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Abstract: Full tensor magnetic gradiometry (FTMG) is becoming a practical method for exploration
due to recent advancements in superconducting quantum interference device (SQUID) technology.
This paper introduces an efficient method of 3D modeling and inversion of FTMG data. The forward
modeling uses single-point Gaussian integration with pulse basis functions to compute the volume
integrals representing the second spatial derivatives of the magnetic potential. The inversion is
aimed at recovering both the magnetic susceptibility and magnetization vectors. We have introduced
a 3D regularized focusing inversion technique that utilizes Gramian regularization and a moving
sensitivity domain approach. We have also developed a new method of magnetization vector
decomposition into induced and remanent parts. The case study includes applying the developed
inversion method and computer code to interpret a helicopter-borne FTMG survey carried out
over the Thompson Nickel Belt. We have analyzed and separately inverted the observed FTMG
and total magnetic intensity (TMI) data using the developed 3D inversion methods to obtain the
subsurface susceptibility and magnetization vector models. Furthermore, we present a comparison
of the inversions utilizing the FTMG data and the TMI data.

Keywords: 3D; inversion; airborne; magnetic gradiometry; susceptibility; magnetization vector

1. Introduction

The measurement of magnetic vector data using orthogonal fluxgate magnetometers
is heavily influenced by the Earth’s magnetic field and can be greatly affected by the orien-
tation of the instruments. Therefore, due to the instability of airborne platforms, cesium
vapor magnetometers have been preferred as they directly measure the total magnetic
intensity (TMI) and are not affected by instrument orientation.

Despite this, direct measurements of magnetic tensors have advantages, as they con-
tain directional sensitivity, which is important for determining rock magnetization vector
and studying remanent magnetization. Recently, full tensor magnetic gradiometers based
on superconducting quantum interference devices (SQUIDs) have been developed and are
now commercially used for geophysical surveying (e.g., [1–4]). The quantum magnetic
tensor (QMAGT) system, developed by Dias Airborne of Saskatoon, Saskatchewan, Canada
in collaboration with Supracon AG of Jena, Thuringia, Germany, is a helicopter-borne mag-
netic survey system that measures the FTMG data using the SQUID, operating within a liq-
uid helium bath (https://www.diasgeo.com/technology-innovation/full-tensor-magnetic-
gradiometry-ftmg/, accessed on 21 June 2023).

Inverting the data obtained from full tensor magnetic gradiometry into a magnetiza-
tion vector through 3D inversion remains a challenging problem [4,5]. In this paper, we
present recent advances in FTMG data modeling and inversion and illustrate the developed
methods using the results of a helicopter-borne QMAGT FTMG survey conducted over the
Thompson Nickel Belt near Thompson, Manitoba, Canada.

Minerals 2023, 13, 851. https://doi.org/10.3390/min13070851 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13070851
https://doi.org/10.3390/min13070851
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-5911-2504
https://www.diasgeo.com/technology-innovation/full-tensor-magnetic-gradiometry-ftmg/
https://www.diasgeo.com/technology-innovation/full-tensor-magnetic-gradiometry-ftmg/
https://doi.org/10.3390/min13070851
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13070851?type=check_update&version=3


Minerals 2023, 13, 851 2 of 23

We also demonstrate that the inversion of FTMG data has several advantages over
traditional TMI data for mineral exploration. TMI data usually require significant post-
processing before inversion, such as arbitrary filtering, but FTMG data are naturally high-
frequency and require only minimal post-processing, such as leveling and outlier removal,
before inversion. Furthermore, the FTMG data are less sensitive to instrument orientation
than TMI data because magnetic gradients are mainly caused by localized sources rather
than the Earth’s background field or regional trends. However, the depth sensitivity of
FTMG data is limited, typically to about 600 m below the surface, whereas TMI data can
penetrate several kilometers below the surface.

Several publications discussed the methods of the FTMG data modeling and inver-
sion (e.g., [4,6–9]). For completeness, we present below the basic principles forming the
foundations of these methods.

2. Modeling of FTMG Data for the Models without Remanent Magnetization

In what follows, we assume first that there is no remanent magnetization, the impact
of self-demagnetization is insignificant, and the magnetic susceptibility is uniform in all
directions. Given these assumptions, the magnetization intensity I(r) can be directly linked
to the inducing magnetic field, H0(r), through the magnetic susceptibility, χ(r):

I(r) = χ(r)H0(r). (1)

We discretize the 3D earth model into a grid of Nm cells, each of constant magnetic
susceptibility. Following [10], the magnetic potential can be expressed in discrete form
as follows:

U
(
r′
)
= ∑Nm

k=1 χk

y

Dk
ψ
(
r′, r
)
dv, (2)

where ψ
(
r′, r
)

is the whole-space Green’s function for the magnetic potential:

ψ
(
r′, r
)
= ∇′ 1

|r− r′| .

