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Abstract— Gravity interface inversion is a critical technique
in delineating the substructure of basins, providing essential
technological and data support for oil and gas exploration. Tra-
ditional gravity inversion approaches often encounter issues such
as suboptimal local solutions and limited resolution. Moreover,
conventional deep learning inversion methods typically require
extensive time for empirical parameter adjustment, hindering the
achievement of optimal training outcomes. By utilizing Bouguer
gravity anomaly data, this research pioneers the application of
the EfficientNetV2 network in predicting 3-D basement relief
interfaces and variations in overburden density. The network
employs a composite scaling technique to adaptively adjust its
width, depth, and input resolution, thereby identifying the most
effective network configuration. Concurrently, the innovative
Fused-MBconv convolutional module efficiently achieves superior
results with a reduced number of network parameters. Specifi-
cally, in the Poyang Lake Basin study in Jiangxi Province, China,
the EfficientNetV2 model demonstrated enhanced accuracy in
predicting density variations of the basement interface and
overlying strata compared to traditional methodologies.

Index Terms— Composite scaling technique, EfficientNetV2,
fused-MBconv, gravity, inversion.

I. INTRODUCTION

THE degree of basement relief in a sedimentary basin
significantly influences the deposition of sediments and

the formation of overlying structures. Tracing the boundaries
of a concealed basement is crucial for understanding sedimen-
tary structures and stratigraphy. Given the substantial density
difference between sediment fill and the underlying basement,
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the gravity method stands out as one of the most practical
geophysical tools for delineating the basement framework.
However, gravity inversion challenges in geophysics are typ-
ically categorized as ill-posed problems [1], [2], [3]. This
ill-posed nature primarily arises from the disparity between the
limited amount of observed data and the much larger number
of model parameters that need to be resolved. Consequently,
even minor variations in data can lead to significant impacts.
Increasing the number of observation points does not always
rectify the issue, as the kernel matrix may still exhibit lin-
ear correlations, failing to fully address the multiplicity of
solutions and the instability inherent in the inversion problem.
Given the variety of inversion methods available, selecting the
most suitable one is crucial for effective exploration.

Conventional gravity inversion is typically categorized into
deterministic inversion [4], [5], [6], [7], [8] and probabilis-
tic inversion [9], [10], [11], [12], [13]. Common methods
include the Newton iteration method [14], steepest descent
method [15], and conjugate gradient method [16], [17], [18],
[19]. These techniques utilize the gradient descent method
to update model parameters, aiming to find the exact solu-
tion by constructing an objective function. However, such
methods often reach local optima, failing to achieve global
optima. In addition, due to the equal volume effect in gravity
exploration, the accuracy of results can be compromised,
often resulting in poor longitudinal resolution. To address
these issues, regularization techniques and depth weighting
functions have been employed [12], [13], [20], [21], [22], [23],
[24], [25], [26]. Although these methods improve the stability
and resolution of inversion results compared to smooth inver-
sion, their reliance on special mathematical transformations
limits their practical geological significance.

Probabilistic inversion methods, such as Monte Carlo meth-
ods [27], [28], [29], [30], adopt a stochastic approach to
inversion, mitigating the tendency of gradient methods to
converge on local minima. These methods, including random
search [31], simulated annealing [32], and genetic algo-
rithms [33], aim to generate prediction data that closely agree
with observed data, targeting the global minimum of the error
function. However, these methods often require a significant
number of steps and optimization algorithms to improve the
efficiency. Despite these advancements, challenges, such as the
equal volume effect and the underdetermined nature of matrix
operations in the gravitational field, persist.

In the context of basin analysis, the density of sedimen-
tary layers within a basin is typically lower than that of
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the surrounding rocks, resulting in a distinct gravity low
anomaly over the sedimentary basin. This anomaly can be
instrumental in deducing the topographic characteristics of the
basement [34], [35], [36], [37], [38], [39], [40]. Traditional
methods, such as those proposed by Bott [41], Oldenburg [42],
and Parker and Huestis [43], have provided foundational
approaches for estimating basement depth and modeling den-
sity variations. However, these methods generally assume
constant density and may not adequately address the variability
in actual sedimentary environments.

The advancement of computer performance has significantly
influenced the field of inversion problems, particularly through
the integration of machine learning (ML) techniques. These
methods involve injecting the obtained model into the inver-
sion equation as a constraint, which effectively reduces the
issue of multiple solutions in inversion problems. In gravity
inversion, unsupervised learning methods predict geological
body models using functions, such as clustering [44], lin-
ear classifiers [45], support vector machines [46], decision
trees [47], and regression algorithms [48], [49], [50]. However,
unsupervised methods have limitations in adequately assess-
ing the association between the model and the data, posing
challenges in fully realizing the potential of ML in enhancing
the accuracy and reliability of gravity inversion outcomes.

