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Abstract— The study and assessment of the subsurface density
distribution are vital for mining and oil and gas exploration. This
can be achieved by the 3-D inversion of the observed gravity and
gravity gradiometry (GG) data. Due to the ill-posedness of the
geophysical inverse problem, the nonuniqueness and instability
of solutions represent the main difficulties in inversion. In recent
years, convolutional neural networks, especially U-net technology,
have found wide applications in image processing, recognition,
and reconstruction. This article proposes using this method for
fast reconstruction of the subsurface density models based on the
ResUnet technology. The developed new method was examined on
two 3-D synthetic gravity and GG datasets inversion. The results
show that the ResUnet network can reconstruct the density
anomaly with sharp boundaries and is robust to the noise, making
the solution stable.

Index Terms— 3-D inversion, gravity and gravity gradiometry
(GG), ResUnet.

I. INTRODUCTION

THE reconstruction of subsurface density distribution is
routinely used for mapping geological formations in

mineral, geothermal, and hydrocarbon exploration. The density
model helps improve seismic velocity models for imaging
salt and basalt structures. In addition, independent measure-
ments of the gravity field and gravity gradiometry (GG) data
are extensively used for determining 3-D density models in
regional geological settings.
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Over the last decades, many publications have been
dedicated to regularized inversion of gravity and GG
data [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. For
example, articles [2], [12], [13], [14] present the smooth solu-
tions of gravity field inversion based on the minimum norm
and maximum smoothness stabilizing functionals. However,
the results of smooth inversion usually have low contrast
compared to true geology, which makes smooth inverse models
poor approximations of the real geological structures.

It was demonstrated by Zhdanov [6], [7] that regularized
solution of an ill-posed inverse problem can be produced
by special stabilizing functionals enforcing the sharp bound-
aries of the density contrast within the inverse models. For
example, Portniaguine and Zhdanov [15] proposed focus-
ing regularization inversion method to resolve the shape of
the density anomalies by minimizing the areas with large
gradients. This method was successfully applied to gravity
inversions [7], [16], [17], [18]. Another approach to recovering
the blocky geological structures can be based on L1 norms and
total variation minimization [6], [19], [20], [21], [22]; however,
this approach generates smaller contrast images than one based
on focusing regularization [6]. Xu et al. [23] proposed a novel
hybrid imaging procedure to study the density contrast basin
boundary to improve the resolution.

In the past decade, the idea of integrating the known geolog-
ical and petrophysical data as a priori information into various
geophysical inversion algorithms, such as fuzzy c-means [24],
and multinary transformation [25], has attracted substantial
attention. Bringing a priori information would enhance the
reliability of the inverse models, making them consistent with
the known geology.

Another approach to incorporating a priori geological infor-
mation to solve the inverse problem is based on machine learn-
ing (ML). Several recent publications have considered using
unsupervised ML algorithms to solve gravity or/and magnetic
inverse problems (see [26], [27], [28]). However, unsuper-
vised learning still requires some geological information to
validate the results. In contrast, the supervised ML methods
can predict the models using a priori geological information.
Common types of classification algorithms, such as linear
classifiers [29], [30], support vector machines [31], decision
trees [32], and random forecast [33], [34], have been applied
to address geophysical inverse ill-posed problems. In addition,
linear regression [35], logistic regression [36], [37], and poly-
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nomial regression [38] have been successfully used to recover
subsurface physical properties. However, supervised learning
is limited in handling complex tasks, and the training process
computation is time-consuming.

As another type of supervised learning, deep learning
(DL) uses a neural network to mimic the mechanism of
the human brain for analytical learning and geoscience data
interpretation by understanding the relationship between the
data and model properties [39], [40]. Due to its excellent
capabilities in feature learning and information extraction,
DL can complement traditional geophysical inversion. For
example, the variations of density values, 3-D shapes, and
distribution of anomalous bodies in the subsurface lead to the
change of 2-D gravity observation data on the surface. The
convolutional neural network (CNN) uses end-to-end learning
to extract the relationships between 2-D gravity data and
the 3-D density model [41], [42]. He et al. [43] proposed a
novel method for depth-to-basement estimation using a CNN
network and successfully applied it to the accurate delineation
of sedimentary basins using gravity data.