As we will show, all components of the magnetic field can be computed as the spatial
derivatives of Equation (2). For example, the magnetic field, H(r), is the first derivative of
the magnetic potential:

H(r) = ∇U(r). (3)

Substituting Equation (2) into (3), we arrive at the following discrete form:

H
(
r′
)
= −H0 ∑Nm

k=1 χk

y

Dk

1

|r− r′|3

[
l− 3(l·(r− r′))(r− r′)

|r− r′|2

]
dv, (4)

where r′ = (x′, y′, z′) denotes the point of observation; r = (x, y, z) denotes the point
of source location; and l =

(
lx, ly, lz

)
and H0 are the direction of magnetization and the

absolute value of the inducing magnetic field, H0, respectively.
In our chosen coordinate system, we consider positive y as the north direction, positive

x as the east direction, and positive z as the downward direction. When conducting a
magnetic survey, the inclination (I), declination (D), and azimuth (A) of the inducing
magnetic field (measured in degrees) can be determined by referencing the International
Geomagnetic Reference Field (IGRF) model. Under these assumptions, the components of
the unit vector in the direction of the inducing magnetic field are as follows:

lx = cos(I)sin(D− A), (5)

ly = cos(I)cos(D− A), (6)
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lz = sin(I). (7)

Previous studies (e.g., [11]) have provided analytical solutions for calculating the
volume integral described in Equation (4) for right rectangular prisms with magnetic sus-
ceptibility. However, we choose to perform the volume integral computation numerically
using single-point Gaussian integration with pulse basis functions, as proposed by [12].
This method dramatically speeds up the processing time compared to the conventional
approach based on prismatic cell approximation while yielding a very accurate result. In
this case, r = (x, y, z) denotes the cell center. We assume constant discretization of ∆x, ∆y,
and ∆z in the x, y, and z directions, respectively.

Thus, Equation (4) can be simplified as follows:

H
(
r′
)
= −H0 ∑Nm

k=1 χk
1

|r− r′|3

[
l− 3(l·(r− r′))(r− r′)

|r− r′|2

]
∆x∆y∆z, (8)

From Equation (8), we can derive discrete expressions for the scalar components of
the magnetic field:

Hx
(
r′
)
= −H0 ∑Nm

k=1 χk
1

|r− r′|3

[
lx −

3t(xk − x′)

|r− r′|2

]
∆x∆y∆z, (9)

Hy
(
r′
)
= −H0 ∑Nm

k=1 χk
1

|r− r′|3

[
ly −

3t(yk − y′)

|r− r′|2

]
∆x∆y∆z, (10)

Hz
(
r′
)
= −H0 ∑Nm

k=1 χk
1

|r− r′|3

[
lz −

3t(zk − z′)

|r− r′|2

]
∆x∆y∆z, (11)

where

t = lx
(
xk − x′

)
+ ly

(
xk − x′

)
+ lz

(
xk − x′

)
. (12)

In the case of studying the full magnetic tensor, one has to calculate the second
derivatives of the magnetic potential as follows:

Hαβ(r) =
∂2

∂α∂β
U(r), α, β = x, y, z. (13)

The second spatial derivatives of the magnetic potential form a symmetric tensor with
zero trace:

Ĥ =

Hxx Hxy Hxz
Hyx Hyy Hyz
Hzx Hzy Hzz

, Hxx + Hyy + Hzz = 0, (14)

where

Hαβ(r) =
∂Hα

∂β
, α, β = x, y, z. (15)

This implies that of the nine tensor components, only five are independent.
After some algebra, we find discrete forms for each component of the magnetic tensor [13]:

Hxx
(
r′
)
= 3H0 ∑Nm

k=1 χk

{
[−lx(xk − x′)− t]r2 + 2(x′ − xk)

2t
r7 +

[
lx −

3t(xk − x′)
r2

]
(x′ − xk)

r5

}
∆x∆y∆z, (16)

Hxy
(
r′
)
= 3H0 ∑Nm

k=1 χk

{
−ly(xk − x′)r2 + 2(y′ − yk)(x′ − xk)t

r7 +

[
lx −

3t(xk − x′)
r2

]
(y′ − y)

r5

}
∆x∆y∆z, (17)
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Hxz
(
r′
)
= 3H0 ∑Nm

k=1 χk

{
−lz(xk − x′)r2 + 2(z′ − zk)(x′ − xk)t

r7 +

[
lx −

3t(xk − x′)
r2

]
(z′ − zk)

r5

}
∆x∆y∆z, (18)

Hyx
(
r′
)
= 3H0 ∑Nm

k=1 χk

{
[−lx(yk − y′)− t]r2 + 2(x′ − xk)(y′ − y)t

r7 +

[
ly −

3t(yk − y′)
r2

]
(x′ − xk)

r5

}
∆x∆y∆z, (19)

Hyy
(
r′
)
= 3H0 ∑Nm

k=1 χk

{[
−ly(yk − y′)− t

]
r2 + 2(y′ − yk)

2t
r7 +

[
ly −

3t(yk − y′)
r2

]
(y′ − yk)

r5

}
∆x∆y∆z, (20)

Hyz
(
r′
)
= 3H0 ∑Nm

k=1 χk

{
−lz(yk − y′)r2 + 2(z′ − zk)(y′ − yk)t

r7 +

[
ly −

3t(yk − y′)
r2

]
(z′ − zk)

r5

}
∆x∆y∆z, (21)

Hzx
(
r′
)
= 3H0 ∑Nm

k=1 χk

{
−lx(xk − x′)r2 + 2(x′ − xk)(z′ − zk)t

r7 +

[
lz −

3t(zk − z′)
r2

]
(x′ − xk)

r5

}
∆x∆y∆z, (22)

Hzy
(
r′
)
= 3H0 ∑Nm

k=1 χk

{
−ly(xk − x′)r2 + 2(y′ − yk)(z′ − zk)t

r7 +

[
lz −

3t(zk − z′)
r2

]
(y′ − yk)

r5

}
∆x∆y∆z, (23)

Hzz
(
r′
)
= 3H0 ∑Nm

k=1 χk

{
[−lz(zk − z′)− t]r2 + 2(z′ − zk)

2t
r7 +

[
lz −

3t(zk − z′)
r2

]
(z′ − zk)

r5

}
∆x∆y∆z, (24)

where t is defined by Equation (12), and

r =
√
(xk − x′)2 + (yk − y′)2 + (zk − z′)2.

Equations (16) through (24) provide the basis for computing the FTMG data for the
models without the remanent magnetization.