In the domain of supervised learning, extensive datasets
are constructed to address regression and classification issues,
establishing implicit relationships between data. Deep learn-
ing, particularly convolutional neural networks (CNNs), has
gained prominence in gravity inversion due to advantages such
as local connections, weight sharing, enhanced generalization
capabilities, and transfer learning abilities [51], [52], [53].
However, traditional CNN structures primarily extract shallow
features, leading to issues such as inadequate global informa-
tion representation.

To address these challenges, researchers have developed
advancements such as ResU-Net++ [54], which mitigates
the loss of global information during feature extraction by
concentrating on the last one or two layers of the training
process and incorporating U-Net [55], [56], [57] structures for
upsampling and downsampling. However, ResU-Net++ has
limitations, such as prediction accuracy plateauing beyond a
certain point of learning.

The EfficientNetV1 network [58] introduces a compound
scaling strategy that adaptively determines the depth, width,
and optimal structural parameters for input data resolution.
This approach circumvents the limitations of network per-
formance resulting from empirical operations. EfficientNetV2
[59] further enhances this by using the Fused-MBConv convo-
lution module to minimize redundant convolution operations,
ensuring efficient feature extraction from complex data with
fewer training parameters. Despite these advancements, Effi-
cientNetV2 is predominantly used for image classification,
with limited application in geophysical inversion regression
prediction.

In this article, we deploy the EfficientNetV2 network to pre-
dict the undulating interface of a 3-D basement and the density
variations of the overlying strata. The main three key contri-
butions in our approach involve: 1) recovering both undulating

interface and the overlapping density variation simultaneously;
2) the Gaussian filtering method is employed to smooth the
disturbance interface, combined with the acquired Bouguer
gravity anomaly data, to rapidly construct an actual training
dataset; and 3) in the stage of synthetic study, we compare the
prediction results of EfficientNetV2 with those obtained from
CNNs and ResU-Net++ network structures. In real cases, the
well-trained EfficientNetV2 network is used to predict both
the three-layer undulating interface and the density changes
of the overlying stratum in the Poyang Lake Basin. To validate
the accuracy of our prediction results, we compare them
with the outcomes of traditional smooth inversion methods,
reinforced by existing seismic and logging data, providing
a comprehensive assessment of the EfficientNetV2 network’s
predictive capabilities in geophysical applications.

II. INVERSION METHOD BASED ON EFFICIENTNETV2
NETWORK

Conventional 3-D basin basement inversion using gradient
optimization algorithms can estimate the magnitude of the
overlying anomaly density and naturally depict the geometric
shape of the basin basement, leveraging the distinct differ-
ence between overlying density and surrounding rock density.
In this article, we employ supervised deep learning to predict
both the density variation and the basin basement relief simul-
taneously. It is worth emphasizing that, within the framework
of deep learning, these two properties (as labels) are predicted
separately.

Employing a supervised deep learning approach, construct-
ing a comprehensive training dataset for both input and
output is essential. The data processing workflow is illustrated
in Fig. 1. During the training dataset phase, we start by
establishing the basement depth (Z) and the density change
factor (β) as the output labels. These labels are derived
based on the measured gravity data of the target area. Sub-
sequently, the Bouguer gravity field (giso), generated from
the basin model integrated with these labels, serves as the
input data for the deep neural network. Building upon this
foundation, we train the EfficientNetV2 network by fine-tuning
the hyperparameters. This process involves constructing and
determining the parameters of the EfficientNetV2 network.
Following this, we use the network to predict real gravity
data. This prediction enables us to accurately delineate the
3-D basement relief and the corresponding density changes
in the overlying strata. The culmination of this process is
the development of a high-precision geological model of the
basement. This model not only reflects the complexities of the
basin’s structure but also provides valuable insights for further
geological exploration and analysis.

A. Generation of Training Sets

1) Construct Basement Depth (Simulation Verification): To
validate the efficacy of the EfficientNetV2 network structure
in predicting geological models of basins, we constructed a
dataset for the basement depth (Z) specifically for simulation
verification [51]. The initial step involved obtaining the initial
basement interface (ZInitial) through the Bouguer plate model,
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Fig. 1. Workflow of gravity inversion based on EfficientNetV2.

