the inner product; ‖·‖ is the Euclidian norm. The main
advantage of the Gramian mutual constraint (6) over some
other approaches is that the stabilizing functional, ψ, is con-
vex given transformation T is linear (see the Appendix). It
should be emphasized that in (6) m and s depend non-linearly
on physical parameters c and σ , respectively. Thus, minimiza-
tion of (6) imposes a linear relation between m and s but a
non-linear one between c and σ . Furthermore, in the numeri-
cal experiments presented below, the relation between m and
s was, in fact, non-linear, so the Gramian constraint enforced
its linear approximation (see Numerical Experiments section).

We apply the non-linear conjugate gradient technique to
problem (3)–(5) as described in Malovichko et al. (2017a).
The algorithm can be defined by the following sequence:

yn = A (mn) − d, (7)

un = ξF∗
nW2yn, (8)

gn = un + αnq1,nl1 + αnq2,nl2 + αnq3,nl3, (9)

βn =‖gn‖2/‖gn−1‖2, (10)

pn = −gn + βnpn−1, p1 = −g1, (11)

kn = (pn, gn)
‖FnWpn‖2 + αnq1,np∗

nLpn + αnq2,n ‖pn‖2
, (12)

mn = mn−1 + knpn. (13)

Here un is the gradient of squared norm of the weighted
data residual, yn, the subscript denotes iteration number; F is
the matrix of Frechet derivative of operator A, F = ∂A/∂m;
asterisk ‘∗’ denotes Hermitian conjugation.

Scalar factor, ξ, in (8) balances impact of data at differ-
ent frequencies: ξ = ω−4. This choice is explained in Sirgue
and Pratt (2004), so we breifly restated it here. The first ω−2

factor comes from differentiating the integral operator in (2)
with respect to m, which is essentially the anomalous squared
slowness, 1/c2 − 1/c2

b. Another ω−2 factor appears when the
Born approximation is used to calculate the data gradient,
or, in our case, from the use of the quasi-analytical (QA) ap-
proximation, which has similar effect, see (Malovichko et al.

2017a). In other words, the second ω−2 factor is needed to
compensate the impact of the approximation used in calcula-
tion of the gradient yn.

Vector gn is the gradient of the parametric functional.
Real positive value kn is the step in the search direction, pn.
Vectors l1 and l2 are gradients of the smoothness and damping
terms, respectively:

l1 = L (mn − m0) , l2 = mn − m0. (14)

C© 2020 European Association of Geoscientists & Engineers, Geophysical Prospecting, 68, 1361–1378
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Figure 12 Final velocity models for smoothness regularization. The cells with y > 0 are cut out for better visualization. (a) No regularization,
αrel = 0, (b) smoothness αrel = 10−4, (c) smoothness αrel = 5 × 10−4 and (d) smoothness αrel = 10−3.

Vector lG represents gradient of Gramian, γ , which will
be discussed in detail in the next section.

In order to compute product (8), we employ the QA
approximation, described in Malovichko et al. (2017a) and
Zhdanov (2015), based on approximate solution of the cor-
responding integral equation. The QA approximation is fast
and much more accurate comparing to the widely used Born
approximation. It reduces the computational time of the data
gradient, thus accelerating the overall inversion procedure.
The regularization parameter, αn, is selected on each iteration
in order to keep the ratio αψ/φ equal to some predefined
constant αrel:

αn+1 = αrelφn/ψn. (15)

The three positive constants, qi , are selected on each iter-
ation by the following rule:

qi,n+1 = ci/wi,n∑3
j=1 c j/w j,n

, i = 1, 2,3, (16)

where ci are three positive predefined constants such as
c1 + c2 + c3 = 1 and wi is ith member of the regularization

functional on nth iteration:

w1,n = ‖L1/2(mn − m0) ‖2, w2,n = ‖mn − m0‖2, w3,n = γn.

(17)

Algorithm (16) and (17) takes into account different
scales of different stabilizing terms making their contribution
correspond to c1, c2 and c3, which can be regarded as weights
of corresponding model constraints. The progress of inversion
is controlled by the value of normalized misfit, ||Wyn||/N, re-
ferred as the root-mean-square error (ERMS) in the text.