3. Magnetization Vector Decomposition into Induced and Remanent Parts

Conventional inversions for magnetic susceptibility only consider induced magnetization,
which limits their ability to provide a comprehensive geological understanding [4,14,15]. In
order to obtain an adequate understanding of geology and mineralization and recover
information about remanent magnetization, magnetic data must be inverted towards a
magnetization vector model. This paper presents a new method for determining remanent
magnetization using the magnetization vector decomposition technique. This method
decomposes the full magnetization vector into the induced (inline relative to the inducing)
and remanent components (Figure 1). The amplitude of the inline magnetization can
provide models similar to susceptibility since paramagnetic and ferromagnetic materials
tend to align parallel to the inducing field, while diamagnetic materials tend to align in the
opposite direction. The remanent magnetization can manifest itself as a vector pointing
away from the inducing field (Figure 1). We illustrate this novel method for direct imaging
of remanent magnetization, which is useful for determining optimal exploration strategies.

Remanent magnetization (or remanence) is a permanent magnetization of a rock
obtained in the past when the Earth’s magnetic field had a different magnitude and direction
than it has today. It follows that the total intensity of magnetization, I(r), is linearly related
to both the induced, Mind, and remanent, Mrem, magnetizations:

I(r) = H0[Mind(r) + Mrem(r)], (25)

where the induced magnetization vector, Mind, is linearly proportional to the inducing
magnetic field, H0(r), through the magnetic susceptibility, χ(r):

Mind(r) = χ(r)H0(r)/H0 = χ(r)l, (26)
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and l the unit vector in the direction of the inducing magnetic field, defined by Equations (5)–(7).
We should note that we have defined the magnetization vectors (both the induced, Mind,
and remanent, Mrem) as unitless for convenience of derivations.
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Figure 1. Graphic representation of magnetization vector M behavior in different rock types. The
purple arrow represents the magnetization vector in the presence of remanence.

The Koenigsberger ratio, Q, is the ratio of the absolute values of the remanent magne-
tization to the induced magnetization [16]:

Q =
|Mrem|
|Mind|

. (27)

For Koenigsberger ratios greater than 1, the remanent magnetization vector is the
predominant contribution to the total intensity of magnetization [17].

We can rewrite Equation (25) as follows:

I(r) = H0M, (28)

where M is the dimensionless magnetization vector:

M(r) = Mind(r) + Mrem(r). (29)

At the same time, one can also consider a simplified alternative method to decompose
the full magnetization vector into the induced and remanent components. This involves
finding the magnitude of the projection of the vector onto the inducing field direction.
This is termed the inline component, which is a proxy for induced magnetization. We
then calculate the magnitude of vector elements that are not parallel, which we term
the perpendicular component. These elements are not necessarily perpendicular, but
they are not parallel to the inducing field, and this “perpendicular” term is the proxy for
remanent magnetization.

4. Modeling of FTMG Data for the Models with Remanent Magnetization

For the modeling of magnetic data, we discretize the 3D earth model into a grid of
Nm cells, each of a constant magnetization vector. Following [10], the magnetic field can be
expressed in discrete form as follows:

H
(
r′
)
= −H0 ∑Nm

k=1

y

Vk

1

|r− r′|3

[
Mk −

3(Mk·(r− r′))(r− r′)

|r− r′|2

]
dv, (30)



Minerals 2023, 13, 851 6 of 23

where Mk =
(

Mxk, Myk, Mzk
)

is the magnetization vector of the k-th cell.
Closed-form solutions for the volume integral in Equation (30) over right rectangular

magnetic prisms have been previously presented (e.g., [11]). As discussed in [12], we prefer
to evaluate the volume integral numerically using single-point Gaussian integration with
pulse basis functions because this numerical solution is as accurate as the analytic solution,
provided that the depth to the center of the cell exceeds twice the dimension of the cell. In
this case, r = (x, y, z) now denotes the center of the cell. We assume constant discretization
of ∆x, ∆y, and ∆z in the x, y, and z directions, respectively. It follows that Equation (30) can
be simplified as follows:

H
(
r′
)
= −H0 ∑Nm

k=1
1

|r− r′|3

[
Mk −

3(Mk·(r− r′))(r− r′)

|r− r′|2

]
∆x∆y∆z. (31)

From Equation (31), we obtain discrete expressions for the vector components of the
magnetic field:

Hx
(
r′
)
= −H0 ∑Nm

k=1
1

|r− r′|3

[
Mxk −

3tk(xk − x′)

|r− r′|2

]
∆x∆y∆z, (32)

Hy
(
r′
)
= −H0 ∑Nm

k=1
1

|r− r′|3

[
Myk −

3tk(yk − y′)

|r− r′|2

]
∆x∆y∆z, (33)

Hz
(
r′
)
= −H0 ∑Nm

k=1
1

|r− r′|3

[
Mzk −

3tk(zk − z′)

|r− r′|2

]
∆x∆y∆z, (34)

where

tk = Mxk
(

xk − x′
)
+ Myk

(
yk − y′

)
+ Mzk

(
zk − z′

)
. (35)

We can write Equations (32)–(34) in a compact form as follows:

Hα

(
r′
)
= −H0 ∑Nm

k=1
1

|r− r′|3

[
Mαk −

3tk(αk − α′)

|r− r′|2

]
∆x∆y∆z, α = x, y, z. (36)

The second spatial derivatives of the magnetic potential,

Hαβ(r) =
∂2

∂α∂β
U(r), α, β = x, y, z, (37)

form a symmetric magnetic tensor

Ĥ =

Hxx Hxy Hxz
Hyx Hyy Hyz
Hzx Hzy Hzz

 (38)

with zero trace
Hxx + Hyy + Hzz = 0, (39)

where

Hαβ =
∂Hα

∂β
, α, β = x, y, z, (40)