The quantification of uncertainty in geophysical inverse
problems can be accomplished through the Bayesian inference
framework using Markov chain Monte Carlo (MCMC) sam-
pling of posterior probability density [44]. Trans-dimensional
MCMC has been proposed as a method for jumping into dif-
ferent states characterized by different model dimensions [45],
[46], [47]. In the deterministic framework, uncertainty can
be qualitatively assessed by varying initial or reference mod-
els [48], or quantitatively analyzed by analyzing the linearized
model covariance matrix [1]. In the DL framework, Bayesian
neural networks are used to estimate the posterior probability
distribution of the model parameters, which provides a prob-
abilistic interpretation of the uncertainty [49].

This study establishes the nonlinear mapping between grav-
ity and GG field data (as the input) and the anomalous
density model based on the convolution network approach.
The developed method was tested on the synthetic gravity and
GG field data and applied to interpreting the optimized GG
data sets collected in Nordkapp Basin, Barents Sea.

II. INVERSION METHODOLOGY BASED ON RESUNET
NETWORK

A. Generation of Training Sets

The ResUnet network is trained using a carefully con-
structed training set, designed to enable the network to capture
comprehensive features from input gravity and GG data and
build an inherent correlation with the 3-D output-labeled iso-
lated density anomalies. To achieve this, anomalous blocks of
varying sizes were arbitrarily selected and placed at different
locations in the subsurface, and the corresponding gravity and
GG data were generated by forward modeling. The horizontal
size of the anomalies ranged along the x-axis and y-axis within
0–4000 m, and the depth range along the z-axis was 0–1000 m.
The blocks were arranged with a minimum plumb distance
from each face to the face of the corresponding model space.
The area of inversion was discretized into 4000 cells with
a uniform density of 200 × 200 × 100 m, and stations

Fig. 1. Workflow of the training set generation.

Fig. 2. Histogram of the grid filling.

were positioned along 21 survey lines with a spacing of
200 m between each line. To simulate the complexity of actual
geological scenarios, the residual density of the anomalous
bodies was randomly selected from the interval [−1, 1] g/cm3.
The training set generation workflow is illustrated in Fig. 1.

We divided the training data into two disjoint subsets. The
training set was used to learn the parameters, such as weights
and thresholds, in each layer. The other subset was used as a
validation set to estimate the generalization error and update
the hyperparameters through the trial-by-error method. The
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Fig. 3. (a) Overview of the structure of ResUnet network. (b) Characteristic
operations of direct connection and shortcut in each step along the encoding
part (modified from [43]). (c) Characteristic operations of concatenating
between layers along encoding and decoding parts.

hyperparameters, including convolutional layer parameters,
pooling layer parameters, network depth, and network width,
followed the classical network structure parameters of U-net
and ResNet. We used 11 903 training models as output labels
and corresponding surface gravity and GG responses as input
labels. We randomly selected 80% of the data for the training
and validation sets, and the remaining data were used for
testing. To prevent overfitting and underfitting of the DL
model, except for some grids near the boundaries, the density
of the 11 903 models with different shapes was approximately
7000–8000 times per grid on average (see Fig. 2).

B. Structure of ResUnet Network

We use a CNN with an end-to-end learning network struc-
ture, where the 2-D observed anomalous gravity and GG data
are considered inputs, and the 3-D anomalous density models
are treated as training labels. The loss function is crucial in
obtaining the perturbation of the weights and thresholds within
the network. The loss function of the ψ th training set is defined
as E(ψ), using the root mean square error as

E(ψ) =

√
1
n

∑n

i=1

(
ρi − ρ̄i

)2 (1)

where ρi and ρ̄i represent the true and predicted values of the
unit density of the anomalies, respectively.

In this article, we choose the ResUnet architecture for
training the networks, whose structure is shown in Fig. 3(a).
Different input features are incorporated in the network struc-
ture throughout encoding (left) and decoding (right) to improve
the accuracy of prediction.