DIRECTIONS OF THE S TEEPEST D ESCENT

The steepest descent directions (gradients) of the first two
terms in equation (5) can be found using a standard technique
(e.g. Zhdanov 2002, 2015). The gradient of the third term is
treated in this section. We assume that model transform T is
a linear operator and is described by its symmetric matrix, T.
The choice of operator T is important in determining the form

C© 2020 European Association of Geoscientists & Engineers, Geophysical Prospecting, 68, 1361–1378
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Figure 13 Final velocity models for the Gramian regularization. The cells with y > 0 are cut out for better visualization. (a) Gramian αrel = 10−4,
(b) Gramian αrel = 5 × 10−4, (c) Gramian αrel = 10−3 (iteration 23) and (d) Gramian αrel = 10−3 (iteration 55).

of correlation between the model parameters, m and s. In this
study, we choose operator T as follows:

T [v] = (v − v̂)/σv, v = m or s, (18)

where v̂ and σv are the mean and standard deviation of
v, respectively. Thus, we impose the correlation between
the standardized quantities: anomalous squared slowness,
1/c2 − 1/c2

b, and decimal logarithm of total conductivity,
log σ . In order to make this transform linear, we set v̂ and
σv to their values calculated on the previous iteration of the
inversion. Thus, T becomes a linear transform, T(v) = Tv,
with matrix T defined as follows:

T = σ−1
v (I − U/N) , (19)

where I is an N × N identity matrix and U is an N × N matrix
of ones.

We note that it is possible to change model parametriza-
tion to m̃ = T[m] and s̃ = T[s], and then invert for m̃ and s̃.
This simplifies definition of model transform to T = I − U/N

as compared to (19) and allows to accurately implement arbi-
trary non-linear data transforms. However, this would require

modifications in program modules responsible for gradient
computations for each particular non-linear transform. This
is undesirable because we wish to isolate the usage of model
transform from the rest of the inversion code, which itself
may include some non-linear transformations of the data and
model parameters for numerical reasons. With this definition,
we can write for Gramian:

γ = (
mTT2m

) (
sTT2s

)− (mTT2s)2. (20)

Let us calculate the gradient of Gramian:

∇γ = 2

(
T2m

(
sTT2s

)− T2s
(
mTT2s

)
−T2m

(
mTT2s

)+ T2s
(
mTT2m

)
)

= 2

(
φ2T2 −φ3T2

−φ3T2 φ1T2

)(
m
s

)
, (21)

where φ1 = mTT2m, φ2 = sTT2s, φ3 = mTT2s. Since in this
study we do not update conductivity model, s, we use only
the gradient of Gramian with respect to m:

lG = 2T2 (φ2m − φ3s) . (22)

C© 2020 European Association of Geoscientists & Engineers, Geophysical Prospecting, 68, 1361–1378
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Figure 14 Final synthetic data at the end of the Gramian inversion with αrel = 10−3 (iteration 23). (a) and (b) show the real part the final
synthetic wavefield, Re(pend

a ) at three representative frequencies for a single source position. Panels (d)–(f) show the real part of the difference
between the input and final acoustic fields, Re(pend

a − pa). The data correspond to the model shown in Fig. 13(c).

We can also provide another derivation for ∇γ , which
helps to understand the structure of the resulting gradient
vector. The Gramian can be rewritten as follows:

γ = (Qx,WGQx) , (23)

where an auxiliary vector x combines both model vectors,

x = (ms ); Q is the matrix of model transform, which can be

presented in the following form:

Q =
(

T O
O T

)
, (24)

where T is defined above and O is N × N zero block; matrix
WG has the following representation:

WG =
(
φ2I −φ3I

−φ3I φ1I

)
. (25)

Matrix WG is positive semi-definite and depends on m
and s. Gradient of γ can be expressed as follows:

∇γ = 2QTWGQx. (26)

Expressions (21) and (26) are identical. However, in (26)
the model transform appears more isolated from the rest
of computations allowing for clearer understanding of its
impact. Using these results, we finally arrive at the fol-
lowing expression for the gradient, g, of the parametric
functional,Pα:

g = F∗
nW2 (d − A (m)) + αnq1L (m − m0) + αnq2 (m − m0)

+αnq3lG. (27)

NUMERICAL EXPERIMENTS

We have conducted several numerical experiments to illustrate
the effectiveness and robustness of the developed method.
The seismic inversion was run in frequency domain, and the
reference petrophysical model was presented by a conductiv-
ity section, as an example. We should note that any type of
a priori information could be used to construct the reference
model. In a case of petrophysical correlations between the
seismic velocity and known petrophysical parameters, the

C© 2020 European Association of Geoscientists & Engineers, Geophysical Prospecting, 68, 1361–1378



1372 M. Malovichko et al.

Figure 15 Normalized misfit at the end of the Gramian inversion with αrel = 10−3, iteration 23. Each panel shows quantity ‖pend
a − pa‖/‖pa‖

for all 36 sources at a single frequency.