As for the case without the remanent magnetization considered above, this implies
that of the nine tensor components, only five are independent.
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By introducing rk = r =
√
(xk − x′)2 + (yk − y′)2 + (zk − z′)2 and after some algebra,

we find discrete forms for each component of the magnetic tensor:

Hαβ

(
r′
)
=

∂Hα(r′)
∂β′

= −H0
∂

∂β′

Nm

∑
k=1

1

|r− r′|3

[
Mαk −

3tk(αk − α′)

|r− r′|2

]
∆x∆y∆z. (41)

We now take the derivatives:

∂

∂β′

(
1

|r− r′|3

[
Mαk −

3tk(αk − α′)

|r− r′|2

])
=

3

|r− r′|5

[(
βk − β′

)
Mαk −

5tk(αk − α′)(βk − β′)

|r− r′|2
+ Mβk

(
αk − α′

)
+ tkδαβ

]
, (42)

where

δαβ =

{
1, α = β
0, α 6= β

Substituting Equation (42) into (41), we obtain

Hαβ

(
r′
)
= −3H0 ∑Nm

k=1
1

|r− r′|5

[(
βk − β′

)
Mαk −

5tk(αk − α′)(βk − β′)

|r− r′|2
+ Mβk

(
αk − α′

)
+ tkδαβ

]
∆x∆y∆z. (43)

According to (35), we can write

tk = ∑γ=x,y,z

(
γk − γ′

)
Mγk. (44)

and

Mαk = ∑γ=x,y,z δαγ Mγk, Mβk = ∑γ=x,y,z δβγ Mγk. (45)

Substituting (44) and (45) into (43), we have

Hαβ

(
r′
)
= −3H0 ∑Nm

k=1
∆x∆y∆z

|r− r′|5 ∑γ=x,y,z

[(
βk − β′

)
δαk +

[
δαβ −

5(αk − α′)(βk − β′)

|r− r′|2

](
γk − γ′

)
+
(
αk − α′

)
δβγ

]
Mγk. (46)

We introduce a sensitivity kernel for magnetic tensor as follows:

Gγ
αβk =

(
βk − β′

)
δαγ +

[
δαβ −

5(αk − α′)(βk − β′)

r− r′2

](
γk − γ′

)
+
(
αk − α′

)
δβγ. (47)

Using this notation, we can rewrite Equation (46) in the following compact form:

Hαβ

(
r′
)
= −3H0 ∑Nm

k=1
∆x∆y∆z

|r− r′|5 ∑γ=x,y,z Gγ
αβk Mγk, α, β = x, y, z. (48)

where Mγk are the components of the magnetization vector:

Mk =
[

Mxk, Myk, Mzk

]T
. (49)

Equations (36) and (48) are the key equations that we need for solving both modeling
and inversion for remanent magnetization. Note also that any implementation of these
equations includes both topography and variable flight height, obviating the need for
upward continuation of the data.

5. Principles of Inversion

Regardless of the iterative scheme used, most regularized inversions seek to minimize
the Tikhonov parametric functional, Pα(m):

Pα(m) = 461φ(m) + αs(m)→ min, (50)
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where φ(m) is a misfit functional of the observed and predicted potential field data, s(m) is
a stabilizing functional, and α is the regularization parameter that balances the misfit and
stabilizing functionals [10,18]. Data and model weights can be introduced to Equation (50)
through data and model weighting matrices. The purpose of these weighting matrices is to
adjust the inverse problem in logarithmic space, thereby decreasing the range of variation
in both the data and model parameters.

In our specific implementation, the weights assigned to the data and model are
determined by considering their integrated sensitivity, as originally introduced in [19]. The
concept of sensitivity weighting in geophysical inverse problems was also discussed in
a number of publications, e.g., [20,21] and many others. The interested reader can find a
detailed description of the theory of sensitivity weighting applied to general linear and
nonlinear inverse problems in the textbooks by Zhdanov [12,18]. The sensitivity-based
weighting functions ensure that the various components of the observed data exhibit equal
sensitivity to cells situated at different depths and horizontal positions. Consequently, the
sensitivity-based weighting functions inherently incorporate necessary adjustments for
the vertical and horizontal distribution of susceptibility. This distinction represents a key
difference between our approach and the geometric depth weighting functions devised
by [22]. Another critical issue of the potential field inversion is the nonuniqueness of
the inverse model. This question was addressed in hundreds of published papers and
monographs, including those cited above. The most general approach to overcoming
inherent nonuniqueness is based on the regularization theory. The nonuniqueness of the
inversion is significantly reduced by bringing the a priori information via a regularization.
For example, in our paper, we use Gramian and focusing regularization, which forces a
level of structural similarity between the magnetization vector components.

Every geological constraint is expressed as a form of regularization, which can be
measured by adjusting data weights, establishing upper and lower bounds for the model,
determining model weights, incorporating prior knowledge, and selecting an appropri-
ate stabilizing functional. The stabilizing functional incorporates information about the
category of models utilized in the inversion process. The selection of a suitable stabilizing
functional should rely on the user’s geological understanding. In the following section, we
will provide a concise overview of various smooth and focusing stabilizers, showcasing the
outcomes obtained from the 3D inversion of magnetic vector and tensor data for each ap-
proach. A minimum norm (MN) stabilizer will seek to minimize the norm of the difference
between the current model and an a priori model:

sMN(m) =
y

V

(
m−mapr

)2dv, (51)

and usually produces a relatively smooth model (where m = m(r) is some function describing
the model parameters).

