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Abstract: Different geophysical methods provide information about various physical properties of
rock formations and mineralization. In many cases, this information is mutually complementary. At
the same time, inversion of the data for a particular survey is subject to considerable uncertainty and
ambiguity as to causative body geometry and intrinsic physical property contrast. One productive
approach to reducing uncertainty is to jointly invert several types of data. Non-uniqueness can
also be reduced by incorporating additional information derived from available geological and/or
geophysical data in the survey area to reduce the searching space for the solution. This additional
information can be incorporated in the form of a joint inversion of multiphysics data. This paper
presents an overview of the main ideas and principles of novel methods of joint inversion, developed
over the last decade, which do not require a priori knowledge about specific empirical or statistical
relationships between the different model parameters and/or their attributes. These approaches
are designated as follows: (1) Gramian constraints; (2) Gramian-based structural constraints; (3)
localized Gramian constraints; and (4) joint focusing constraints. We provide a short description of
the mathematical foundations of each of these approaches and discuss the practical aspects of their
applications in mineral exploration.

Keywords: joint inversion; multiphysics; three-dimensional; Gramian constraints; focusing constraints

1. Introduction

Information from different surveys is mutually complementary, which makes it nat-
ural to consider a joint inversion of the data to a shared model, a process which can be
implemented using several different physical and mathematical approaches. Integration
of multiphysics data also helps reduce ambiguity, which is typical for geophysical inver-
sions. Over the last decades, several approaches were introduced to joint inversion of
geophysical data. The traditional technique is based on using the known petrophysical
relationships between different physical properties of the rocks within the framework of
the inversion process [1–9]. The joint inversion can use these relationships or can indicate
and characterize the existence of this correlation, yielding an improved final model.

Another approach to joint inversion uses a clustering concept from statistics, which
assumes that the subsurface geology can be described by the models with petrophysical
parameters forming a specific number of the known clusters in the space of the models
(e.g., [10–12]). This approach requires a priori knowledge of the parameters of these clusters,
which is related to the lithology of the rocks.

In the cases where the model parameters are not correlated but nevertheless have
similar geometrical features, joint inversion can be based on structure-coupled constraints.
For example, these constraints can be implemented by the cross-gradient method, which
enforces the gradients of the model parameters to be parallel [13–17].

There still exist many challenges in incorporating typical geological complexity in joint
inversion. For example, analytic, empirical, or statistical correlations between different
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physical properties may exist for only part of the shared earth model, and their specific form
may be unknown. Features or structures that are present in the data of one geophysical
method may not be present in the data generated by another geophysical method or may
not be equally resolvable.

This review paper outlines and illustrates four novel approaches to joint inversion,
which would not require a priori knowledge about specific empirical or statistical relation-
ships between the different model parameters and/or their attributes. These approaches
are designated as follows:

(1) Gramian constraints which enforce the correlation between different parameters. By
imposing the requirement of the minimum of the Gramian mathematical operator
in regularized inversion, we obtain multimodal inverse solutions with enhanced
correlations between the different model parameters or their attributes.

(2) Joint inversion using Gramian-based structural constraints. In the framework of
this approach, we apply the Gramian operator to the gradients of different model
parameters; in this case, minimization of the Gramian results in enforcing the cor-
relation between different gradients, which is equivalent to imposing the structural
constraints.

(3) Localized Gramian constraints which impose local correlations between the various
physical properties of the model, with changing parameters of these correlations
within the modeling domain. In other words, the form of the relationships between
different model parameters can change from one section of the inversion domain,
with one type of lithological properties to another with different lithology. This is
important in the case of complex geology.

(4) Joint focusing stabilizers, e.g., minimum support and minimum gradient support
constraints. The joint focusing stabilizers force the anomalies of different physical
properties to either overlap or experience a rapid change in the same spatial sector,
thus enforcing the structural correlation.