Fig. 2. Three different base depth models. (a) Symmetric model. (b) Asym-
metric model. (c) Complex model.

as delineated in (1), utilizing measured Bouguer gravity data.
Subsequently, we employed the random midpoint displace-
ment method to generate a total of 74 640 sets of sedimentary
basin disturbance interface datasets. This was followed by
the application of the Hadamard operation to amalgamate
these disturbance interface datasets with ZInitial. As a result,
we produced 74 640 sets of basement relief model datasets,
denoted as {ZψSMU}

NSMU
ψ=1 , NSMU = 74 640

ZInitial =
giso1ρ0

41.891ρ2
0 + αgiso

(1)

where giso symbolizes the Bouguer gravity anomaly, 1ρ0
indicates the difference between ground density and basement
density, and α represents the gradient of density with depth.
This comprehensive approach ensures a robust framework for
assessing the predictive power of the EfficientNetV2 network
in geological modeling of basins.

These datasets were further categorized into three distinct
types based on basement relief patterns: symmetric mod-
els, asymmetric models, and complex models, as depicted
in Fig. 2. In alignment with the standard practice in the
geophysical field, where the ratio of observation length to
model depth should be within the range of 10 ≤ W/H ≤ 15,
the relief depth of the basement in all datasets is approximately
between 300 and 800 m. The lateral extent of the basin model
varies from 3000 to 8000 m.

2) Construct Basin Basement Depth (Actual Data): When
applying deep learning to process real-world data, it is crucial
to recognize that different work areas may require distinct
basement relief models as training datasets. Relying solely on

a unified training dataset can lead to limitations, as such a
dataset may not fully encapsulate the specific geological con-
ditions of the actual work area. Consequently, this could result
in predictions that do not accurately reflect real geological
conditions. To enhance the accuracy of basin inversion, it is
imperative to construct and utilize a dataset that aligns with the
geological characteristics of the basement in the targeted work
area. This approach necessitates retraining the parameters to fit
the structure of the deep learning network more appropriately.

In this study, we initially determine the initial basement
relief interface through conventional gravity smoothing inver-
sion, as illustrated in Fig. 3(a). To generate the disturbance
interface, we employ a random noise generation method with
a mean value of 0 and a standard deviation ranging from 0%
to 70% of the maximum depth of the initial interface. This
method is used to construct 3000 sets of noise fluctuation
interfaces, as depicted in Fig. 3(b). Given that the basement
interface of sedimentary basins tends to be smooth due to
stratum pressure, we apply a 2-D Gaussian smoothing filter
(with a standard deviation of 3) to all noise disturbance
interface data. In this process, the Hdis matrix of noise interface
fluctuation data is of size (2k + 1) × (2k + 1). The filtered
noise interface data, Hdis(i, j), is then detailed in (2), ensuring
a more realistic representation of the geological features for
effective deep learning application

Hdis(i, j) =
1

2πσ 2 exp

(
−
(i − k − 1)2 + ( j − k − 1)2

2σ 2

)
(2)

where σ represents the standard deviation and (i, j) represents
the positions of matrix elements. After undergoing Gaussian
filtering, the noise disturbance interface acquires a smoothly
undulating shape, as clearly depicted in Fig. 3(c). This process
results in a more realistic and geologically plausible interface
representation. Subsequently, we combine the initial basement
interface fluctuations with the smoothed disturbance interface.
This step culminates in the creation of 3000 distinct sets of
basement interface fluctuation data {ZψATU}

NATU
ψ=1 , NATU = 3000,

as shown in Fig. 3(d). Each set in this comprehensive dataset
effectively captures the nuanced variations and characteristics
of the basement interface, providing a robust foundation for
further analysis and modeling in our study.

3) Dataset Density Padding: The Bouguer gravity anomaly
is primarily attributed to variations in density, thus necessitat-
ing the inclusion of density characteristics in the construction
of basement interface fluctuation models. In sedimentary
basins, due to the influence of formation pressure, the density
of the sedimentary layer tends to converge with the density of
the surrounding basement rock as depth increases. However,
He et al. [51] focused solely on predicting the relief depth
of the basement interface using a CNN network, without
addressing the changes in the density of the overlying strata
of the basin.

To bridge this gap, our study introduces a hyperbolic vari-
able density function, incorporating the density change factor
β. This function is utilized to accurately fill in the calculations
for the sedimentary basin model, as detailed in Sections II-A1
and II-A2. The variation of density 1ρ(z) with depth is
represented in (3) [60]. From the formula, it can be found
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Fig. 3. Schematic diagram of the initial interface disturbance. (a) Initial
interface of the inversion result. (b) Standard deviation ranging from 0% to
70% of the maximum depth of the initial interface. (c) Smooth disturbance
interface by 2-D Gaussian filtering of random noise. (d) Final interface by
superposition the initial interface and the perturbation interface.

that the resulting density is continuous. This approach ensures
a more comprehensive and realistic modeling of the basin
basement, accounting for both the topographical variations and
the critical aspect of density changes within the sedimentary
layers