In the encoding part, a convolution residual block (Conv
block) and an identity block are assembled within each step,
where the output from the previous layer provides the feature
extraction in the two-way forms [see Fig. 3(b)]. One is termed
a direct connection, where the Conv block offers the function
extracting the local features of the input throughout three

Fig. 4. (a) 3-D view model 1. (b) Y –Z view model. (c) X–Y view model.
(d) X–Z view model.

convolution layers by implementing the Hadamard product
of the gravity feature matrixes with the convolutional kernel
(3 × 3) shown in Fig. 3(b). We chose the stride length as
1 to enhance the utilization efficiency of gravity and GG
field anomaly. The identity block is responsible for taking
out some portion of complexity input before the convolution
through a shortcut marked as a blue arc shown in Fig. 3 and
summing these with the features extracted by the subsequent
Conv block before trigging rectified linear unit (ReLu) active
function [50]. Unlike the Conv block, there is no convolution
layer in the shortcut path shown in Fig. 3(b). The identity
block is only available if the output and input share the same
shape; alternatively, linear projection is applied. Furthermore,
to suppress redundant information from the extracted feature
maps and compress the dimension of the features, we use
a 2 × 2 × 2 maximum pooling block [51] to keep translation
and stretching invariances for passing effective outputs further
down.

In the decoding path, each step comprises a 2 × 2 ×

2 up-sampling block, a Conv block, and an identity block,
which function to convert the extracted features back to the
physical property value of the residual density model. The
pooling operations during the encoding stage gradually lose
the gravity image details. Therefore, the high-order gravity
feature maps extracted during the encoding stage are integrated
with the low-order feature map enlarged by the up-sampled
response by concatenating, synthesizing composite features
containing the spatial information and passing them down
to the next layer [see Fig. 3(c)]. The concatenation, similar
to the shortcut, allows for stacking deeper networks while
avoiding degradation issues, ensuring network efficiency, and
enhancing network performance. Compared to the encoding
part, the decoding layer compensates for detailed information
and can better retain the original features while achieving a
good denoising effect.

III. SYNTHETIC MODEL STUDIES

A. Model 1

This study employed a synthetic modeling scenario (Fig. 4)
to serve as a reference and illustrate the challenges that may
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Fig. 5. (a) 3-D view model recovered by FCN network. (b) Learning
history of FCN network. (c) 3-D view model recovered by ResNet network.
(d) Learning history of ResNet network. (e) 3-D view model recovered by
U-net network. (f) Learning history of U-net network. (g) 3-D view model
recovered by ResUnet network. (h) Learning history of ResUnet network.
(i) Predicted response by ResUnet network. (j) Observed response by ResUnet
network.

arise when implementing conventional CNN architectures. The
limitations identified in these conventional models motivated
the assessment of the ResUnet architecture, which is presented
in subsequent sections of this article.

Fig. 3 illustrates that the density anomalies predicted by
the ResUnet network described in this study are consistent
with the theoretical model, albeit with a certain density
discrepancy, with an absolute density error range of 0.01–
0.67 g/cm3. Notably, the density model recovered by the
ResUnet network [see Fig. 5(g)] is faithful to the synthetic
model with a sharp boundary and accurately reflects the true
density values (see Fig. 4), outperforming the results predicted
by other networks [see Fig. 5(a), (c), and (e)]. The fitting
between the predicted and observed data is demonstrated
in Fig. 5(i) and (j), where the predicted gravity responses
match well with the observed data. We should acknowledge
that the ResUnet network constructed in this study has more
hyperparameters than other networks, resulting in a prolonged

TABLE I
LIST OF FITTING BEHAVIORS AND ERRORS ANALYSIS

Fig. 6. (a) 3-D view of model 2. (b) Y –Z view of model. (c) X–Y view of
the model. (d) X–Z view of the model.

training time. Nevertheless, after training, the network displays
good robustness, requires less inversion time, and yields better
results. A detailed summary of all cases in our synthetic study
is presented in Table I, and the corresponding learning histories
are shown in Fig. 5(c), (d), (f), and (h), respectively.

B. Model 2

Model 2 comprises a density dike and two cubic bodies
with a top depth of 200 m, as illustrated in Fig. 6. To assess
the stability of the trained ResUnet network when processing
noisy data, we intentionally added independent Gaussian noise
to each component of the gravity field with a mean of zero
and standard deviation of 5%, 10%, and 15%. The gravity
survey area ranges from 0 to 4000 m along the x- and
y-axes. To reconstruct the density model, we implemented
three strategies: 1) utilizing individual seven scalar compo-
nents of the gravity and GG fields; 2) joining gz , gxy , gxz ,
and gyz components; and 3) integrating gz , gzz , gxx , and gyy

components.
The reconstructed density models recovered from seven

individual components (rows from top to bottom) contami-
nated by different noise levels (columns from left to right) are
presented in Fig. 7. The trained ResUnet network is observed
to capture the locations and shape of the density dike and
the two cubic bodies accurately, avoiding smooth features
and smeared-out boundaries that are typically produced by
traditional smooth gravity inversion. The results indicate that
the recovered density values of some inversion grids are
randomly distributed based on some components, such as gz ,
gxy , and gyy , with the increase of noise level contamination.
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Fig. 7. (Top-down) present inverted models recovered from independent gz ,
gzz , gxy , gxz , gyz , gxx , and gyy , respectively. (Left-right) depict the inverted
models with 5%, 10%, and 15% random noise, respectively.