In this paper, we review the mathematical principles of these four advanced ap-
proaches to joint inversion of multiphysics geophysical data and discuss some aspects
of their applications. Considering the limited size of the journal paper, it would be im-
possible to provide the case studies for all four techniques covered in this review. The
interested reader can find some examples of practical applications of these methods in
several published papers, which are referenced in the sections below. At the same time,
we have included, as an illustration, one example related to joint inversion of airborne
magnetic and electromagnetic data using Gramian-based structural constraints. The reason
for selecting this example is twofold. First, typical airborne geophysical surveys collect
EM and magnetic data simultaneously; therefore, this pair of airborne datasets is readily
available for many practical surveys. Second, this example clearly illustrates the benefits of
joint inversion of the EM and magnetic data in mineral exploration.

2. Gramian Constraints

Gramian constraints enforce the correlation between different parameters or their
transforms [6,7]. They are implemented by using a Gramian mathematical operator in
regularized inversion, which results in producing multimodal inverse solutions with
enhanced correlations between the different model parameters or their attributes. In
this section, we present a short summary of the main principles underlying the Gramian
regularization.

Let us consider forward geophysical problems for multiple geophysical data sets.
These problems can be described by the following operator relationships:

d(i) = A(i)
(

m(i)
)

, i = 1, 2, 3, · · · , n; (1)

where, in a general case, A(i) is a nonlinear forward modeling operator; d(i) (i = 1, 2, 3, · · · , n)
are different observed data sets (which may have different physical natures and/or param-
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eters); and m(i) (i = 1, 2, 3, · · · , n) are the unknown sets of various physical properties
(model parameters).

Note that diverse model parameters may have different physical dimensions (e.g.,
density is measured in g/cm3, resistivity is measured in Ohm-m, etc.). It is convenient to
introduce the dimensionless weighted model parameters, m̃(i) = W(i)

m m(i), where W(i)
m is

the corresponding linear operator of model weighting [7].
It was demonstrated in [6,7] that one could apply the Gramian constraints to different

transforms of the model parameters. For example, we may consider differential operations,
like gradient, applied to the spatial distribution of the model parameters. This will result
in the shared earth model characterized by similar behavior of the gradients of different
physical properties. This type of the Gramian-based constraint is discussed in the next
section of this review paper.

We can also use various functions of the model parameters, e.g., logarithms or trigono-
metric functions, to enforce the correlation between the transformed parameters. For
example, in the case of joint gravity and seismic data inversion, one can use Gardner’s
equation, which correlates the logarithm of density, ln(ρ), to the logarithm of velocity,
ln(v) [18]. In the case of joint EM and magnetic data inversion, one can consider the rela-
tionships between the logarithm of conductivity and magnetic susceptibility. This example
will be provided in the final section of the paper.

Joint inversion of multiphysics data can be reduced to minimization of the following
parametric functional,

P
(

m̃(1), m̃(2), . . . . . . , m̃(n)
)
=

n

∑
i=1

ϕ
(

m̃(i)
)
+ αS

(
m̃(1), m̃(2), . . . . . . , m̃(n)

)
, (2)

where misfit functionals, ϕ
(

m̃(i)
)

are defined as follows,

ϕ
(

m̃(i)
)
=
∣∣∣∣∣∣Ã(i)

(
m̃(i)

)
− d̃(i)

∣∣∣∣∣∣2
L2

, i = 1, 2, . . . n; (3)

and Ã(i)
(

m̃(i)
)
(i = 1, 2, 3, · · · , n) are the weighted predicted data:

Ã(i)
(

m̃(i)
)
= W(i)

d A(i)
(

m̃(i)
)

. (4)

where W(i)
d is the corresponding linear operator of data weighting.

The selection of the model and data weights was discussed in many publications on
inversion theory. For example, in the framework of the probabilistic approach [19], the
weights were determined as inverse data covariance or model covariance matrices. In the
framework of the deterministic approach [20], the weights were determined as inverse
integrated sensitivity matrices.