1ρ
(
zi, j,k

)
=

1ρ0βi, j(
βi, j + zi, j,k

)2 , i = 1, 2, . . . , Nx

j = 1, 2, . . . , Ny; k = 1, 2, . . . , N (3)

where 1ρ0 represents the difference between the density of
the top interface and the density of the surrounding rock. For
the above three models, we use uniform and identically sized
1ρ0 matrix, and zi, j,k represents the depth of the sedimentary
basin shown in (4). Nx and Ny are the number of grids divided
along the x- and y-directions, respectively, in the underground
inversion space, and N is the number of rectangular units
divided into equal intervals for each prism. βi, j stands for
the factor controlling the density of sedimentary basins in the
i, j prism with depth variation, and its expression is shown in
the following equation:

zi, j,k =
N − 1

N
Hi, j , i = 1, 2, . . . , Nx

j = 1, 2, . . . , Ny; k = 1, 2, . . . , N (4)

βi, j =
1̃ρi, j Hi, j(
1ρ0 − 1̃ρi, j

)
i = 1, 2, . . . , Nx ; j = 1, 2, . . . , Ny (5)

where 1̃ρi, j represents the weighted average density (equiva-
lent density) of the i, j prism and Hi, j represents the maximum
depth of the i, j prism in the sedimentary basin. It is obvious
that βi, j is jointly determined by1ρ0 and the weighted average
density 1̃ρi, j of the whole set of strata. For each actual
working area, the weighted average density (1̃ρi, j ) of the
sedimentary basin is determined by the geological conditions

Fig. 4. Rectangular grid cell division, showing the graph along the X–Z
section.

of the area. However, using the average density 1ρ0 to con-
struct a model controlled by density change factors may have
limitations, especially in areas with significant basement fluc-
tuations. In contrast, the basement fluctuation of the Poyang
Lake Basin is relatively gentle, and the strata are continuous.
Therefore, calculating the weighted average density (1̃ρi, j )

requires relying on the real Bouguer gravity anomaly data of
the sedimentary basin (giso) and the basement depth (Hi, j ) of
the sedimentary basin as shown in the following equation [60]:

1̃ρi, j =
giso

2πG Hi, j
, i = 1, 2, . . . , Nx ; j = 1, 2, . . . , Ny (6)

where G is the universal gravitational constant (G =

6.67384 × 10−11m3
·kg−1

·s2).
4) Gravity Forward Modeling: In the process of inversion

research using supervised learning, an essential step involves
computing the gravity anomaly data, 1gz , which serves as the
input for the deep neural network. The crucial precondition
for obtaining this gravity anomaly data is the construction of
a basin density model. To this end, the density variation factor,
βi, j , for the 3-D basin is employed to calculate the density of
each equally spaced rectangular element within the i th and
j th prisms. This calculation follows the guidelines set out
in (3) and the resulting densities (1ρi, j,1,1ρi, j,2, . . . ,1ρi, j,N )

are then filled in accordingly, as illustrated in Fig. 4. Upon
establishing the basin density model, we then acquire the nec-
essary gravity anomaly data for two key stages: the simulation
verification stage and the actual data processing stage. For the
former, we obtain a dataset of {1gψSMU}

NSMU
ψ=1 , NSMU = 74 640,

and for the latter, we gather a dataset of {1gψATU}
NATU
ψ=1 , NATU =

3000. These datasets are crucial for evaluating the effective-
ness of the inversion process and ensuring the accuracy of the
deep learning model in real-world applications.

The calculation formula of 1gz of gravity anomaly data is
shown in the following equation:

1gz(x, y, z) = −G
∫∫∫

V

1ρ(ξ, η, ζ )(z − ζ )

R3 dξdηdζ

R =

√
(x − ξ)2 + (y − η)2 + (z − ζ )2 (7)
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Fig. 5. Spatial density filling and forward field diagrams are presented for
three distinct models. The first column represents the dataset label outputs
{ZψSMU, β

ψ

SMU}, detailing the basement depth and the associated density change
factor. The second column, on the other hand, displays the Bouguer gravity
anomalies {1gψSMU} at the dataset outputs. (a) Vertical slice diagram of
the symmetric model. (b) Vertical slice diagram of the asymmetric mode.
(c) Vertical slice diagram of the complex model, showcasing its intricate and
multifaceted nature.

where (ξ, η, ζ ) represents the coordinates of the center point
of the underground subdivision grid, (x, y, z) represents the
coordinates of the ground observation point, 1ρ represents
the density, and R represents the data of the observation point
and the coordinates of the center point.

