
TYPE Original Research
PUBLISHED 28 February 2023
DOI 10.3389/feart.2023.1127597

OPEN ACCESS

EDITED BY

Anatoly Yagola,
Lomonosov Moscow State University,
Russia

REVIEWED BY

Dmitry Lukyanenko,
Lomonosov Moscow State University,
Russia
Zhenhua Li,
Schlumberger, China

*CORRESPONDENCE

Michael S. Zhdanov,
michael.zhdanov@utah.edu

SPECIALTY SECTION

This article was submitted to
Environmental Informatics and Remote
Sensing, a section of the journal
Frontiers in Earth Science

RECEIVED 19 December 2022
ACCEPTED 09 February 2023
PUBLISHED 28 February 2023

CITATION

Zhdanov MS, Jorgensen M and Tao M

(2023), Probabilistic approach to

Gramian inversion of multiphysics data.

Front. Earth Sci. 11:1127597.

doi: 10.3389/feart.2023.1127597

COPYRIGHT

© 2023 Zhdanov, Jorgensen and Tao.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Probabilistic approach to
Gramian inversion of
multiphysics data

Michael S. Zhdanov1*, Michael Jorgensen1,2 and Mo Tao1

1Consortium for Electromagnetic Modeling and Inversion, University of Utah, Salt LakeCity, UT, United
States, 2TechnoImaging, Salt LakeCity, UT, United States

We consider a probabilistic approach to the joint inversion of multiphysics data
based on Gramian constraints. The multiphysics geophysical survey represents
the most effective technique for geophysical exploration because different
physical data reflect distinct physical properties of the various components of
the geological system. By joint inversion of the multiphysics data, one can
produce enhanced subsurface images of the physical properties distribution,
which improves our ability to explore natural resources. One powerful method
of joint inversion is based on Gramian constraints. This technique enforces
the relationships between different model parameters during the inversion
process. We demonstrate that the Gramian can be interpreted as a determinant
of the covariance matrix between different physical models representing the
subsurface geology in the framework of the probabilistic approach to inversion
theory. This interpretation opens the way to use all the power of the modern
probability theory and statistics in developing novel methods for joint inversion
of the multiphysics data. We apply the developed joint inversion methodology
to inversion of gravity gradiometry and magnetic data in the Nordkapp Basin,
Barents Sea to image salt diapirs.
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1 Introduction

Different geophysical methods provide information about various physical properties
of rock formations and mineralization. In many cases, this information is mutually
complementary. At the same time, inversion of the data for a particular survey is subject to
considerable uncertainty and ambiguity as to causative body geometry and intrinsic physical
property contrast. One productive approach to reducing uncertainty is to jointly invert
several types of data. In the framework of joint inversion, the goal is to fit different types
of predicted data to the corresponding observed data while keeping specific relationships
between the different physical properties of the rocks. This can be achieved by using
the known petrophysical relationships between different physical properties of the rocks
within the framework of the inversion process (Afnimar et al., 2002; Hoversten et al.,
2006; Moorkamp et al., 2011; Gao et al., 2012; Zhdanov, 2015; Moorkamp et al., 2016;
Giraud et al., 2017; Giraud et al., 2019).

The alternative approach is based on using the Gramian constraints introduced in
(Zhdanov et al., 2012a; Zhdanov et al., 2012b).The advantage of Gramian constraints is that
they enforce the functional relationships between different physical parameters without a
priori knowledge of the specific form of these relationships. In the original publications

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1127597
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1127597&domain=pdf&date_stamp=2023-02-24
mailto:michael.zhdanov@utah.edu
https://doi.org/10.3389/feart.2023.1127597
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2023.1127597/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1127597/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1127597/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhdanov et al. 10.3389/feart.2023.1127597

(Zhdanov et al., 2012a; Zhdanov et al., 2012b; Zhdanov, 2015), the
Gramian constraints were introduced in the framework of the
deterministic approach to the solution of the inverse problem,
which considers the data and model parameters characterized by
specific functions or vectors with certain (maybe unknown) values.
However, there is a probabilistic approach to inverse problemswhere
the observed data and model parameters are treated as realizations
of some random variables. This approach was introduced in the
pioneering papers of (Foster, 1961), (Franklin, 1970), (Jackson,
1972), (Tarantola andValette, 1982), and (Tarantola, 1987; Tarantola,
2005).