In Formula (2), S
(

m̃(1), m̃(2), · · · , m̃(n)
)

is a stabilizing functional. This functional can

be introduced as a determinant of the Gram matrix of a system of model parameters, m̃(1),
m̃(2), . . . , m̃(n), which is called a Gramian, S = G

(
m̃(1), m̃(2), · · · , m̃(n)

)
[6,7].

Gramian provides a measure of correlation between the different model parameters
or their attributes. By imposing an additional requirement minimizing the Gramian in
regularized inversion, we obtain multimodal inverse solutions with enhanced correlations
between the various model parameters.

For example, in the case of two model parameters (e.g., density and magnetic suscep-
tibility), the Gramian is computed as follows:
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G
(

m̃(1), m̃(2)
)
=

∣∣∣∣∣∣
(

m̃(1), m̃(1)
) (

m̃(1), m̃(2)
)(

m̃(2), m̃(1)
) (

m̃(2), m̃(2)
) ∣∣∣∣∣∣ (5)

where (·,·) stands for the inner product in the corresponding Hilbert space of model
parameters [7].

In a general case of n model parameters, the Gramian is computed as the determinant
of the Gram matrix as follows:

G
(

m(1), m(2), · · · , m(n)
)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m(1), m(1)

) (
m(1), m(2)

)
· · · · · ·

(
m(1), m(n)

)(
m(2), m(1)

) (
m(2), m(2)

)
· · · · · ·

(
m(2), m(n)

)
...

...
. . .

...
...

...
... · · · . . .

...(
m(n), m(1)

) (
m(n), m(2)

)
· · · · · ·

(
m(n), m(n)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6)

Note that, in Equation (6) and everywhere below we drop the “tilde” sign above the
model parameters to simplify the notations. However, we still consider m(1), m(2), · · · , m(n)

being the dimensionless weighted or transformed model parameters.
The main property of the Gramian in Equation (6) is that it is a nonnegative functional,

G
(

m(1), m(2), · · · , m(n)
)
≥ 0, and the Gramian is equal to zero if the model parameters,

m(1), m(2), · · · , m(n), are linearly dependent.
One can also choose various metrics of the Hilbert space in Equation (6), used in the

definition of the Gramian [7]. This brings additional flexibility to the type of coupling be-
tween different model parameters enforced by the Gramian constraints, which is illustrated
below.

The meaning of Gramian and its role in the joint inversion can be better explained
using a probabilistic approach to inverse problem solution. In the framework of this
approach, one can treat the observed data and the model parameters as the realizations of
some random variables [19,20].

We can also introduce a Hilbert space with the metric defined by the covariance
between random variables, representing different model parameters. Under these assump-
tions, the Gramian stabilizing functional arises as a determinant of the covariance matrix
between different model parameters [21]:

G
(

m(1), m(2), · · · , m(n)
)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cov
(

m(1), m(1)
)

cov
(

m(1), m(2)
)
· · · · · · cov

(
m(1), m(n)

)
cov
(

m(2), m(1)
)

cov
(

m(2), m(2)
)
· · · · · · cov

(
m(2), m(n)

)
...

...
. . .

...
...

...
... · · · . . .

...
cov
(

m(n), m(1)
)

cov
(

m(n), m(2)
)
· · · · · · cov

(
m(n), m(n)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7)

In the last formula, cov
(

m(i), m(j)
)

represents a covariance between two random

variables, m(i) and m(j), describing two different physical properties of the inverse model.
Note that the covariance of a datum with itself is just the variance:

cov
(

m(i), m(j)
)
= σ2

i , (8)

where σi is the standard deviation of model parameter, m(i).
For example, in a case of two model parameters, we have
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G
(

m(1), m(2)
)
=

∣∣∣∣∣∣ cov
(

m(1), m(1)
)

cov
(

m(1), m(2)
)

cov
(

m(2), m(1)
)

cov
(

m(2), m(2)
) ∣∣∣∣∣∣

=

∣∣∣∣∣∣ σ2
1 cov

(
m(1), m(2)

)
cov
(

m(2), m(1)
)