The first derivative (FD) stabilizer implicitly introduces smoothness as the first spatial
derivatives of the model parameters:

sFD(m) =
y

V

(
∇m−∇mapr

)2dv, (52)

and can result in spurious oscillations and artifacts when the model parameters are discon-
tinuous. A combination of stabilizers (51) and (52) is often used (e.g., [22]).

In reality, the majority of geological formations do not possess smooth magnetization
distributions. Geology often displays distinct boundaries with sharp contrasts in suscep-
tibility, such as those observed between an ore deposit and its surrounding rock, or at a
discontinuity. Consequently, the application of stabilizers (51) and (52), or their combina-
tions, leads to results that lack physical relevance to the actual geological conditions. To
address this limitation, ref. [23] introduced focusing stabilizers that enable the recovery
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of models with sharper boundaries and greater contrast. In this paper, we consider the
minimum support (MS) stabilizer:

sMS(m) =
y

V

(
m−mapr

)2(
m−mapr

)2
+ e2

dv, (53)

where e is a focusing parameter introduced to avoid singularity when m = mapr.
The minimum support stabilizer aims to minimize the volume that deviates from the

a priori model, thereby promoting the recovery of compact bodies. Consequently, any
smooth distribution of model parameters with only minor deviations from the a priori
model is penalized.

While variations of Equation (53) were derived in [10,12], we base our solution on
the re-weighted regularized conjugate gradient method (RRCG) [10,18], which is easier to
implement numerically.

In numerical dressing, the corresponding parametric functional can be written as follows:

Pα(m, d) = (WdAm−Wdd)T(WdAm−Wdd) + α
(
WeWmm−WeWmmapr

)T(WeWmm−WeWmmapr
)
, (54)

where Wd is the weighting matrix for the data, and Wm is a diagonal matrix for weight-
ing the model parameters based on integrated sensitivity, (FTF), where F is the Frechet
derivative of the forward operator:

Wm = diag
(
FTF

)1/4. (55)

Matrix We is a diagonal matrix, determined by the discrete values of the model
parameters, mi, representing the action of the minimum support stabilizer [10]:

We = diag[we] = diag

[
1(

m2
i + e2

)1/2

]
, (56)

where e is a small number (focusing parameter).
The minimization problem (50) can be reformulated using a space of weighted parameters:

mw = WM = WeWmm, (57)

where W = WeWm.
Equation (54) can be rewritten as follows:

Pα(m, d) = (Awmw − d)T(Awmw − d) + α
(
mw −mw

apr
)T(mw −mw

apr
)
, (58)

where Aw is a new forward operator in the space of weighted parameters, which can be
related to the forward operator A in the original space as

Aw = AW−1 = AW−1
m W−1

e . (59)

The algorithm of the re-weighted regularized conjugate gradient method to solve the
minimization of parametric functional (58) is given in Appendix A.

The inversion process continues through iterations until one of the following condi-
tions is met: the residual error reaches a predetermined threshold, the decrease in error
between consecutive iterations is smaller than the preset threshold, or the maximum num-
ber of iterations is reached. Once the inversion is completed, the quality of the results
is assessed based on the data misfit and through visual examination of the model. As
we discussed above, in practical applications of the inversion method, some boundary
conditions must be imposed on the variations of the model parameters:

m−i ≤ mi ≤ m+
i , (60)
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where m−i and m+
i are the lower and upper limits of the model parameter mi. However,

during the process of minimization of the Tikhonov parametric functional, we can obtain
the values of the model parameters outside the above boundaries. In order to limit the
interval of possible values of the inverse problem solution, one can introduce a new
model parameter m̃ with the property that the corresponding original model parameter
m will always remain within the imposed above boundaries m−i and m+

i . One way to
solve this problem is by using the following logarithmic transformation to arrive at new
model parameters:

m̃i = ln
mi −m−i
m+

i −mi
. (61)

The corresponding inverse transformation is given by the following formula:

mi = ln
m−i −m+

i exp(m̃i)

1 + exp(m̃i)
. (62)

It is evident that conducting the inversion process in the logarithmic space of model
parameters, denoted as m̃, guarantees that the transformed value of each m̃i, regardless of
its magnitude, will always remain within the predefined intervals defined by m−i and m+

i .
The details of the RRCG algorithm used to solve the inverse problem in the logarithmic
space of model parameters are provided in the Appendix A.

6. Gramian Stabilizer

Inverting for the magnetization vector is a more challenging problem than inverting
for scalar magnetic susceptibility, because we have three unknown scalar components of the
magnetization vector for every cell. At the same time, there is inherent correlation between
the different components of the magnetization vector. The different scalar components
have similar spatial variations and represent the same zones of anomalous magnetization.
Therefore, it is possible to expect that the different components of the magnetization vector
should be mutually correlated [15,24]. It was demonstrated in [25] that one can enforce
the correlation between the different model parameters by using the Gramian constraints.
Following the cited paper, we have included the Gramian constraint in Equation (50)
as follows:

Pα(m) = φ(m) + αs(m) + β ∑γ=x,y,z SG
(
mγ,χe f f

)
, (63)

where m is the 3Nm length vector of magnetization vector components; mγ is the Nm
length vector of the γ component of magnetization vector, γ = x, y, z; χe f f is the Nm
length vector of the effective magnetic susceptibility, defined as the magnitude of the
magnetization vector,

χe f f =
√

M2
x + M2

y + M2
z . (64)

Functional SG is the Gramian constraint,

SG

(
mγ,χe f f

)
=

∣∣∣∣∣∣ (mγ, mγ)
(

mγ,χe f f

)(
χe f f , mγ

) (
χe f f ,χe f f

)∣∣∣∣∣∣, (65)

where (∗, ∗) denotes the L2 inner product operation [18].
Using the Gramian constraint (65), we enhance a direct correlation between the scalar

components of the magnetization vector with χe f f , which is computed at the previous
iteration of an inversion and is updated on every iteration. The advantage of using
the Gramian constraint in the form of Equation (65) is that it does not require any a
priori information about the magnetization vector (e.g., direction, the relationship between
different components, etc.).
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The minimization problem in Equation (63) is solved using the re-weighted regularized
conjugate gradient (RRCG) method described above.