It can be demonstrated that both these approaches result in
similar numerical solutions of the inverse problem (Zhdanov, 2002).
At the same time, deterministic or probabilistic interpretation of the
observed data and model parameters emphasize different aspects
of the inversion algorithms. This also helps understand better the
properties of the inversion parameters.

This paper introduces a novel approach to the joint inversion
where the Gramian constraints are represented in the probabilistic
form as the determinant of the covariance matrix between the
different model parameters.

2 Gramian constraints

Gramian constraints enforce the correlation between different
parameters and their transforms or attributes (Zhdanov et al., 2012a;
Zhdanov, 2015). By imposing the requirement of the minimum of
the Gramian mathematical operator in regularized inversion, we
obtain multi-modal inverse solutions with enhanced correlations
between the different model parameters or their attributes.

Let us consider forward geophysical problems for multiple
geophysical data sets. These problems can be described by the
following operator relationships:

d(i) = A(i) (m(i)) , i = 1,2,3,…,n; (1)

where, in a general case, A(i) is a non-linear operator, d(i)

(i = 1,2,3,…,n) are different observed data sets (which may
have different physical natures and/or parameters), and
m(i) (i = 1,2,3,…,n) are the unknown sets of model parameters.

Note that, diverse model parameters may have different physical
dimensions (e.g., density is measured in g/cm3, resistivity is
measured in Ohm-m, etc.).

It is convenient to introduce the dimensionless weighted model
parameters, m̃(i), defined as follows:

m̃(i) =W(i)mm(i), (2)

where W(i)m is the corresponding linear operator of the model
weighting (Zhdanov, 2002; Zhdanov, 2015).

Note that, in the following sections of the paper we will omit
“wave” above the symbols of the model parameters to simplify
the notations. However, we always assume that we work with the
dimensionless model parameters.

These parameters can be described by integrable functions of a
radius-vector r = (x, y, z) defined within some volume V of a 3D
space. The set of these functions forms a complex, in a general case,

Hilbert space of the model parameters, M, with a L2 norm, defined
by the corresponding inner product:

(m(i), m(j))
M
=∭

V
m(i) (r) ⋅m(j)* (r)dv,

‖m(i)‖2
M
= (m(i), m(i))

M
, (3)

where asterisk “*” denotes the complex conjugate value.
Similarly, different data, as a rule, have distinct physical

dimensions as well. Therefore, it is convenient to consider
dimensionless weighted data, d̃(i), defined as follows:

d̃(i) =W(i)d d(i), (4)

where W(i)d is the corresponding linear operator of data weighting.
However, to simplify the notations, we will drop the “wave” above
the symbols of the data, assuming nevertheless that the data are
dimensionless.

The selection of the model and data weights was discussed
in many publications on inversion theory. For example, in the
framework of the probabilistic approach (Tarantola, 1987), the
weights are determined as inverse data covariance or model
covariancematrices. In the framework of the deterministic approach
(Zhdanov, 2002, 2015), the weights are determined as inverse
integrated sensitivity matrices.

We also assume that the data belong to some complex Hilbert
space of the data,D, with the L2 norm, defined by the corresponding
inner product:

(d(i), d(j))
D
=∬

S
d(i) (r) d(j)* (r)ds,

‖d(i)‖2
D
= (d(i), d(i))

D
, (5)

where S is an observation surface.
Joint inversion of multiphysics data can be reduced to

minimization of the following parametric functional,

PαG (m
(1),m(2),….,m(n)) =

n

∑
i=1

φ(m(i))

+ αSG (m(1),m(2),….,m(n)) , (6)

where α ∈ [0,∞) is the regularization parameter.
Misfit functionals, φ(m(i)), are defined as follows,

φ(m(i)) = ‖A(i) (m(i)) − d(i)‖2D; (7)

where A(i)(m(i)) are the predicted data,
The term SG(m

(1),m(2),….m(n)) is the constraint stabilizing
functional. This functional can be introduced as a determinant of
the Grammatrix of a system ofmodel parameters,m(1),m(2),….m(n),
which is called a Gramian (Zhdanov et al., 2012a; Zhdanov, 2015):