σ2
2

∣∣∣∣∣∣ = σ2
1 σ2

2

[
1− η2

(
m(1), m(2)

)]
,

(9)

where σ1 and σ2 are standard deviations of the random variables corresponding to parame-
ters m(1) and m(2), respectively, and coefficient η is a correlation coefficient between these
two parameters:

η
(

m(1), m(2)
)
=

cov
(

m(1), m(2)
)

σ1σ2
. (10)

The last expression shows that the Gramian provides a measure of correlation between
two parameters, m(1) and m(2). Indeed, the Gramian goes to zero when the correlation
coefficient is close to one, which corresponds to linear correlation. This property shows
that, by imposing the Gramian constraint, we enforce a linear correlation between the
model parameters.

The same property holds in the multiphysics case where we have n different physical
property parameters. The minimization of the determinant of the covariance matrix shown
in Equation (7) results in enforcing the linear correlations between those parameters.

Case studies of practical applications of the Gramian constraints have been presented
in several recently published papers. For example, Malovichko et al. [22] demonstrated
how Gramian constraints can be used for guided full-waveform inversion of seismic data
using known petrophysical properties of the rocks. In the papers [23,24], the authors
applied Gramian constraints in joint inversion for density and magnetization models. We
refer interested readers to these publications for more details on technical applications of
the Gramian approach.

We have demonstrated above that Gramian approach is based on the concept of linear
correlation; however, by applying this concept to the transforms of the model parameters,
we can amplify a variety of different properties in joint inversion. For example, Gramian of
the gradients of the model parameters results in structural correlations. Gramian applied to
the nonlinear transforms of the model parameters results in nonlinear correlations. Gramian
applied locally (in the framework of the localized approach) results in spatially variable
relationships between different physical properties. In short, the Gramian approach is not
limited to a strict linear correlation assumption. This property of Gramian approach will be
illustrated below in the sections dedicated to the structural and localized Gramian-based
constraints.

3. Joint Inversion Using Gramian-Based Structural Constraints

One of the most widely used approaches to imposing the structural constraints on
the results of the joint inversion is based on the method of cross gradients [13–17]. The
basic idea behind this method is that the gradients of the model parameters should be
parallel in order to enforce the geometrical similarities between the interfaces of the models.
Within the framework of the cross-gradient method, this requirement can be achieved by
minimizing the norm square of the cross product of the gradients of these functions:

Scg =
∣∣∣∣∣∣∇m(1) × ∇m(2)

∣∣∣∣∣∣2 = min. (11)

One of the problems of the practical implementation of this method is related to the
fact that the cross-gradient functional is non-quadratic, which makes it challenging to find
the Fréchet derivative of this functional; it is a non-trivial task to extend the method to
more than two types of data, e.g., seismic, gravity, and electromagnetic. At the same time,
the Gramian stabilizing functional is always quadratic, as the conventional minimum norm



Geosciences 2021, 11, 262 6 of 15

functional [7]. This makes it easier to calculate the derivatives of the Gramian functional
and provides the basis for a relatively simple numerical implementation.

In the framework of the Gramian approach, the same requirement for the gradients
of the model parameters being parallel is achieved by minimizing the structural Gramian
functional, G∇, which, in a case of two physical properties, can be written using matrix
notations, as follows:

G∇
(

m(1), m(2)
)
=

∣∣∣∣∣∣
(
∇m(1), ∇m(1)

) (
∇m(1), ∇m(2)

)(
∇m(2), ∇m(1)

) (
∇m(2), ∇m(2)

) ∣∣∣∣∣∣ = min. (12)

By minimizing the Gramian functional, G∇, we enforce the linear correlation between
the gradients of the model parameters, making these vectors parallel to each other. The
method can also be naturally expanded for any number, n, of the model parameters, by
considering the corresponding Gramian matrices between the gradients of the different
parameters. The practical advantage is, again, in the quadratic nature of this functional,
which was demonstrated in [6,7]. This property was proved based on the concept of the
Gramian space which was shown to be a Hilbert space with all related useful properties.