We have now successfully compiled all the
datasets necessary for the deep neural network. This
comprehensive collection includes the dataset labels
{ZψSMU, β

ψ
SMU}

NSMU
ψ=1 , NSMU = 74 640, and the corresponding

input datasets {1gψSMU}
NSMU
ψ=1 , NSMU = 74 640, for the packet

simulation verification stage. These are depicted in Fig. 5.
Similarly, for the actual data processing stage, we have
prepared the dataset labels {ZψATU, β

ψ
ATU}

NATU
ψ=1 , NATU = 3000,

and the input datasets {1gψATU}
NATU
ψ=1 , NATU = 3000. In these

datasets, βSMU and βATU denote the density change factors
of the basin basal interface fluctuation dataset for the
simulation verification stage and the actual data processing
stage, respectively. To optimize the training of the deep
neural network, we strategically allocate 80% of the dataset
for training purposes and reserve the remaining 20% for
validation. This division ensures a balanced approach,
allowing for thorough training of the network while also
providing sufficient data to effectively evaluate its performance
and accuracy.

B. EfficientNetV2 Network Structure

This study aims to reconstruct the fluctuating form of
the 3-D basement interface and the density changes in the
overlying strata from 2-D gravity data. To achieve this, we uti-

TABLE I
EFFICIENTNETV2-S NETWORK STRUCTURE TABLE

Fig. 6. Convolutional structure of Fused-MBconv, where BN layer is batch
normalization and SiLu is the activation function.

lize the EfficientNetV2-S deep learning network structure
based on multichannel and lightweight convolution technol-
ogy. This network is specifically designed to potentially map
the relationship between Bouguer gravity anomaly data and
the sedimentary basin model. The architecture of the network
is detailed in Table I.

Upon examination of the network structure, it is evident that
it comprises seven stages. This design deviates from traditional
CNNs in several ways. In stages 0 and 7, the network employs
common convolutional kernels, each followed by a pooling
layer and activation function, and concludes with either a fully
connected layer or a pooling layer. The distinct feature of this
network, however, lies in the incorporation of two innovative
convolution modules: Fused-MBconv and MBconv. These
modules are pivotal in enhancing the network’s efficiency and
accuracy in mapping the complex geological features from the
gravity data, thereby offering a more nuanced understanding
of the basin’s subsurface characteristics.

1) Convolutional Module Structure of Fused-MBconv:
In the original EfficientNetV1 deep learning network, the
MBconv convolution module is predominantly used in all
stages, except for the conventional convolution in the first
and last steps, as outlined in Table I. While the MBconv
convolution module can extract feature matrices using fewer
parameters than traditional convolution operations, its exten-
sive use of convolutions does not significantly enhance the
training speed. To address this issue, the EfficientNetV2-
S network employs the Fused-MBconv convolution module,
which reduces the number of operations by amalgamating
multiple convolutions found in the traditional MBconv. This
adaptation maintains the effectiveness of convolution while
decreasing the convolution operation layers, especially for
large-size inputs. However, it is important to note that the
MBconv convolutional structure may be better suited for
processing detailed and complex features, so it should not be
replaced with Fused-MBconv solely for speed improvement.
The structure of this module is illustrated in Fig. 6.
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Fig. 7. Traditional 3 × 3 convolution kernel for ascending feature extraction
operation.

The Fused-MBConv convolution module first utilizes a
3 × 3 standard convolution kernel on the main branch to
transform the low channel input feature matrix into multichan-
nel data (high-dimensional feature vectors), thereby gaining
more receptive fields through ascending dimension processing,
as depicted in Fig. 7. For instance, if the input feature
matrix size is H × W × 3 (where 3 represents the number
of channels), the convolution kernel parameter required is
FMBpara

= 3 × 3 × 3 × channels = 27 channels. If the number
of channels increases to 5, FMBpara

= 3 × 3 × 5 × channels =

45 channels.
Subsequently, the high-dimensional feature matrix under-

goes nonlinear transformation via the batch normal layer
and the activation function layer (SiLU). The squeeze-and-
excitation (SE) module then processes this matrix, extracting
key features and suppressing noise data to enhance the net-
work’s representation capability (detailed in Section II-B2.a).
A new feature matrix is obtained through dimensionality
reduction using a traditional 1 × 1 convolution kernel. This
matrix is then combined with the input feature matrix through
a shortcut connection, requiring the dimensions of both matri-
ces to match. This shortcut connection significantly improves
gradient propagation across multiple layers, facilitating effi-
cient training of networks with extensive layers. The expansion
ratio in the Fused-MBconv convolution module, either 1 or
4 as shown in stages 1–3 in Table I, is crucial. It determines
the number of channels the ascending convolution operation
is raised to, essentially dictating the extent of channel increase
during the first convolution operation.