In contrast, the recovered density values derived from the
remaining components (circled as a solid red rectangle) exhibit
good stability and accuracy, being much closer to the true
value.

Figs. 8 and 9 depict the recovered anomalous density models
resulting from two distinct joint components (gz–gxy–gxz–
gyz and gz–gxx –gyy–gzz) that were contaminated by varying
levels of noise and processed by the trained ResUnet network.
In comparison to the outcomes derived from individual compo-
nents displayed in Fig. 7, the inverted models obtained from
the joint components exhibit improved noise resistance and
precision regarding both the spatial density distribution and
the inverted density values.

Fig. 10 displays the rose diagrams for the normalized misfit
obtained from the models recovered by individual components
(see Fig. 7) and the two different joint components (see Figs. 8
and 9) against various levels of random noise, i.e., free-noise,
5%, 10%, and 15%. The results show that the increase in
noise level decreases the closeness of fitting of gz , gyy , and,

Fig. 8. Rows (top-down) present inverted models for joint components (gz ,
gxy , gxz , and gyz) without noise and with 5%, 10%, and 15% random noise,
respectively. (a-1)–(d-1) depict 3D view, (a-2)–(d-2) Y –Z view, (a-3)–(d-3)
X–Y view, and (a-4)–(d-4) X–Z view of the inverted model, respectively.

Fig. 9. Rows (top-down) present inverted models for joint components (gz ,
gxx , gyy , and gzz) without noise and with 5%, 10%, and 15% random noise,
respectively. (a-1)–(d-1) depict 3D view, (a-2)–(d-2) Y –Z view, (a-3)–(d-3)
X–Y view, and (a-4)–(d-4) X–Z view of the inverted model, respectively.

gxy , leading to a relatively weaker model recovery ability in
the validation stage, as observed in Fig. 8. Second, the fitting
of the joint components (red and green) is better than that
obtained by independent inversions (solid black line) for all
noise scenarios, as seen in Fig. 10(b)–(d). Therefore, the model
recovered from multicomponent data (see Figs. 8 and 9) is
more consistent with the actual model than those obtained
from individual components shown in Fig. 7. Moreover, the
density models reconstructed by the two joint components are
almost identical. These results suggest that the well-trained
DL network model can automatically extract features from the
data with noise, which has a negligible effect on the inversion
results.
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Fig. 10. Rose diagrams for the normalized misfit derived from the models
recovered by the individual, and the two different joint components against
(a) free-noise, (b) 5%, (c) 10%, and (d) 15%, respectively.

Fig. 11. Histograms of noise distributions. Histograms of normalized misfit
(a-1)–(a-3) gz , (b-1)–(b-3) gxy , (c-1)–(c-3) gxz , and (d-1)–(d-3) gyz derived
from independent and joint components with (a-1)–(d-1) 5%, (a-2)–(d-2) 10%,
and (a-3)–(d-3) 15% random noise, respectively.

To evaluate the denoising capability of the trained ResUnet
network, we conducted a separate analysis of the noise data
by subtracting the predicted data based on different recovered
models with varying random noise levels. The histograms of
noise distributions are presented in Figs. 11 and 12, where
the red color represents the true noise, the green color shows
the individual components, and the blue color displays the
two joint components as gz–gxy–gxz–gyz (see Fig. 11) and
gz–gxx –gyy–gzz (see Fig. 12), respectively. The results show

Fig. 12. Histograms of noise distributions. Histograms of normalized misfit
(a-1)–(a-3) gz , (b-1)–(b-3) gxx , (c-1)–(c-3) gyy , and (d-1)–(d-3) gzz derived
from independent and joint components with (a-1)–(d-1) 5%, (a-2)–(d-2) 10%,
and (a-3)–(d-3) 15% random noise, respectively.

that for most gravity components with different noise levels,
the distribution of intercepted noise data is approximately the
same as the true distribution, with a mean of 0 and standard
deviation of 5%, 10%, and 15%, respectively. This suggests
that, compared to individual components, the trained ResUnet
network demonstrates more stable anti-noise performance
when carrying out the inversion of joint components. However,
for the gz , gxy , and gyy components, their noise distributions
with a mean of around −0.05 exhibit certain discrepancies.