For example, we can introduce a stabilizing term in the parametric functional shown
in Equation (2) as a superposition of the structural Gramians between the first and all other
physical model parameters:

S
(

m(1), m(2), · · · , m(n)
)
= G∇

(
m(1), m(2)

)
+ G∇

(
m(1), m(3)

)
+ · · ·+ G∇

(
m(1), m(n)

)
. (13)

Minimization of the expression in the right-hand side of Equation (13) keeps all
gradient vectors, ∇m(1), ∇m(2), . . . , ∇m(n), parallel to each other. Considering that the
gradient directions are orthogonal to the interfaces between the structures with contrasting
physical properties, this condition results in structural similarities between the inverse
models describing different physical properties of the earth.

Practical applications of the Gramian-type structural constraints were presented in
papers [25–27], among others. Jorgensen and Zhdanov [26] applied this approach to
imaging the deep magma-feeding structure of the Yellowstone supervolcano by joint
inversion of gravity and MT data. In paper [27], this technique was used for joint inversion
of the gravity and magnetic data collected over the Thunderbird V-Ti-Fe deposit in the
Ring of Fire area of Ontario, Canada. The cited papers also contain a detailed description
of the numerical algorithm of minimizing the parametric functional shown in Equation (2)
with the Gramian structural stabilizer shown in Equation (12).

4. Localized Gramian Constraints

The constraints based on minimization of the Gramian of the model parameters,
Equations (5) and (6), or of their gradients, Equations (12) and (13), can be treated as
the global constraints, because they enforce similar correlation conditions over the entire
inversion domain. In practical applications, however, the specific form of the correlations
may vary within the area of investigation. To address this situation, we can subdivide
the inversion domain, D, into N subdomains, Dk, with potentially different types of
relationships between the different model parameters, and define the Gramians, Gk, for
each of these subdomains separately:

Gk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m(1)

k , m(1)
k

) (
m(1)

k , m(2)
k

)
· · · · · ·

(
m(1)

k , m(n)
k

)(
m(2)

k , m(1)
k

) (
m(2)

k , m(2)
k

)
· · · · · ·

(
m(2)

k , m(n)
k

)
...

...
. . .

...
...

...
... · · · . . .

...(
m(n)

k , m(1)
k

) (
m(n)

k , m(2)
k

)
· · · · · ·

(
m(n)

k , m(n)
k

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (14)
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where m(1)
k , m(2)

k , . . . , m(n)
k , are the sets of model parameters describing the different physical

properties of the medium (e.g., density, susceptibility, or conductivity) within subdomain
Dk.

In this case, the localized Gramian constraints will be based on using the following
stabilizing functional:

SLG

(
m(1), m(2), · · · , m(n)

)
= ∑N

k=1 Gk. (15)

In a similar way, we can introduce localized Gramian-based structural constraints,
using the localized Gramian of model parameter gradients, G∇k, defined by the following
formula:

G∇k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∇m(1)

k ,∇m(1)
k

) (
∇m(1)

k ,∇m(2)
k

)
· · · · · ·

(
∇m(1)

k ,∇m(n)
k

)(
∇m(2)

k ,∇m(1)
k

) (
∇m(2)

k ,∇m(2)
k

)
· · · · · ·

(
∇m(2)

k ,∇m(n)
k

)
...

...
. . .

...
...

...
... · · · . . .

...(
∇m(n)

k ,∇m(1)
k

) (
∇m(n)

k ,∇m(2)
k

)
· · · · · ·

(
∇m(n)

k ,∇m(n)
k

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(16)

For example, in a case of two model parameters, localized Gramian (16) takes the
form:

G∇k

(
m(1), m(2)

)
=

∣∣∣∣∣∣
(
∇m(1)

k , ∇m(1)
k

) (
∇m(1)

k , ∇m(2)
k

)(
∇m(2)

k , ∇m(1)
k

) (
∇m(2)

k , ∇m(2)
k

) ∣∣∣∣∣∣ = min (17)

and the corresponding stabilizing functional is written as follows:

SLG∇
(

m(1), m(2)
)
= ∑N

k=1 G∇k

(
m(1), m(2)

)
. (18)

The advantage of using the localized Gramian constraints over the global constraints
is that the former can be applied in complex geological settings with variable relationships
between different physical properties of the rock formations over the area of investigation.
Note that one can use an individual discretization cell, Ck, of the inversion domain as an
elementary subdomain, Dk, to achieve the maximum flexibility of the localized constraints.
In the case of Gramian structural constraints, the corresponding localized constraint will
require the gradients of the different model parameters to be parallel (linearly dependent)
vectors within every cell, while allowing for the coefficients of the linear dependence to
vary from cell to cell. This provides more flexibility to the joint inversion.

Paper [28] presents a case study of jointly inverting the gravity and seismic data
collected in Yellowstone National Park using localized Gramian constraints. The cited
paper also addresses the important issue of dealing with different resolution capabilities
of various geophysical methods in joint inversion. Interested readers can find useful
practical details in [28] for applying this technique to image the crustal magmatic system
of Yellowstone.

5. Joint Focusing Constraints

The structural similarities between various petrophysical models of the subsurface can
be enforced by using the joint total variation or focusing stabilizers [29,30]. For the solution
of a nonlinear inverse problem shown in Equation (1), following [29,30], we introduce the
following parametric functional with focusing stabilizers,

Pα
(

m(1), m(2), · · · , m(n)
)
=

n

∑
i=1
||A(i)

(
m(i)

)
− d(i)||

2

D
+ αSJMS,JMGS, (19)
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where the terms SJMS, and SJMGS are the joint stabilizing functionals, based on minimum
support, and minimum gradient support constraints, respectively.

The joint minimum support stabilizer,

sjMS =
y

V

∑n
i=1

(
m(i) −m(i)

apr

)2

∑n
i=1

(
m(i) −m(i)

apr

)2
+ e2

dv, (20)

is proportional to the combined volume, or support, occupied by domains with anomalous
physical parameters for small e.

Indeed, we can rewrite Equation (20) as follows:

sjMS =
t

V

∑n
i=1

(
m(i) −m(i)

apr

)2
+ e2 − e2

∑n
i=1

(
m(i) −m(i)

apr

)2
+ e2

dv

=
t

spt ∑N
i=1 (m

(i)−m(i)
apr)

(1− e2

∑n
i=1

(
m(i) −m(i)

apr

)2
+ e2

)dv

= spt
n
∑

i=1

(
m(i) −m(i)

apr

)
− e2 t

spt ∑n
i=1 (m

(i)−m(i)
apr)

1

∑n
i=1

(
m(i) −m(i)

apr

)2
+ e2

dv.

(21)

In Equation (21) we denote by spt ∑n
i=1

(
m(i) −m(i)

apr

)
, a joint support of

(
m(i) −m(i)

apr

)
,

which is defined as a volume of the combined closed subdomain of V where all m(i) 6=
m(i)

apr, i = 1, 2, . . . n.
From Equation (21), one can find immediately that

sjMS → spt ∑n
i=1

(
m(i) −m(i)

apr

)
, i f e→ 0. (22)

Thus, sjMS is proportional to the combined anomalous model parameters support for
a small e.

It can be easily established by a simple geometrical analysis that the combined anoma-
lous model parameters support reaches the minimum when the volumes occupied by
anomalous domains representing various physical properties coincide. Indeed, if the
anomalous properties are in different locations, their combined support is larger in com-
parison to cases when the locations are the same.