Finally, the regularized inversion outlined above can be applied to very-large-scale
problems by incorporating the concept of the moving sensitivity domain [9,26]. According
to this concept, the sensitivity matrix for the entire large-scale model could be constructed
via the superposition of sensitivity domains for all observation points. The sensitivities
are also computed “on the flight” during the computations without storing them in the
computer memory. This approach makes it possible to invert the data collected by surveys
of several thousand line km on a modest PC cluster as one inversion run.

For example, in our case study presented below, we employ a 10 km size of the
sensitivity domain, which results in the sensitivity matrix taking up less than 100 GB of
memory even on a fine grid discretization (25 m × 25 m laterally with a reasonable number
of vertical layers—less than 50). Calculation of the sensitivity for this sensitivity domain
takes only a few minutes. Calculation of the sensitivity matrix for an entire area—say
100 km to a side with the same discretization—can take hours or days on a single CPU or
GPU with ~200 GB memory.

7. Determining the Remanent Magnetization

The separation of the magnetization vector into the parts responsible for remanent
and induced polarization is a challenging problem if no a priori information is available.
However, this problem can be solved approximately, assuming that the susceptibility only
inversion produced the correct magnetic susceptibility distribution in the rock formations.

Taking into account Equations (25) and (28), we can find the vector of remanent
magnetization Mrem as follows:

Mrem(r) = M(r)−Mind(r), (66)

where according to Equation (26),

Mind(r) = χ(r)l, (67)

where l is the unit vector in the direction of the inducing magnetic field defined by Equations (5)–(7).
The unknown susceptibility, χ(r), can be found by susceptibility only inversion of the

observed data. On the next step, we invert the data for the magnetization vector, M(r).
Finally, we can find the remanent magnetization by substituting Equation (67) into (66):

Mrem(r) = M(r)− χ(r)l. (68)

We should emphasize that the value of remanent magnetization determined by
Formula (68) is correct if we use the true values of magnetic susceptibility χ(r). In the case
when χ(r) is found by susceptibility only inversion, Formula (68) can be used as some
approximation for the remanent magnetization.

Based on Equation (68), one can determine the Koenigsberger ratio, Q:

Q ≈ |Mrem|
|Mind|

=
|M(r)− χ(r)l|
|χ(r)l| =

∣∣∣∣M(r)
χ(r)

− l
∣∣∣∣. (69)

If we assume that the earth model has the susceptibility of free space, χ0, the vector of
induced magnetization is constant,

Mind(r) = χ0l, (70)

Therefore, we arrive at the following equation for the remanent magnetization:

Mrem(r) = M(r)− χ0l, (71)
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We can approximately calculate the Koenigsberger ratio, Q, as follows:

Q ≈
∣∣∣∣M(r)

χ0
− l
∣∣∣∣. (72)

8. Model Study: Inversion of the TMI and FTMG Data for Synthetic Model

We first conducted a synthetic model study using the developed method and computer
code. Figure 2 represents the vertical sections of the magnetized target and the inversion
results. The anomaly in red in panel (A) has a susceptibility of 0.1 SI and amplitude of
dimensionless magnetization vector 0.1 in a homogeneous background of zero elsewhere.
Magnetization vector anomaly has a magnitude of 0.1 in the direction shown by the white
arrows. The inclination is 75 degrees, and the declination is 35 degrees. The inducing
magnetic field (indicated by the black arrow at the top of Figure 2) has an inclination of 45
degrees and a declination of 5 degrees. This is 30 degrees offset from the direction of the
magnetization vector in both inclination and declination, which indicates the presence of
“remanent” magnetization in this model. We have calculated the synthetic observed TMI
and FTMG data using the vector magnetization model described above.
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Figure 2. Synthetic model study: comparison of inversion of TMI and FTMG data for magnetic sus-
ceptibility and magnetization vector. Panel (A) shows the vertical section of the actual magnetization
model. Panel (B) presents the susceptibility model obtained from the inversion of the synthetic TMI
data. Panel (C) shows the susceptibility model obtained from the inversion of synthetic FTMG data.
Finally, panel (D) shows with the white arrows the magnetization vector model obtained from the
inversion of synthetic FTMG data. The color map in the background represents the amplitude of this
vector. Panels (E,F) show the inline and “remanent” magnetization amplitudes, respectively.

We ran inversions of the synthetic data for the magnetic susceptibility model first.
Panel (B) shows the susceptibility model obtained from the inversion of the synthetic TMI
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data. Panel (C) shows the susceptibility model obtained from the inversion of synthetic
FTMG data. One can see that TMI data inversion has difficulties recovering the correct
susceptibility model; the image is diffused and slightly shifted down. At the same time, the
FTMG inversion solves this problem more accurately (Panel (C)).

In the next step of this numerical experiment, we run inversion for the magnetization
vector model. Panel (D) shows the magnetization vector model obtained from the inversion
of synthetic FTMG data. The white arrows show the full magnetization vector, while the
color map represents the amplitude of this vector. We can see the reasonable correlation
between the inverse magnetization vector and the actual magnetization vector model
shown in Panel (A).