SG = G(m(1),m(2),….,m(n))

=
|||||

|

(m(1),m(1)) (m(1),m(2)) … (m(1),m(n))
(m(2),m(1)) (m(2),m(2)) … (m(2),m(n))
… … … …

(m(n),m(1)) (m(n),m(2)) … (m(n),m(n))

|||||

|

, (8)

where (-,-) stands for the inner product in the correspondingHilbert
space of model parameters, defined by Eq. 3.
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Note that, in case of discrete model parameters, expression (3)
for inner product takes the following form:

(m(i),m(j)) =
L

∑
l=1

m(i)l m(j)*l , (9)

wherem(i)l are the discrete values of the corresponding parameter; L
is the total number of every discretized model parameter within the
modeling domain V, assuming that we use the same discretization
for all parameters.

The main property of the Gramian (Eq. 8) is that it is a non-
negative functional, (e.g., Everitt, 1958; Barth, 1999):

G(m(1),m(2),….,m(n)) ≥ 0. (10)

The equality holds in (Eq. 10) if the system of functions
(m(1),m(2),….,m(n)) is linearly dependent.

It was demonstrated in (Zhdanov et al., 2012a) and (Zhdanov,
2015) that one could apply the Gramian constraints to different
transforms of the model parameters. For example, we may
consider differential operations, like gradient, applied to the spatial
distribution of the model parameters. This will result in the shared
Earth model characterized by similar behavior of the gradients
of different physical properties. In this case, Gramian constraint,
similarly to the cross-gradient method (Gallardo and Meju, 2003,
2004, 2007, 2011; Gallardo, 2007), enforces the structural similarity
between different physical inverse models (Zhdanov et al., 2021).
We can also use various functions of the model parameters, e.g.,
logarithms or trigonometric functions, to enforce the correlation
between the transformed parameters.

3 Covariance representation of the
probabilistic Gramian stabilizer

In the framework of the probabilistic approach to the solution
of the inverse problem, we consider the observed data and the
model parameters as realizations of some random variables. The
joint inversion requires the enforcement of some relations between
different model parameters, which can be achieved by adding the
term containing the covariance matrix between different model
parameters, which serves as an analog of Gramian in a deterministic
approach (Zhdanov et al., 2012a).

The probabilistic Gramian stabilizer, SGσ
, can be introduced as

the determinant of the covariance matrix between different model
parameters in a probabilistic approach to the inversion theory:

SGσ
(m(1),m(2),….m(n)) = det(σn)

=

||||||

|

cov(m(1),m(1)) … cov(m(1),m(n−1)) cov(m(1),m(n))
cov(m(2),m(1)) … cov(m(2),m(n−1)) cov(m(2),m(n))
… … … …

cov(m(n−1),m(1)) … cov(m(n−1),m(n−1)) cov(m(n−1),m(n))
cov(m(n),m(1)) … cov(m(n),m(n−1)) cov(m(n),m(n))

||||||

|

.

(11)

It is well known that the determinant of the covariance matrix
is always non-negative, and it is equal to zero if and only if the
random variables, m(1),m(2),…,m(n), are linearly dependent (e.g.,
Ross, 2010). This property of the probabilistic Gramian is similar
to that of the deterministic Gramian defined by Eq. 8. The key

difference is in the way how we treat the model parameters. In
the framework of the deterministic approach, they are described
by specific (though unknown) functions. In the framework of the
probabilistic approach, the model parameters are the realizations of
some unknown random variables.

We should note also that the direct analogy between Eqs. 8
and 11 holds when the random model parameters have zero mean
values. Indeed, in the case of discrete and real model parameters, the
statistical estimate of the covariance is as follows:

cov(m(i),m(j)) = 1
L− 1

L

∑
l=1
(m(i)l − 〈m

(i)〉)(m(j)l − 〈m
(j)〉) , (12)

where ⟨⋅⟩ indicates themean. If themean values are zero, ⟨m(i,j)⟩ = 0,
then according to Eq. 9, we have

cov(m(i),m(j)) = 1
L− 1

L

∑
l=1

m(i)l m(j)l =
1

L− 1
(m(i),m(j)) . (13)

In Supplementary Appendix S1 we discuss the Gramian space
of random variables. One of the important properties of this space
is that the distance between two variables is determined by the
corresponding Gramian.