2) MBconv Convolution Module Structure: Similar to the
Fused-MBconv module discussed in Section II-B1, this mod-
ule initially converts the low channel input feature matrix
into a high-dimensional feature matrix, thereby expanding the
receptive fields through dimension increase. Subsequently, the
high-dimensional feature matrix undergoes nonlinear trans-
formation via the batch normal layer and the activation
function layer (SiLU). However, a notable difference from the
Fused-MBconv is the use of a 1 × 1 convolution kernel instead
of a 3 × 3 kernel. This is followed by a 3 × 3 depth-separable
convolution (DWconv) to enhance the convolutional receptive
field and extract features (detailed in Section II-B2.b). The
features obtained are then processed by the SE module, which
adjusts the feature matrix.

The final step involves obtaining a new feature matrix
through dimensionality reduction using a traditional 1 × 1 con-
volution kernel. This new feature matrix is then combined with
the original input feature matrix through a shortcut connection.
This shortcut requires that the dimensions of the input feature
matrix and the new feature matrix match. This approach,

Fig. 8. MBconv convolution structure and its internal convolution layer.

Fig. 9. SE module and Bouguer gravity anomaly feature extraction.

as illustrated in Fig. 8, ensures efficient integration of the
newly extracted features with the original data, enhancing
the overall efficacy and accuracy of the feature processing
in the neural network.

a) SE module structure: The SE module plays a pivotal
role in intelligently recalibrating channel characteristics during
the processing of gravity data. It adeptly emphasizes key
features by assigning greater weights to more informative
channels while simultaneously reducing noise and less relevant
elements by attenuating their corresponding channels. This
selective emphasis and suppression streamline the network’s
operation, significantly enhancing its capability to discern
complex patterns within gravity data, a critical aspect of
geophysical analysis.

In the S-E operation, the input matrix U ∈ RH×W×C is con-
densed into a vector Fsq(uc) via global pooling, as indicated
in the following equation:

Fsq(uc) =
1

H × W

H∑
i=1

W∑
j=1

uc(i, j) (8)

where uc(i, j) denotes the cth element in the input matrix
U ∈ RH×W×C . The terms H and W represent the number
of rows and columns, respectively, in the overall designed
number of channels (C), from which gravity input data are
extracted through the convolution operation. The application
of the specific S-E module in identifying gravity anomaly data
is illustrated in Fig. 9, where the process involves multiplying
the matrix derived from each figure’s data to yield the final
result. The S-E block is adept at learning channel correla-
tions, thereby enhancing the network’s sensitivity to crucial
channels. Concurrently, it suppresses redundant or irrelevant
features that could otherwise act as noise, potentially impeding
the effectiveness of the prediction. This intricate process of
modulation and enhancement within the S-E module is integral
to the network’s ability to accurately interpret and analyze
gravity anomaly data.

b) DWconv modular architecture: The DWconv mod-
ule and the traditional convolution module in the MBconv
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Fig. 10. MBconv convolution structure. (a) Calculation method of the 1 ×

1 convolution kernel. (b) DWconv kernel.

module both engage in feature extraction from the upper level
matrix. However, a key distinction of the DWconv module
is that it does not perform a summation operation across
channels after convolution, as depicted in Fig. 10(b). This
means that the number of channels in the DWconv module’s
convolution kernel must match the number of channels in the
upper level matrix. Unlike traditional convolution, where post-
convolution, all channels are summed up, the DWconv module
skips this step.

With the implementation of the DWconv module, the con-
volution kernel parameter M Bpara for the same feature matrix
size as shown in Fig. 7 is calculated to be 1 × 1 × 3 ×

channels + 3 × 3 × channels = 12 channels. In contrast, the
convolution kernel parameters required by the Fused-MBconv
module depend on both the number of matrix channels in the
upper level and the size of the convolution kernel. Meanwhile,
for the MBconv module, the convolution kernel parameters
are influenced solely by the number of matrix channels in the
upper level.

Consequently, the DWconv module offers a speed advantage
in training lightweight networks. By forgoing the channel
summation step and requiring fewer parameters for the same
feature extraction, the DWconv module streamlines the convo-
lution process. This efficiency makes it particularly well-suited
for applications where training speed and resource optimiza-
tion are crucial.

3) Composite Scaling Technique: In many CNNs,
researchers typically employ a fixed variable method for
training network models. This method involves selecting
one parameter from the network’s depth, width, or the
resolution of the input image and then fixing the other two
parameters based on experience. However, this approach
requires extensive manual tuning and does not guarantee an
optimal combination of these three parameters. To address
this challenge, EfficientNetV2 utilizes a compound scaling
technique.