Finally, Panels (E) and (F) show the color maps of the inline and “remanent” mag-
netization amplitudes, respectively. The stronger values in Panel (F) indicate that the
anomalous body possesses “remanent” magnetization, responsible for a deviation of the
magnetization vector from the inducing magnetic field indicated by the black arrow at the
top of Figure 2.

9. Case Study: Inversion of the TMI and FTMG Data in the Thompson Nickel Belt in
Northern Manitoba, Canada

Dias Airborne collected approximately 10,655 line-km of QMAGT FTMG data in the
Thompson Nickel Belt in northern Manitoba, Canada. The survey aimed to determine
the gross geomorphology of the Thompson Nickel Belt which is part of the fifth-largest
nickel camp in the world and the associated Ni sulfide mineralization [27,28]. This paper
focuses on a small area of interest (AOI) in the northern extent of Thompson Nickel Belt
near Mystery Lake, covered by approximately 100 line km. The line spacing was 50 m, with
sampling every ~2.5 m, and the flight height was around 40 m. The digital terrain model
(DTM) and flight lines over the AOI are shown in Figure 3.
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Figure 3. The digital terrain model (DTM) of the QMAGT survey area is shown in color. The black
lines show survey flight lines. The AOI is located near the Ospwagan Group, indicated by the purple
in the inset map of Manitoba, shown on the top left side of the figure. The inserted map is after [28].
The black arrows show the location of profiles S–N and W–E.



Minerals 2023, 13, 851 14 of 23

9.1. Susceptibility and Magnetization Vector Models Produced by Inversion of FTMG Data

We conducted separate inversions of the FTMG data to obtain models for both suscep-
tibility and magnetization vector. The inversions used a 20 m × 40 m grid with 48 vertical
layers ranging from 10–95 m, but the models were ultimately limited to a depth of 600 m
based on the sensitivity study. The Tikhonov regularization method with minimum support
stabilizer was employed to produce focused images of magnetized structures [10,18,23,29].
The focusing regularization in Equation (53) was used in the inversions with a focusing
epsilon of 0.001 which was not varied during the inversion.

Figure 4 displays observed and predicted data for selected FTMG components from
the magnetization vector inversion, with the total L2 norm misfit between observed and
predicted data for all six magnetic tensor components being less than 10%.
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Figure 4. The maps of components of the observed and predicted FTMG data from the magnetization
vector inversion. All components have a similar level of data misfit, less than 10%.

In this study, the inversion parameters for the magnetization vector model were the
X, Y, and Z components of the triaxial vector. The inverse models were represented by
three characteristics of the full magnetization vector, namely amplitude, inline amplitude
(representing induced magnetization), and approximate amplitude of the remanent magne-
tization. Additionally, the projection of the full magnetization vector was shown as black
arrows over the amplitude in the vertical section.

Figures 5–8 give a 3D overview of the inverted models. Figure 5 is a 3D isobody view
of the inverted susceptibility model with values greater than 0.1 SI shown in green. This
isobody is the mystery ultramafic intrusion. The ultramafic body itself is not an economic
resource although it does contain some nickel. Figure 6 is a 3D isobody view of the
inverted inline magnetization model, which is a proxy for induced magnetization. Values
above 0.02 A/m are shown in yellow and represent the same ultramafic intrusion. We see
the enhanced resolution of the body versus the susceptibility model shown in Figure 5.
Koenigsberger ratios (Q) corresponding to the ultramafic ranged from 1 to 2, indicating a
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degree of remanence, which is consistent with the difference we see in the susceptibility and
inline magnetization models. Figure 7 is a 3D isobody view of the remanent magnetization
model, with values over 0.04 A/m shown in red. These red isobodies are potentially
breccia-associated mineralization within the Mystery Lake ultramafic coupled with minor
sedimentary sulfides which occurs within the package of Pipe Formation rocks. Q values
were much higher in the breccia-associated mineralized zone, ranging from 5 to 5.5. These
values were a factor in our choice of cutoff values for the isobodies shown. We may also
see some circulation of the field in this component due to the approximate decomposition
to inline and perpendicular magnetization. This is a powerful result of the MVI versus the
susceptibility inversion in that we can image the target mineralization directly with the
various products of the MVI. Finally, Figure 8 shows a composite view of the isobodies
presented in Figures 5–7.
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Figure 8. Composite 3D isobody view of inverted magnetic models. The mystery ultramafic intrusion
is shown in yellow and green. The potential breccia-associated mineralization is shown in red.

Figure 9 depicts the S–N profiles of the inverted susceptibility and magnetization
vector models. The ultramafic intrusion is clearly visible in the susceptibility and inline
magnetization models as high values indicated by warm colors. However, in the remanent
magnetization model, the intrusion appears as low values, indicated by cool colors, while
the country rocks are shown as high values. This technique allows for better identification
of potential mineralization targets by imaging the lithologies near the intrusion.
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Figure 9. Line S–N profiles of the inverted magnetic models. Panel (A) shows the magnetic suscepti-
bility model. Panel (B) shows the amplitude of the magnetization vector in color with the projection of
the full magnetization vector shown by the black arrows. Panels (C,D) show the inline and remanent
components of the magnetization vector, respectively.

Figure 10 illustrates the W–E profiles of the magnetic models. While the susceptibility
model identifies a high susceptibility anomaly near the surface, the magnetization vector
models provide a more detailed structure. Specifically, there is a subvertical feature directly
west of the susceptibility anomaly at a depth of several hundred meters.
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Figure 10. Line W–E profiles of the inverted magnetic models. Panel (A) shows the magnetic
susceptibility model. Panel (B) shows the amplitude of the magnetization vector in color with the
projection of the full magnetization vector shown with the black arrows. Panels (C,D) show the inline
component and remanent component of the magnetization vector, respectively.