Gramian term would enforce these correlations, if they
exist. In the same way, in a case of structural similarity
between the interfaces of seismic model and known petro-
physical model, the Gramian term would enforce these
relationships.

The first numerical experiment

In the first numerical experiment, we studied the effect of
the Gramian term on the reconstructed velocity model. We
inverted a small model consisted of 512 cubical cells (Fig. 1a).
The model had dimensions 1.5 km × 1.5 km × 1.5 km with
its top at a depth of 500 m. The anomalous domain was
immersed into a half space with cb = 4000 m/s. The reference
conductivity model is presented in Fig. 1(b). The models were

adjusted to ensure the perfect linear correlation between S and
χ according to the following formula:

S (χ ) = 0.3010

6.7521 × 10−9 (χ − 6.7521 × 10−9). (28)

This is the correlation the Gramian constraint would en-
force. In the model shown in Fig. 1, every cell can take one
of the two combinations of velocity and conductivity: (3800
m/s, 1 S/m) or (4000 m/s, 0.5 S/m) according to equation (28).

There were nine sources uniformly distributed in the
square −1500 ≤ x, y ≤ 1500 m with a step of 1 km, and
36 receivers, distributed in the square −1250 ≤ x, y ≤
1250 m with a step of 500 m. The source and re-
ceivers were placed at a depth of 50 m below the sur-
face. The data were simulated at a frequency of 0.1 Hz.

C© 2020 European Association of Geoscientists & Engineers, Geophysical Prospecting, 68, 1361–1378
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Figure 16 Cross-plots between the true conductivity model and inverse models, recovered by a separate inversion of seismic data only with dif-
ferent regularization parameters. (a) No regularization, αrel = 0, (b) smoothness αrel = 10−4, (c) smoothness αrel = 5 × 10−4 and (d) smoothness
αrel = 10−3. The lines labelled as Formula correspond to relation (30).

The synthetic data for a single source are presented in
Fig. 2(a).

Inversion started with the uniform velocity model of 3800
m/s. We assume the 5% noise in the input data. We did not
use the smoothness term in the stabilizing functional,ψ , in this
inversion, for simplicity. The inversion was terminated when
RMS misfit is reached unity. We performed four inversion
runs, with parameters summarized in Table 1.

The data at the end of inversion look quite similar
since they fit the input data to a specified 5% tolerance. We
presented the final data for inversion run #4 in Fig. 2(b,c).
The final velocity distributions presented in Fig. 3 confirm
that the Gramian constrains effectively guide velocity model
during inversion. Figure 4 shows the cross plots of the
inverted models. As the contribution of the Gramian term
increases, the reconstructed velocities shift to their true values

C© 2020 European Association of Geoscientists & Engineers, Geophysical Prospecting, 68, 1361–1378



1374 M. Malovichko et al.

Figure 17 Cross plots between the true conductivity model and inversion models, recovered by the Gramian-based guided inversion with
different regularization parameters. (a) Gramian αrel = 10−4, (b) Gramian αrel = 5 × 10−4, (c) Gramian αrel = 10−3 (iteration 23) and (d)
Gramian αrel = 10−3 (iteration 55). The lines labelled as Formula correspond to relation (30).

and the velocity spread in each compartment of the model
decreases. We note that the velocities in the upper model
compartment (at log10σ = 0) are biased from the true model,
because the data have more impact on the shallow cells.

The second numerical experiment

In the second numerical experiment, we have simulated low-
frequency seismic data and deliberately removed some trans-

mitters to model a real-world situation where some area of the
survey was inaccessable for some reason (e.g., diffcult terrain
and private land) which resulted in a decrease of the spatial
resolution of the data. To make our study more realistic, we
have also assumed that the models are not perfectly correlated,
and a smoothness term is enabled in the inversion. We inverted
the seismic data for a model with 3 km × 3 km × 1.875 km
anomalous domain, discretized into 64 × 64 × 40 cubical cells
of 46.875 m each. The model contains a high-velocity block
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at the right-bottom side, and a high-velocity prism at the
left-middle side (Fig. 5a). The anomalous domain was im-
mersed into a half space. Its top face was located at a depth of
200 m. The halfspace velocity was set to cb = 1500 m/s.