Let us consider the Gramian space Γ(n) of random variables,
representing model parameters with the core elements formed by
model parametersm(1),m(2),…,m(n−1). Then according to definition
of norm in this space, equations S1 and S8 in the Supplementary
Appendix we can write probabilistic Gramian as the norm of
parameterm(n):

SGσ
(m(1),m(2),….m(n)) = ‖m(n)‖2

Γ(n)
. (14)

We will use this property in formulating the principles of joint
inversion using the probabilistic Gramian.

4 Regularization of the inverse
problem using probabilistic Gramian

Following the general principles of regularization theory, we
can now introduce a probabilistic parametric functional, Pασ as a
linear combination of combined misfit functional,

n
∑
i=1

φ(m(i)), and
probabilistic Gramian:

Pασ (m(1),m(2),…,m(n)) =
n

∑
i=1

φ(m(i))

+ αSGσ
(m(1),m(2),….m(n))

=min, (15)

where α ∈ [0,∞) is regularization parameter.
We should note that the parametric functional is similar to

Eq. 6 if the joint stabilizing functional, SG, is selected equal to the
probabilistic Gramian, SGσ

.
There exist several standard gradient type methods which can

be used to solve the minimization problem—steepest descent,
Newton, and conjugate gradient methods, for example,. All of them
require calculation of the steepest ascent direction (gradient) of the
corresponding functional. In the following section we will consider
this problem in details.
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4.1 Steepest ascent direction of the
probabilistic parametric functional

The first variation of the parametric functional, Pασ , with the
probabilistic Gramian stabilizer can be calculated as follows:

δPασ (m(1),m(2),…,m(n))

= 2
n

∑
i=1
(δA(i) (m(i)) , A(i) (m(i)) − d(i))

Γ(1)D

+ αδSGσ
(m(1),m(2),….m(n)) , (16)

where Γ(1)D is the probabilistic Gramian space of data with inner
product defined by covariance according to formula S12 in the
Supplementary Appendix.

The variation of the probabilistic Gramian stabilizer, according
to Eq. 14, can be expressed as follows:

δSGσ
(m(1),m(2),….m(n)) = δ‖m(n)‖2

Γ(n)

=
n

∑
i=1

δm(i)‖m(
n)‖2

Γ(n)
=

n

∑
i=1

δm(i)‖m(
i)‖2

Γ(i)
, (17)

where we took into account that, according to S11 in the
Supplementary Appendix.

‖m(n)‖2
Γ(n)
= ‖m(j)‖2

Γ(j)
, for j = 1,2,…,n. (18)

Using the properties of the inner product operation in the Gramian
spaces of random variables, Γ(i), we can calculate the variation of the
norm square ofm(i) as follows:

δm(i)‖m(i)‖
2
Γ(i)
= 2(δm(i), m(i))

Γ(i)

= 2cov(δm(i),
n

∑
j=1
(−1)i+jGm

σijm
(j)) = 2cov(δm(i), l(i)Gσ

) ,

(19)

where Gm
σij is the corresponding minor of Gram matrix

Gσ(m(1),m(2),….m(n−1),m(n)) formed by eliminating column i and
row j; and elements l(i)Gσ

are the directions of the steepest ascent for
the probabilistic Gramian stabilizing functionals,

l(i)Gσ
=

n

∑
j=1
(−1)i+jG

m−mapr

σij m(i). (20)

We introduce now the probabilistic Gramian space of the model
parameters, Γ(1)M , with the inner product defined by covariance
according to formula S12 in the Supplementary Appendix.
Therefore, Eq. 19 can be written as follows:

δm(i)‖m(i)‖
2
Γ(i)
= 2(δm(i), m(i))

Γ(i)
= 2(δm(i), l(i)Gσ

)
Γ(1)M
. (21)

Substituting the last formula in Eq. 17, we arrive at the following
expression for the first variation of the probabilistic Gramian:

δSGσ
(m(1),m(2),….m(n)) = δ‖m(n)‖2

Γ(n)

=
n

∑
i=1

δm(i)‖m(i)‖
2
Γ(i)
= 2

n

∑
i=1
(δm(i), l(i)Gσ

)
Γ(1)M
. (22)

Let us examine again Eq. 16 for the variation of the parametric
functional.