This technique begins by defining the entire EfficientNetV2
network as a variable, Net, whose formula is given as follows:

Net(d, w, r) =

⊙
i=1,...,s

Ns
(

X1<H1,W1,r>
)

(9)

where Net consists of s stages, and d, w, and r denote the
depth, width, and resolution of the EfficientNetV2 network,
respectively. X1 represents the input data in the deep neural
network, with < H1,W1, r > defining the height, width, and
the number of channels of X1, respectively. The output tensor
of Ns after s stage is expressed as follows:

Ns = Fk
s ⊙ . . .⊙ F1

s

(
X i

s

)
=

⊙
(i=1,...,k)

F i
s

(
X i

s

)
. (10)

The convolution operation at layer i in stage s from Table I
is defined as F i

s . The input feature tensor at layer i in stage s
is X i

s , and the output feature tensor Y i
s for the same layer is

calculated in the following equation:

Y i
s = F i

s

(
X i

s

)
. (11)

To find the best structure, the depth (d), width (w), and
resolution (r) of all layers in the EfficientNetV2 network are
scaled by a constant proportion. The goal is to maximize the
model’s accuracy within the constraints of available resources
by the following equation:

max
d,w,r

Accuracy(Net(d, w, r))

s.t. N (d, w, r) = ⊙i=1,...,s F̂s
d ·̂i(

X<r,Ĥi ,r,Ŵi ,w,Ĉi>

)
Memory(Net) ≤ targetmemory
FLOPS(Net) ≤ targetflops (12)

where the predefined parameters F̂i ,L̂ i , Ĥi , Ŵi , and Ĉi are
adjusted based on the resolution of the input image. If the
input image is high resolution, the network’s receptive field
should be increased to capture more features. The composite
coefficient φ is defined to uniformly scale the depth (d),
width (w), and resolution (r) of the network by the following
equation:

depth: d = αφ

width: w = βφ

resolution: r = γ φ

s.t. α · β2
· γ 2

≈ 2, α ≥ 1, β ≥ 1, γ ≥ 1. (13)

Ultimately, we selected the EfficientNetV2-S architecture
(as outlined in Table I) as our baseline training framework.
This model features a width magnification factor of 1.4 and
a depth magnification factor of 1.8, balancing the network’s
dimensions for optimized training and performance.

4) Termination of the Training: To assess the stability of
various EfficientNetV2-based networks, this study utilizes the
normalized misfit as a metric to quantify the gravity observa-
tion loss during training. The normalized misfit is calculated
using the following formula:

Zmisfit =
∥Zpre − ZTrue∥

2

∥ ZTrue∥
2

βmisfit =
∥ βpre − βTrue ∥

2

∥ βTrue∥
2 (14)

where ∥· · ·∥ stands for norm operator, ZTrue denotes the actual
depth of the basement relief interface, and Zpre represents the
predicted depth of the basement relief interface. Consequently,
Zmisfit stands for the normalized error in the depth prediction of
the basement undulating interface. Similarly, βTrue denotes the
true density change factor, βpre refers to the predicted density
change factor, and βmisfit signifies the normalized error in the
predicted density change factor.
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Fig. 11. Loss function comparison for three different networks trained on
three different models. (a) Symmetric model loss function curve. (b) Loss
function curve of asymmetric model. (c) Loss function curve of complex
model.

TABLE II
COMPARISON OF LEARNING PARAMETERS FOR THE THREE NETWORKS

III. SYNTHETIC STUDIES

A. Network Training

To optimize the training of the EfficientNetV2 network
model, we utilize the dataset from the simulation verification
stage (Section II-A1) as our training dataset. Specifically,
{1gψSMU}

NSMU
ψ=1 , NSMU = 74 640, serves as the input dataset

for the deep neural network. The corresponding output label
dataset is {ZψSMU, β

ψ
SMU}

NSMU
ψ=1 , NSMU = 74 640. We allocate

80% of this dataset for training and reserve the remaining
20% for validation.

Fig. 11 presents a comparative analysis of the loss func-
tions across three types of basin density models, using three
different deep learning networks. In this figure, the red line
indicates the loss function curve of the DNN network model,
the blue line represents the loss function curve of the ResU-
Net++ network model, and the black line corresponds to the
loss curve of the EfficientNetV2 network. Fig. 11(a) shows the
training loss function comparison for the symmetric model,
Fig. 11(b) shows the training loss function comparison for
the asymmetric model, and Fig. 11(c) shows the training loss
function comparison for the complex model. Notably, the
EfficientNetV2 network model used in this study demonstrates
the smallest loss function error, outperforming the DNN and
ResU-Net++ models.

Table II compares the training parameters of the three differ-
ent network structures across three types of training datasets.
The DNN network model’s parameters are heavily influenced
by the number of neurons and network layers. In contrast,
both the ResU-Net++ and EfficientNetV2 models are based
on the CNNs architecture, with EfficientNetV2 requiring fewer
parameters than ResU-Net++.

Table III shows the training time we have calculated—our
PC configuration: CPU: 1 × Intel1 Xeon1 Gold 5218 CPU
@ 2.30 GHz; GPU: 1 × NVIDIA RTX A4000, 16 GB; and
memory: 144 GB.