IV. CASE STUDY

A. Geological Characteristic of the Area of a 3-D Marine
FTG Survey

The full-tensor gradient (FTG) survey was conducted in the
Nordkapp Basin located in the Barents Sea offshore Norway
[see Fig. 11(a)]. The Nordkapp Basin can be further subdi-
vided into two regions: the southwestern part (SWP) and the
northeastern part (NEP). The SWP sub-basin (Obelix survey
location) is a narrow, northeast-trending geological structure
extending over a distance of 150 km and has a width of 25–
50 km [52]. It encompasses more than 17 complex salt diapirs
that represent the major geological structures in the area [see
Fig. 13(b)]. On the other hand, the NEP sub-basin covers an
area of 200 km in length and has a width of 50–70 km, and
it includes over 16 salt structures. Hydrocarbon exploration
in the Nordkapp basin commenced in the 1980s. Currently,
three wells have been drilled on the flanks of the basin.
Recent geological and geophysical explorations indicate that
hydrocarbon reservoir discovery within the Nordkapp basin
has the potential for success, with promising results outside
the basin.

The main geological targets in the Nordkapp Basin in the
Barents Sea are the salt diapirs G2 and F2. These targets
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Fig. 13. Geological maps in the Barents Sea area. (a) Main structural
elements in the Barents Sea area, location of Nordkapp Basin and 3-D FTG
survey. Modified from Johansen et al., 1993. (b) Simplified structural map of
the Nordkapp basin showing salt diapirs and main fault zones. Black zones
show subcrops of diapirs at or near the Pliocene-Pleistocene unconformity.
Modified from Zhdanov and Lin [25].

Fig. 14. Obelix 3-D FTG Survey Grid with Seismic Horizons. The main
geological targets are the salt diapirs G2 and F2, which are manifested by the
absence of well-resolved seismic horizons. The area remarked by solid red
line is the original FTG survey grid. The subset marked by solid black line
of the original FTG data focuses on the two salt diapir areas (G2 and F2).
Two profiles A–A′, B–B′, and one seismic line is represented S-S′ by the red
dashed line.

Fig. 15. Seismic Trace (S–S′) depth migrated profile from 3-D survey
showing salt feature G2 and F2 and typical imaging ambiguity of high
resolution seismic. The solid purple line represents interpreted salt edge
derived from seismic. The interpreted edges were provided by Statoil without
any detailed information.

are difficult to image with seismic horizons due to their
complex geometries (see Fig. 14). Although seismic tools
have advanced, the interpretation of salt structure remains
challenging due to the underdetermined inversion models of
the salt isopach (see Fig. 15). To address this, the FTG

Fig. 16. Vertical slices of the inversion results along the profiles A–A′ and
B–B′, respectively. (a–b) using the traditional smooth inversion and (c–d)
using the ResUnet network.

survey was conducted to provide additional information on the
complex salt overhang structures. FTG is a suitable solution
for such problems since it is highly sensitive to geological
anomalies with significant density contrasts. Statoil offers two
types of salt base interpretation, one derived from seismic data
marked by a solid purple line, and the other from FTG data
marked by the red dashed line, which will be used to recognize
and validate the inversion results.

To overcome these challenges, a rigorous 3-D inversion of
the FTG data must be implemented. Previous publications
have used focusing regularization for sharp boundary inversion
of the FTG data in the Nordkapp Basin [11], [18], [53].
In this article, we present preliminary results of inversion using
ResUnet, which is capable of establishing the relationship
between labels, geological models, trained data, and predicted
data to resolve sharp density contrasts between salt structures
and the surrounding host rock.

B. Results

In Fig. 14, the FTG survey area is delineated by the solid
red line. As the primary geological targets are the salt diapirs
G2 and F2, we have chosen a subset of the FTG data from the
original data set to concentrate on these two salt diapir regions
marked by the solid black lines. The receivers were positioned
at 300 m intervals along survey lines laid out along the Eastern
region, with a separation of 300 m. We present the inversion
outcomes as vertical sections along profiles A–A′, B–B′, and
seismic profile S–S′.