Considering that operators A(i) are differentiable, we can write:

δA(i) (m(i)) = F(i)m δm(i),

where F(i)m is a linear operator of the Fréchet derivative of A(i).
Therefore, the inner product in the first term in Eq. 16 can be
modified as follows:

(δA(i) (m(i)) , A(i) (m(i)) − d(i))
Γ(1)D

= (F(i)m δm(i), A(i) (m(i)) − d(i))
Γ(1)D

= (δm(i), F(i)⋆m [A(i) (m(i)) − d(i)])Γ(1)M
, (23)

where F(i)⋆m are the adjoint Fréchet derivative operators.
Substituting Eqs 23, 22 in the first and second terms of Eq. 16,

we obtain the following important result:

δPασ (m(
1),m(2),….m(n))

= 2
n

∑
i=1
(δm(i), lα(i)σ (m(1),m(2),….m(n)))Γ(1)M

, (24)

where lα(i)σ (m(1),m(2),….m(n)) are the directions of the steepest ascent
of the probabilistic functional Pασ :

lα(i)σ (m(1),m(2),….m(n))

= F(i)⋆m [A(i) (m(i)) − d(i)] + αl
(i)
Gσ
= F(i)⋆m r(i) + αl(i)Gσ

, (25)

and r(i) are the residuals between the predicted and observed data:

r(i) = [A(i) (m(i)) − d(i)] . (26)

4.2 Steepest descent method of joint
inversion

The expression for the steepest ascent direction, introduced
above, can be used in constructing the computational schemes for
the different gradient type methods of solving the minimization
Eq. 15.

We begin with the most simple steepest descent method.
Let us select

δm(i) = −kαlα(i)σ (m(1), m(2),….m(n)) , (27)

where kα is some positive real number, and lα(i)σ (m(1),m(2),….m(n))
are the directions of the steepest ascent of the functional Pασ defined
by Eq. 25. Substituting Eq. 27 into Eq. 24, we have:

δPασ (m(1),m(2),….m(n)) = −2kα
n

∑
i=1

lα(i)σ (m(1), m(2) ,….m(n))
2
Γ(1)M
< 0.

(28)

so, the vector,

lασ = (l
α(1)
σ , l

α(2)
σ ,…l

α(n)
σ ) , (29)

describes the “direction” of increasing (ascent) of the functional Pασ ,
in other words, the direction of “climbing” on the hill.
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FIGURE 1
Gzz component of gravity gradiometry data used in the inversions. The black square outlines the inversion area. The profile location is shown by the
black line.

FIGURE 2
Convergence comparison shown as data misfit versus iteration
number. The standalone gravity and magnetic inversions are shown by
the blue and green lines, respectively. The deterministic and
probabilistic Gramian inversions are shown by the black and red lines,
respectively.

To simplify the notations, we introduce vector m formed by
different model parameters:

m = (m(1),m(2),…m(n)) , (30)

and vector Fm formed by the corresponding Fréchet derivative
operators:

Fm = (F
(1)
m ,F
(2)
m ,…F

(n)
m ) . (31)

We can construct an iteration process for the regularized steepest
descent method as follows,

mn+1=mn + δmn=mn − kαnlασ (mn) , (32)

where the coefficient kαn is found by using the minimization of the
parametric functional with respect to kαn:

Pασ (mn+1) = Pασ (mn − kαnlασ (mn)) =Φα (kαn) =min. (33)

In particular, applying the linear line search, we find that the
minimum of the probabilistic parametric functional is reached if kαn
is determined by the following formula:

kαn =
‖lασ (mn)‖

2

‖Fmn
lασ (mn)‖

2 + α‖lασ (mn)‖
2
.

The iterative process Eq. 32 is terminated at n = N when the
combined misfit functional reaches the given level ɛ0:

Φ (mN) ≤ ε0.
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FIGURE 3
Observed and predicted data from standalone inversion. (A) Observed Gzz data (left panel) and data predicted from standalone inversion of gravity
gradiometry data (right panel). (B) Observed TMI data (left panel) and data predicted from standalone inversion of TMI data (right panel).