9.2. Comparison of the Inversion Results Using TMI and FTMG Data

Figures 11–13 compare the S–N profiles of the susceptibility, inline, and remanent
magnetization models, respectively, inverted using the FTMG data and the TMI data
which were computed using the tensor data. One can see that the images produced from
FTMG data are more focused and compact and outline the prospective target with better
clarity than those generated by inverting the TMI data. We can see the TMI inversions
adequately resolve the base of the anomalies; however, the FTMG inversions provide
significantly better resolution in the near surface. The inversion of FTMG data also results
in stronger magnetic property contrast between the magnetized formations and the host
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rocks. Thus, the advantages of using the FTMG data are clear. The improvement in
resolution is comparable to that of airborne gravity gradiometry (AGG) over the vertical
gravity total field [30].
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10. Conclusions

We have developed and applied a regularized inversion scheme employing a focusing
stabilizer and Gramian constraints to invert FTMG data. We have also introduced a
new approach to determining the remanent magnetization from the magnetic field and
magnetic gradiometry data. These new methods were applied to the airborne magnetic and
magnetic gradiometry survey data acquired in the Thompson Nickel Belt. The significant
ultramafic formation in the region is distinctly visible in the data, and the surrounding
lithologies are also directly imaged in the remanent magnetization transformation of the
full magnetization vector. This technique provides a more comprehensive view of the
geology and mineralization of the surveyed region. The study has shown the superiority of
the inversion of FTMG data over traditional TMI data, as well as the benefits of imaging
various components of the magnetization vector.
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Appendix A

The RRCG Algorithm for Solving the Inverse Problem in the Log Space of the Model Parameters

Let us define the forward operator and the corresponding Fréchet derivative in the
space of the logarithmic model parameters as Al and Fl. It is easy to see that the following
relationship takes place:

Alm̃ = Am. (A1)

We take a derivative of Equation (A1) with respect to m on both sides:

δ(Alm̃)

δm̃
=

δ(Am)

δm̃
. (A2)

Equation (A2) can be simplified as follows:

Fl = F
δm
δm̃

, (A3)

where Fl is the Fréchet derivative in the space of original model parameters. In the case of
a linear operator, F = A.

One can use Formula (A3) to calculate the Fréchet derivative in the space of the
logarithmic model parameters if δm

δm̃ is known.
From Equation (62), we find

δmi
δm̃i

=
m+

i −m−i
(1 + exp(m̃i))

2 exp(m̃i) =
∆m

(1 + exp(m̃i))
2 exp(m̃i). (A4)

We can write the last equation using the matrix notation:

δm

δ
~
m

=
diag(∆m)diag(exp(m̃))

(I + diag(exp(m̃)))2 . (A5)

By substituting Equation (A5) into Equation (A3), we find

Fl = F
diag(∆m)diag(exp(m̃))

(I + diag(exp(m̃)))2 . (A6)

Equation (A6) makes it possible to find the Fréchet derivative in the space of the loga-
rithmic model parameters directly if we know the Fréchet derivative in the original space.

In the space of the logarithmic model parameters, the Tikhonov parametric functional
can be written as follows:

Pα(m̃, d) = (Alm̃− d)T(Alm̃− d) + α
(
WeWmm̃−WeWmm̃apr

)T(WeWmm̃−WeWmm̃apr
)
, (A7)

Here

We = diag[we] = diag
[

1(
m̃2 + e2

)1/2

]
, (A8)

and
Wm = diag

(
FTF

)1/4
. (A9)

In Equation (A7), the misfit part can be calculated in the original model space instead
of the space of logarithmic model parameters since identity (A1) takes place.

Again, let us set

W = WeWm, mw = Wm̃ = WeWmm̃, Aw
l = AlW

−1 = AlW
−1
e W−1

m ,
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and
Flw = FlW

−1 = FlW
−1
m W−1

e .

Then, Equation (A7) can be rewritten in the space of the weighted model parameters
as follows:

Pα(mw, d) = (Aw
l mw − d)T(Aw

l mw − d) + α
(

mw −mw
apr

)T(
mw −mw

apr

)
. (A10)

The algorithm for re-weighted regularized conjugate gradient minimization of para-
metric functional (A10) in the space of the weighted logarithmic model parameters can be
described as follows:

rw
n = Aw

l mw
n − d = Alm̃n − d,

lαn
wn = FT

lwnrw
n + αn

(
mwn

n −mwn
apr

)
,

βαn
n = ||lαn

wn ||2/ ||lαn−1
w(n−1) ||

2, l̃αn
wn = lαn

wn + βαn
n lαn−1

w(n−1), l̃α0
w0 = lα0

w0,

kαn
n =

(
l̃αn
wn

Tlαn
wn

)
/
[
l̃αn
wn

T(FT
lwnFwn + αnI

)
l̃αn
wn

]
,

mwn
n+1 = mwn

n − kαn
n l̃αn

wn, mn+1 = W−1
n mwn

n+1 = W−1
m W−1

en mwn
n+1,

mwn+1
n+1 = We(n+1)Wmm̃n+1, swn+1

n+1 =
(

mwn+1
n+1 −mwn+1

apr

)
, swn

n+1

=
(
mwn

n+1 −mwn
apr
)
,

(A11)

γ = ||swn+1
n+1 ||2/ ||swn

n+1 ||2, αn+1 = αn, if γ ≤ 1, and αn+1 = αn/γ, if γ > 1.

mn+1 =
(m− + diag(exp(m̃n+1))m+)

(I + diag(exp(m̃n+1)))
.

The above iteration process is terminated when the misfit reaches the given level ε0:

φ(mN) = ||rn ||2 ≤ ε0 (A12)
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