Referring to the noise distribution analysis of the synthetic
study, we have applied the well-trained ResUnet network by
feeding the four components of FTG data: gxx , gxz , gyz , and
gzz , neglecting gz , gxy , and gyy . We have selected a modeling
domain of 20 km (east-west, x-axis) × 11 km (north-south,
y-axis) and continued until at a depth of 8 km (z-axis). The
vertical discretization increases logarithmically from 100 m
near the surface to 500 m at the bottom. This volume of
inversion was discretized in 55 × 32 × 32 = 56 320 cells,
and the selected modeling domain may represent a salt base
or a deeper source down to approximately 8 km for salt
structures F1 and G2. The total training time is approximately
55 min and the prediction time is around 7 s. For comparison,
we implemented traditional smooth inversion to compare with
the DL algorithm.

Fig. 16 shows the two inversion results using the four
components in the form of vertical sections along the profiles
A–A′ and B–B′, respectively. Fig. 16(c) and (d), show the
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Fig. 17. Vertical slices of the inversion results along the profiles S–S′ and
3-D view, respectively. (a) Seismic profile S–S′ overlaps with a cross section
of the inversion result using the ResUnet network and (b) 3-D view of the
reconstructed density model.

Fig. 18. Map of the observed and predicted data for the six components of
FTG data: gxx , gxz , gyz , and gzz .

clear salt diapirs G2 and F2 geometry with a sharp boundary
between salt diapirs and host rock, the model reconstructed by
the ResUnet network. In contrast, the density model recovered
by the typical smooth inversion in Fig. 14(a) and (b) is
characterized by smooth features and smeared-out boundaries.
Note that the focusing inversion results presented in [53] also
show the sharp boundaries of the salt diapers.

To validate the accuracy of the results and make a com-
parison with inversion results produced by different methods,
we project two 2-D vertical cross sections of inverted density
contrasts along the corresponding seismic trace S–S′ profile in
Fig. 17(a). The model reconstructed from the trained ResUnet
network shows that the bottom edge of the salt diapir (F2)
with relatively sharp density contrast is close enough to the
interpreted ambiguity salt edge (solid purple line) derived from
seismic. The 3-D view of the reconstructed density model is
shown in Fig. 15(b). One can see that the geometry of two salt
diapirs F2 and G2 can be clearly identified using the trained
ResUnet network.

A comparison between observed and predicted FTG data
is shown in the Fig. 18. One can see that for the four FTG

components, the agreement between the predicted and the
observed data is still very good. An average misfit between
the observed and predicted data is around 7.5% which was the
same as used as termination criteria by Zhdanov and Lin [25].
It was reached in about 20 iterations.

Nevertheless, it is relevant to note that the exclusive depen-
dence on density contrasts as the singular rock parameters
for characterizing gravity gradiometric anomalies imposes
certain constraints. Specifically, the densification of sediments
with increasing depth produces a so-called “nil zone” [54],
characterized by an absence of contrasts in which the densities
of both salt and sedimentary rocks are similar [47], [55].
It should be noted that while our study is focused on density
variations, with which gravity inversion relies on apparent
density contrast to estimate the subsurface distribution of mass.
Examining layer variations presents a promising direction for
future research to address the issue of destructive interference
generated by the presence of salt bodies above and below the
nil zone, which may result in gravity anomalies of opposing
directions.

V. CONCLUSION

The ResUnet Network has shown great potential for appli-
cations in geophysical data analysis, structural reconstruc-
tion, and inversion. It allows for establishing the relationship
between models and observed data without revealing the
underlying mathematical equations and physical laws. The
ResUnet network presented in this article was able to quickly
establish this relationship and improve the accuracy and speed
of subsurface physical property imaging.

To validate the proposed ResUnet inversion network,
we used two synthetic models with uniform density contrast.
The trained ResUnet network effectively recovered the detailed
structures of isolated density anomalies and honored the true
density values of models. Additionally, the recovered models
from multicomponent data showed more consistency with
the actual model than those produced by single-component
data, demonstrating the importance of multicomponent gravity
measurements in practical applications.

In practical applications, the ResUnet effectively predicted
the geometry and density of the salt diapirs in the Nordkapp
basin. The model reconstructed from the trained ResUnet
network shows that the boundaries of the salt diapir (F2)
with relatively sharp density contrast are close enough to
the interpreted salt boundaries from seismic interpretation.
These results highlight the potential of the ResUnet network
in accurately characterizing subsurface geological structures.
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