4.3 Conjugate gradient method of joint
inversion

The conjugate gradient method is based on the same ideas as the
steepest descent, and the iteration process is very similar to the last
one:

mn+1=mn + δmn=mn − k̃
α
n
̃lασ (mn) , (34)

where

δmn = −k̃
α
n
̃lασ (mn) .

However, the “directions” of ascent ̃lασ (mn) are selected in a different
way. At the first step we use the “direction” of the steepest ascent:

̃lασ (m0) = lασ (m0) .

At the next step the “direction” of ascent is a linear combination of
the steepest ascent at this step and the “direction” of ascent ̃lασ (m0)on

the previous step:

̃lασ (m1)= lασ (m1) + β1 ̃l
α
σ (m0) .

At the nth step

̃lασ (mn+1)= lασ (mn+1) + β
α
n+1
̃lασ (mn) . (35)

Determination of the length of iteration step, a coefficient k̃αn, can
be based on the linear or parabolic line search:

Pασ (mn+1) = Pασ (mn − k̃
α
n
̃lασ (mn)) = f (k̃

α
n) =min.

Solution of this minimization problem gives the following best
estimation for the length of the step using a linear line search:

k̃αn =
̃lαTσ (mn) lα (mn)

‖Fmn
̃lασ (mn)‖

2 + α‖ ̃lασ (mn)‖
2 . (36)

One can use a parabolic line search also (Fletcher, 1995) to improve
the convergence rate of the RCG method.
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FIGURE 4
Observed and predicted data from deterministic Gramian inversion. (A) Observed Gzz data (left panel) and data predicted from deterministic Gramian
inversion of gravity gradiometry and TMI data (right panel). (B) Observed TMI data (left panel) and data predicted from deterministic Gramian inversion
of gravity gradiometry and TMI data (right panel).

The CG method requires that the vectors ̃lασ (mn) introduced
above will be mutually conjugate. This requirement is fulfilled if the
coefficients βn are determined by the formula (Zhdanov, 2002, 2015)

βαn+1 =
‖lασ (mn+1)‖

2

‖lασ (mn)‖2
. (37)

Using Eqs 34–37, we can obtainm iteratively.
The iterative process Eq. 34 is terminated when the combined

misfit functional reaches the given level ɛ0:

Φ (mN) = ‖rN‖
2 ≤ ε0.

5 Example: Nordkapp Basin

The developed algorithm of joint probabilistic Gramian
inversion based on the conjugate gradientmethod was implemented
in the computer code and carefully tested on synthetic models.
We have also applied this novel method to joint 3D inversion
of the gravity gradiometry, and total magnetic intensity
(TMI) data gathered over the Nordkapp Basin, the principal
salt-producing basin in the western Barents Sea. Finally,

we compare results obtained from standalone, deterministic
Gramain and the developed probabilistic Gramian inversion
approaches.

5.1 Geologic setting of the Nordkapp Basin

The evolution of the Barents Sea and Nordkapp Basin is
the consequence of a succession of tectonic events and climatic
fluctuations that have affected the Barents Sea from the Late
Devonian to the present day (Dengo and Røssland, 1992). There
is a complicated distribution of structural highs, domes, platforms,
and basins in the western Barents Sea, including the Nordkapp
Basin.

Seismic exploration is the most prevalent method for locating
the hydrocarbon (HC) deposits. Due to weak primaries, strong
multiples, and diffraction noise, however, seismic imaging of salt
diapirs is extremely difficult. The salt structures are surrounded by
a “shadow zone” where continuous seismic reflectors are difficult to
understand (Hokstad et al., 2011). As the top of the diapir is exposed
to meteoric water under terrestrial conditions, the halite portion of
the diapir will disintegrate, leaving behind a disordered, cumulated
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FIGURE 5
Observed and predicted data from probabilistic Gramian inversion. (A) Observed Gzz data (left panel) and data predicted from probabilistic Gramian
inversion of gravity gradiometry and TMI data (right panel). (B) Observed TMI data (left panel) and data predicted from probabilistic Gramian inversion
of gravity gradiometry and TMI data (right panel).

cap rock layer. These fragments of changing density and velocity
will generate random reflections that exacerbate the difficulty of
recovering the geomorphology of the diapirs using only the seismic
method. Proper imaging of the diapirs from top to bottom is critical,
as large salt bodies might contain small hydrocarbon volumes, but
small salt bodies with an overhang can contain large hydrocarbon
volumes.