A joint minimum gradient support functional (JMGS) is defined as follows:

sjMGS =
y

V

∑n
i=1

(
∇m(i) −∇m(i)

apr

)2

∑n
i=1

(
∇m(i) −∇m(i)

apr

)2
+ e2

dv. (23)

Repeating the algebraic transformation presented in expression (21), one can demon-
strate that:

sjMGS → spt ∑n
i=1∇

(
m(i) −m(i)

apr

)
, i f e→ 0, (24)

where spt ∑n
i=1∇

(
m(i) −m(i)

apr

)
is a joint support of the gradients of various anomalous

model parameters, ∇
(

m(i) −m(i)
apr

)
. Therefore, sjMGS is proportional to the joint support

of the gradients of different properties of the rocks. It is obvious that these gradients are
directed perpendicular to the interfaces between different lithologies and they achieve the
maximum values at these interfaces. By imposing the minimum joint gradient support
constraint, we force the interfaces expressed in diverse petrophysical parameters to merge,
thus ensuring a structural similarity of the multiphysics inverse problem solutions. The
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geometrical explanation of this fundamental property of the JMGS functional is the same
as for the case of the JMS functional, discussed above.

The minimization of the parametric functional shown in Equation (19) is based on the
re-weighted regularized conjugate gradient method (RRCG) [7], which iteratively updates
the model parameters to minimize the parametric functional and the misfit between
the observed and predicted data. The inversion iterates until the misfit reaches a given
threshold.

Examples of practical application of this approach can be found in [27,29,30].

6. Case Study: Joint Inversion of EM and TMI Data of the Reid-Mahaffy Test
Site, Ontario

In this section, we present an example of joint inversion of magnetic and electromag-
netic data collected in the Reid-Mahaffy test site using Gramian-based structural constraints.
As we have explained above in Section 3, the Gramian-based structural constraints require
the gradients of the various physical properties to be parallel to each other. It is well
known that the gradients are directed perpendicular to the interfaces between the areas
with different physical properties. By requiring the gradients to be parallel, we enforce the
structural similarities between the models representing diverse physical properties. In the
present case study, we apply the joint inversion to airborne electromagnetic (AEM) and
total magnetic intensity (TMI) data collected by geophysical surveys in the Reid-Mahaffy
test site. The AEM data reflect the conductivity distribution in the subsurface, while the
TMI data manifest magnetic properties of the rocks. Assuming that various rock forma-
tions are characterized by distinct electrical and magnetic properties, we expect that the
joint inversion of AEM and TMI data using the Gramian-based structural constraints will
better resolve the complex geological structure of the surveyed area than the standalone
inversions.

The Reid-Mahaffy test site is located in the Abitibi Subprovince, immediately east
of the Mattagami River Fault (Figure 1). The test site was created in 1999 by the Ontario
Geological Survey as part of Operation Treasure Hunt, a multi-year geoscientific program
intended to increase the precompetitive perspectivity of Ontario for precious and base met-
als [31]. Over the years, data from multiple AEM systems have been acquired, including
various DIGHEM, GEOTEM, MEGATEM, SPECTREM, VTEM, and AeroTEM systems.
These data have previously been interpreted using a variety of 1D methods, including
conductivity depth imaging, Zohdy’s method, layered earth inversion, and laterally con-
strained inversion (e.g., [32–34]). The AEM data from the Reid-Mahaffy test site were used
by Cox et al. [35] and Jorgensen et al. [36] for a demonstration of the rigorous 3D inversion
applied to an airborne EM survey.

The area is underlain by Archean (≈2.7 ba) mafic to intermediate metavolcanic rocks
in the south, and felsic to intermediate metavolcanic rocks in the north, with a roughly
EW-striking stratigraphy. Narrow horizons of chemical metasedimentary rocks and felsic
metavolcanic rocks have been mapped, as well as a mafic-to-ultramafic intrusive suite to
the southeast. NNW-striking Proterozoic diabase dikes are evident from the aeromagnetic
data. Copper and lead-zinc vein/replacement and stratabound, volcanic-hosted massive
sulfide (VMS) mineralization occur in the immediate vicinity. The Kidd Creek VMS deposit
occurs to the southeast of the test site [37].