The conductivity model, which was considered known
during the inversion, is presented in Fig. 5(b). This model was
constructed by smoothing velocities with the Gaussian filter
and applying the following transform (Meju, Gallardo and
Mohamed 2003):

σ = (c/cref)
−3.88, (29)

where cref = 1700 m/s.
The relation between the logarithmic conductivity, S, and

squared anomalous slowness, χ , is given by the following
formula:

S (χ ) = 3.88 × log10

(
cref

√
χ + c−2

b

)
. (30)

This relation is not linear, but it is quite close to a linear
one within the considered velocity range. The cross plot of
the two true models is given in Fig. 6. The true velocity model
consists of five compartments with constant velocity, whereas
the conductivity model is smooth, which forms the five vertical
segments on the plot.

The velocity model shown in Fig. 5(a) has been success-
fully reconstructed with the pure acoustic inversion in Mal-
ovichko et al. (2017a). In this study, we use a more sparsely
sampled input data to mimic a common case, when the mea-
sured seismic data cannot resolve specific targets due to the
lack of resolution. We have employed the Gramian constraint
approach to obtain missing information from a known con-
ductivity model, by imposing correlation between anomalous
squired slowness and logarithmic conductivities.

There were 36 sources, distributed inside the XY square
−2750 ≤ x, y ≤ 2750 m with a separation of 500 m, and
225 receivers distributed in the XY square −7000 ≤ x, y ≤
7000 m , with a separation of 500 m (Fig. 7). The synthetic
data were simulated at 10 frequencies from 0.1 Hz to 1 Hz
with a step of 0.1 Hz. The spectrum of the signal in the source
was formed by the Ricker wavelet with the central frequency
of 0.5 Hz. During inversion, the level of data uncertainty was
set to 5% of the amplitude of corresponding data point. The
simulated data for a representative shot are plotted in Fig. 8.
The checkerboard pattern, visible in the 1 Hz data, indicates
a strong data aliasing due to a sparse receiver grid. Since the
source grid is sparse too, it has a similar effect.

In the first set of inversions, the smoothness constraint
only was active, that is c1 = 1, c2 = c3 = 0. In all cases, in-

version started from the uniform velocity model of 2300 m/s.
We tried the following values of the regularization parame-
ter: αrel = 0 (meaning no regularization), αrel = 10−4, αrel =
5 × 10−4 and αrel = 10−3. The data fit at the end of inversion
is evaluated in Figs. 9 and 10.

Convergence plots and ratio αnψn/φn are shown in
Fig. 11 (see curves labelled by ‘S’). As one could see, all in-
versions stagnated prematurely by being trapped in the local
minima. Higher values of αrel caused inversion to progress
more slowly. However, the values of the final misfit were
close to each other and approximately corresponded to
ERMS = 3.

The final models (Fig. 12) look quite similar. All of
them image the high-velocity block but show no indication
of the high-velocity prism. The strong acquisition footprint,
clearly visible in the inversion model with low regularization,
is caused by aliasing in higher frequency data.

In the second set of inversions, the mutual Gramian con-
straint was enabled only, that is c1 = c2 = 0, c3 = 1. We
tested the following values of the regularization parame-
ter: αrel = 10−4, αrel = 5 × 10−4 and αrel = 10−3. Convergence
plots are presented in Fig. 11 (see curves labelled with letter
‘G’). The final inversion models are presented in Fig. 13. Value
αrel = 10−4 caused the inversion to behave very similar to one
with the smoothness regularization only. The misfit curve is
close to that of the inversion with the smoothness regulariza-
tion with αrel = 10−4. The final model (Fig. 13a) is almost the
same as well. This indicates that the inversion was primarily
driven by the misfit with negligible contribution of regulariza-
tion.

Value αrel = 5 × 10−4 produced a notable dispatch
from this pattern. The convergence considerably accelerated
(Fig. 11a, curve ‘G, 5E-4’). The misfit curve on iteration 26
corresponded to ERMS = 1.83. The high-velocity prism is
clearly visible in the final model (Fig. 13b). The inversion with
regularization parameter αrel = 10−3 performed even better.
The misfit functional reached prescribed ERMS = 1 in 23 it-
erations (Fig. 11a, curve ‘G, 1E-3’). After 55 iterations, the
misfit reduced to 2 × 103. This corresponds to ERMS = 0.16,
or, equivalently, to ERMS = 1 with 0.8% noise in the input
data. The data fit for this inversion on iteration 23 is examined
in Figs. 14 and 15.