To overcome this difficulty, a multiphysics approach is
required to properly illuminate the complete geologic picture.
Gravity gradiometry, TMI, and EM data have been acquired
and inverted to fill in the gaps left by the incomplete seismic
picture (Gernigon et al., 2011; Stadtler et al., 2014; Paoletti et al.,
2020; Tao et al., 2021; Tu and Zhdanov, 2021, 2022). We examine
the Uranus diapir in this example, which ultimately failed to
present the HC deposit after drilliing. While the salt volume
was large, the overhang critical to trap hydrocarbons was not
present.

The Gzz component of the gravity gradiometry data used in
the inversions is shown in Figure 1. The black square indicates the
inversion area, and the profile AA’ traversing the Uranus diapir is
shown by the black line in Figure 1.

5.2 Inversion parameters

The 3D voxel-based inversions were all carried out with a
parallelized GPU code utilizing a moving sensitivity domain to
minimize computation (Cuma et al., 2012; Cuma and Zhdanov,
2014). Voxel size was 200 m laterally with a logarithmic vertical
discretization of 40–800 m spaced over 32 layers. Details of the
forward modeling methodologies can be found in (Jorgensen and
Zhdanov, 2021). All components of the gravity tensor and TMI
data were inverted towards density andmagnitude of magnetization
vector.

The inversions were all terminated when the respective data
misfits reached the error level of about 5%. The plot of data misfit
versus iteration shown in Figure 2 demonstrates the probabilistic
Gramian approach converged to a solution in roughly half the
number of iterations as the deterministic Gramian approach.
The standalone inversions converged to a solution in less than
ten iterations; however, these models exhibited less structural
correlation than the models derived from joint inversion.

Figures 3, 4, 5 show the comparison of observed data and
data predicted from the different inversion methodologies. The
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FIGURE 6
Standalone inversion results. (A) Profile AA’ extracted from 3D density
model obtained from standalone inversion of gravity gradiometry data.
(B) Profile AA’ extracted from 3D magnetization model obtained from
standalone inversion of TMI data.

data misfits of approximately 5% are comparable for all inversion
methodologies.

5.3 Inversion results comparison

5.3.1 Standalone inversion results
Vertical profiles extracted from the 3D voxel models of density

and magnetization obtained from standalone inversions of the
gravity gradiometry and TMI data, respectively, are shown in
Figure 6. A typical density of the base tertiary rocks in the area
of investigation is within 2.30–2.38 g/cm3. The Uranus salt diapir
is characterized usually by negative density anomalies, which is
clearly seen in Figure 6. The negative magnetization within the
salt diapir indicates that it is opposite to the direction of the
inducing magnetic field, which corresponds to a diamagnetic
property of the salt structures. At the same time, the magnetization
is positive outside the diapir which is typical for paramagnetic
minerals present in Cretaceous sea-bottom layers of the host
formations (Paoletti et al., 2020; Tao et al., 2021). Thus, the volume
distribution of the density and magnetization, produced by
inversion is indicative about the salt diapir structure in theNordkapp
basin. However, while the anomalies in the respective models are
roughly coindicent, the gross morphology of the bodies varies
widely.

FIGURE 7
Deterministic Gramian inversion results. (A) Profile AA’ extracted from
3D density model obtained from deterministic Gramian inversion of
the gravity gradiometry and TMI data. (B) Profile AA’ extracted from 3D
magnetization model obtained from deterministic Gramian inversion
of the gravity gradiometry and TMI data.

5.3.2 Deterministic Gramian inversion results
The deterministic Gramian inversion improved the structural

correlation of the inverse density and magnetization models.
Compared to the models obtained from standalone inversions, we
see a stronger agreement in gross morphology across the respective
models. The vertical profiles extracted from the 3D voxel models
of density and magnetization obtained from deterministic Gramian
inversion of the gravity gradiometry and TMI data, respectively, are
shown in Figure 7).