For joint inversion, we selected the frequency domain DIGHEM and total magnetic
intensity TMI data collected over a subdomain of the test site. Figure 2 presents a map
of 1068 Hz coaxial DIGHEM observed data. The TMI data were filtered by applying the
third order polynomial regional trend to emphasize responses from the anomalous sources.
Figure 3 presents the filtered TMI data over the same area.
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We have applied the standalone inversions to both DIGHEM and TMI data. Panel
A in Figure 4 shows the conductivity model obtained by the standalone inversion. It
corresponds well to borehole information [38] for this target, which indicates conductive
overburden to a depth of ≈50 m, underlain by layers of intrusive intermediate and felsic
rocks and a strongly fractured graphitic ultramafic intrusion, with concentrations of pyrite
and pyrrhotite up to 80% from 100–120 m measured from the surface. Panel B in Figure 4
presents the magnetic susceptibility model produced by the standalone inversion of the
TMI data. This model resolves a layer of intermediate and felsic volcanics at the bottom
of the domain, underlying the ultramafic intrusion, which complicates isolation of the
ultra-mafic-hosted target.
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Figure 4. The Reid-Mahaffy test site. Panel (A) shows the 3D conductivity (S/m) model produced
from standalone inversion. Panel (B) presents the 3D susceptibility (SI) model produced from
standalone inversion. The red arrow is easting, and the green arrow is northing. The location of the
borehole is shown by short white line. The yellow cylinder on the borehole indicates the confirmed
zone of mineralization.



Geosciences 2021, 11, 262 12 of 15

Figure 5A,B shows the conductivity and susceptibility models produced by joint
inversion of DIGHEM and TMI data with Gramian-based structural constraints. These
models have similar geospatial boundaries, a high degree of structural correlation, and
make isolation of the ultramafic-hosted target much easier. Figures 6 and 7 present the
observed and predicted data for both inversion approaches. Both methodologies achieve
comparable levels of data misfit.
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Figure 5. The Reid-Mahaffy test site. Panel (A) shows the 3D conductivity (S/m) model produced
from joint inversion with Gramian-based structural constraints. Panel (B) presents the 3D susceptibil-
ity (SI) model produced from Gramian joint inversion. The red arrow is easting, and the green arrow
is northing. The location of the borehole is shown by short white line. The yellow cylinder on the
borehole indicates the confirmed zone of mineralization.
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Figure 6. The Reid-Mahaffy test site. Panel (A) shows 1068 Hz coaxial component of the observed
AEM data. Panel (B) shows the same component of AEM data predicted from standalone inversion.
The frequency of 1068 Hz is the most sensitive to the conductive mineralization. Panel (C,D) show
the observed TMI data and those predicted by standalone inversion, respectively.
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Finally, Figure 8 shows the cross-correlation plots between susceptibility and log con-
ductivity produced by standalone and joint inversions. The indistinct pattern representing
the standalone inverted models in Panel A indicates a minimal structural correlation be-
tween the models. In Panel B, conversely, a parabolic trend is apparent. This trend indicates
a high degree of structural correlation between the jointly inverted models. Interestingly,
we can see two distinct trends in correlations corresponding to background models and
the anomalous zone with massive sulfide (VMS) mineralization, respectively.
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Figure 8. Cross correlation plots between susceptibility and log conductivity. Panel (A,B) show the
cross plots for the standalone inverted models and jointly inverted models, respectively. The jointly
inverted models demonstrate the enhanced structural correlation of the target, expressed in electrical
and magnetic properties.
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7. Conclusions

Interpretation of multimodal geophysical data represents a data fusion problem, as
different geophysical fields provide information about different physical properties of the
Earth. In many cases, various geophysical data are complementary, making it natural to
consider their joint inversion based on correlations between the different physical properties
of the rocks. By using Gramian or joint focusing constraints, we are able to invert jointly
multimodal geophysical data by enforcing the correlations or shape similarities between
the different model parameters or their attributes. Our case study for joint inversion of
magnetic and electromagnetic data in the Reid-Mahaffy test site demonstrates that the joint
inversion may enhance the produced subsurface images of the geological target.
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