The resolution of the final models was drastically im-
proved comparing to the previous runs (Fig. 13c,d). The
high-velocity block, as well as the high-velocity prism, was
accurately imaged. The strong acquisition footprint has the
same nature as in the previous test. We also note that the
norm of the stabilizing functional behaves rather different in
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cases of the smoothness or Gramian constraint. In the latter
case, the norm of the model varies rapidly on the first iter-
ations, as indicated by the zigzag pattern of ratio αnψn/φn

(Fig. 11b).
The cross plots, produced for the results of the sepa-

rate inversion of seismic data only and of the Gramian-based
guided inversion, are presented in Figs. 16 and 17. We observe
that the Gramian constraint visibly improves correlation be-
tween the two parameter distributions by steering inversion
towards the conductivity model. The correlation is improved
with the increase of the value of the regularization parameter
from 10−4 to 5 × 10−3 (see Fig. 17a–d)

CONCLUSIONS

We have developed a new strategy for integrating an a priori

petrophysical model in the seismic full-waveform inversion
by means of coupling between velocity and known petro-
physical models via the Gramian constraints. Many inversion
algorithms are based on an assumption that we know some
analytical relationships between different physical properties
of the rocks. However, in most cases, even if one has a
linear relationship, the coefficients of this relationship are
unknown unless one would conduct a petrophysical study of
the rock samples from the boreholes in the surveyed areas.
The advantage of the Gramian approach is that it does not
require a specific knowledge of the coefficients of the analytic
relationships and can produce this information as a result
of the inversion. Indeed, the cross plot between the inverse
model parameters presented in Fig. 17(d) provides almost
exact reconstruction of analytical relationship described by
formula (30). One can see from the results of this numerical
experiment that the Gramian-based approach to a joint
inversion makes it possible to reconstruct the form of a
relationship between the different physical properties without
any rock sample analysis. In other words, we can establish the
relationships between different petrophysical properties from
the remotely observed geophysical data. This is an important
observation which may find a wide range of applications in
geophysics.

We have presented an explicit expression of the gradient
of the Gramian term in the case of two-parameter inversion,
which can be easily incorporated in a standard optimization
scheme. This approach opens a way for effective use of a

priori data in seismic inversion. The numerical experiments
suggest that our approach works reasonably well, at least on
synthetic models. Future research will be focused on applying
this method to more complex models and to field seismic data.
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APPENDIX: R EPRESENTATION OF THE
GRAMIAN STABIL IZ ING FUNCTIONAL A S
A NON-NEGATIVE QUADRATIC FORM

The main advantage of the Gramian constraint (6) over some
other approaches is that the stabilizing functional ψ, defined
by equation (5), is convex given transformation T is linear.
The convexity of γ (m, s) is a consequence of the following
proposition (in which we assume T is the identity transform
for simplicity).

Proposition. Given a real vector space equipped with Euclid-
ian norm, EM, and c ∈ EM, c �= 0, the Gramian term γ (x, c)
is a positive semi-definite quadratic form on EM, which has
the following eigenvalues: λ1 = 0, λ2 = .. = λM = ‖c‖2.

Proof. We may think of γ as a map EM → R, since the second

argument is fixed:

γ (x) = γ (x, c) = ‖x‖2‖c‖2 − (
xTc

)2
, c = const. (A1)

Let us consider the following map EM × EM → R:

B (x, y) = xTy‖c‖2 − (
xTc

) (
yTc

)
, (A2)

where x, y, c ∈ EM, c = const. Clearly, B is a symmetric
bilinear form, since B(ax1 + bx1, y) = aB(x1, y) + bB(x2, y),
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B(x, ay1 + by2) = aB(x, y1) + bB(x, y2) and B(x, y)= B(y, x)
for any x,x1, x2, y, y1, y2 ∈ EM and a,b ∈ R. The Gramian
term can be expressed as follows:

γ (x) = B (x, x) . (A3)

Thus, γ (x) is a quadratic form. It means it can be ex-
pressed as follows:

γ (x) = xTAx (A4)

for some matrix A ∈ R
M×M. Specifically,

A = I‖c‖2 − ccT. (A5)

The first term is a diagonal matrix having M eigenval-
ues equal to ‖c‖2. The second term is a rank-one matrix
having one non-zero eigenvalue equal to ‖c‖2. To see this,
let us denote by ξ1 = c/‖c‖ the basis vector in the subspace
spanned by c. It is associated with eigenvalue λ1 = ‖c‖2, since
ccTξ1 = c‖c‖ = ξ1‖c‖2. Let us further denote by {ξ2, .., ξ N}
the orthonormal basis of the orthogonal complement of c.
Since ccTξ i = 0 for all i = 2, . . . ,M, eigenvectors {ξ2, .., ξ M}
are associated with M − 1 zero eigenvalues. Eigenvalues are
invariant to the change of the basis, so A has one zero eigen-
value, and (M − 1) positive eigenvalues equal to ‖c‖2. �

Thus, ψ is convex as a sum of three convex functionals
with non-negative weights.
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