5.3.3 Probabilistic Gramian inversion results
Finally, the same vertical sections extracted from the 3D voxel

models of density and magnetization obtained from probabilistic
Gramian inversion of the gravity gradiometry and TMI data,
respectively, are shown in Figure 8.Thesemodels show the strongest
degree of correlation across the density and magnetization models,
giving a more definitive picture of the Uranus diapir. We can see,
indeed, that the structural overhangs necessary for a hydrocarbon
trap are absent despite a large salt volume. The poor candidacy for
hydrocarbon exploration was confirmed by drilling.

The probabilistic Gramian approach proved to be more
numerically stable and efficient, and produced models with
enhanced structural correlation.
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FIGURE 8
Probabilistic Gramian inversion results. (A) Profile AA’ extracted from
3D density model obtained from probabilistic Gramian inversion of the
gravity gradiometry and TMI data. (B) Profile AA’ extracted from 3D
magnetization model obtained from probabilistic Gramian inversion of
the gravity gradiometry and TMI data.

FIGURE 9
Cross plots of the density and magnetization values surrounding the
Uranus diapir. The blue dots represent the correlation from the
standalone inversions. The green and red dots represent the
correlation from the deterministic and probabilistic Gramian
inversions, respectively.

Petrophysically guided inversion can be a useful tool in
refining inversion results (Sun and Li, 2015); however, the a priori
petrophysical relations may be unknown. One advantage of the
Gramian approach, deterministic or probabilistic, is the oppotunity
to see these petrophysical relations in a parametric cross plot
of the inverted models. We present cross plots of density versus
magnetization for each of the inversion methodologies in Figure 9.

The “cloud” of correlations shown by the blue dots in Figure 9
makes it difficult to determine any a priori relations in the standalone
inversions. The calculated correlation coefficient for the standalone
inversions in the area surrounding theUranus diapir is 0.7.The cross
plots for the deterministic and probabilistic Gramian inversions
are shown by the green and red dots in Figure 9, respectively.
Compared to the standalone inversions, a clear trend is now
discernible in the scattered correlations. The calculated correlation
coefficient for the deterministic Gramian is 0.73, which is amarginal
improvement over the standalone inversions, and 0.93 for the
probabilistic Gramian, which is a significant improvement over the
other inversion methodologies.

6 Conclusion

Joint inversion of multiphysics data based on the Gramian
constraints represents a powerful tool for integrated interpretation.
The Gramian is defined as the determinant of the Gram matrix
formed by models of different physical properties of the geologic
formations, e.g., density, electrical conductivity, seismic velocity,
magnetization, etc. This definition appears naturally in the
framework of the deterministic approach to the inverse problem.
At the same time, a significant body of research is based on the
probabilistic approach to the inversion theory. In this case, the
observed data, and the physical models are treated as the realizations
of some random variables. The advantage of the probabilistic
approach over the deterministic one is that the former provides
some valuable statistics about the probability and accuracy of the
physical models produced by the inversion.

We have developed and presented joint inversion methods
based on the probabilistic approach, which provides insight into
the properties of the inversion and helps improve the reliability of
the inversion results. This was illustrated in the example from the
Nordkapp Basin, where inverted models had a higher structural
correlation and the numerical scheme was more efficient compared
to the deterministic approach.

We have demonstrated how the joint Gramian-based inversion
could be reformulated using the probabilistic approach. The
Gramian is an analog of the determinant of the covariance matrix
between the different physical properties representing the geologic
formations. This helps understand better the role of the Gramian
in enforcing the relationships between different physical models. It
presents an alternative numerical implementation of the Gramian-
type constraints by using the statistical estimates of the components
of the covariance matrix.

The incorporation of the covariance in the Gramian constraint
is an example of a Gaussian process, and was used to determine
the relationship between the model parameters and data with
no a priori knowledge. This opens the door to more modern
probabilistic approaches, such as empirical Bayes, where model
parameters can be estimated directly from the data in areas
with little a priori knowledge. Such a prediction will, of course,
depend on the amount and veracity of a priori knowledge
or training models. Gaussian processes, Bayesian statistics, and
empirical Bayes paired with rapidly advancing joint inversion
strategies present a promising future for multi-modal geophysical
inversion.
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