1Registered trademark.

TABLE III
THREE TYPES OF NETWORK MODEL TRAINING TIME

TABLE IV
HYPERPARAMETERS OF THE EFFICIENTNETV2 NETWORK ARCHITECTURE

An essential aspect of training is balancing underfitting and
overfitting by appropriately choosing the number of epochs.
Underfitting, where the model is inadequately trained, can
result from too few epochs, whereas overfitting, where the
model overfits the training data, may occur with too many
epochs. The specific hyperparameter settings are outlined in
Table IV. Based on experimental results, we chose to train
for 50 epochs, using Adam’s optimizer, a learning rate of
0.001, a batch size of 64, and SmoothL1Loss as the loss func-
tion. This combination results in the EfficientNetV2 network
achieving the lowest loss function error in the training dataset,
compared to the other two networks.

B. Validating Models

To further assess the predictive capabilities of the Efficient-
NetV2 network, this study selects three types of basin density
models from the validation dataset for verification.

1) Symmetry Model: Fig. 12 depicts the symmetric model,
where the sedimentary basin model spans 5000 × 5000 m. The
density-filled element matrix has dimensions of 200 ×200 ×

40 m, and the density difference between the top interface
of the sedimentary basin and the surrounding rock is 1ρ0 =

−0.03 g/cm3. Fig. 12(a) presents a slice diagram along X =

0 m and Y = 0 m of the basin base undulating interface and the
variation in overlying strata density for the symmetric model.
Here, the black line represents the actual morphology of the
basin base undulating interface. Fig. 12(b) illustrates the cor-
responding Bouguer gravity anomaly, where the observation
range extends 5000 m in both the X - and Y -directions, with
a spacing of 200 m between measurement points and lines,
totaling 625 observation points.

Upon inputting the Bouguer gravity anomaly data from
Fig. 12(b) into the three trained network models, Fig. 13(a)
shows the predicted 3-D vertical sections along X = 0 m
[Fig. 13(b)] and Y = 0 m [Fig. 13(c)] for the basement relief
interface and the overlying stratum density distribution. The
blue line indicates the actual basement relief interface, the
black dotted line shows the prediction by the DNNs network,
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Fig. 12. Symmetrical density basement model and Bouguer gravity anomaly
field. (a) Vertical sections of the 3-D model along X = 0 and Y = 0, where
the black line represents the true basement interface morphology. (b) Gravity
anomaly forward field plot of the symmetrical density basement model.

Fig. 13. Comparison of symmetric model results predicted by three networks.
(a) 3-D space predicted sections along X = 0 mand Y = 0 m. (b) X–Z section
of the predicted basement reliefs along Y = 0 m by the three networks.
(c) Y –Z slice of the predicted basement reliefs along X = 0 m by the three
networks.

the red line shows the prediction by the ResU-Net++ network,
and the yellow line shows the prediction by the EfficientNetV2
network. The DNNs’ network predictions tend to be deeper
than the actual model and ResU-Net++ predictions are shal-
lower, while EfficientNetV2 closely matches the actual basin
scenario.

To quantitatively evaluate the inversion results, we com-
puted the error in the depth (Z) and density change factor
(β) of the undulating interface of the basement as predicted
by the three network models using (14). Fig. 14 presents the
error maps of the three networks’ predictions on the symmetric
model. Fig. 14(a) shows the DNN network model’s error in
predicting the depth of the basement relief interface. Fig. 14(b)
and (c) displays the error maps for the ResU-Net++ and
EfficientNetV2 network models, respectively. For the density
change factor predictions, Fig. 14(d)–(f) illustrates the errors
for the DNN, ResU-Net++, and EfficientNetV2 models,
respectively. The DNN network shows poor fitting in the upper
left part of the sedimentary basin, with ResU-Net++ having
significant local errors. In contrast, the EfficientNetV2 network
model demonstrates relatively high accuracy in predicting
the symmetric model, underscoring its superior predictive
performance.

2) Asymmetric Model: In recognizing that real basin fluc-
tuations are often asymmetric, our model construction process
accounts for various scenarios, including the design of an
asymmetric model. Fig. 15 illustrates a sedimentary basin
model with dimensions of 5000 × 3000 m and a density-filled
unit matrix sized at 100 × 100 × 40 m. Fig. 15(a) presents
a vertical slice diagram along X = 0 m and Y = 0 m
for the asymmetric model, showcasing the uneven interface
of the basin base and the density change in the overlying
stratum. Fig. 15(b) depicts the Bouguer gravity anomaly for
the asymmetric model, with an observation range of 6000 m
along the X -direction and 4000 m along the Y -direction. The

Fig. 14. Comparison of prediction results error of three network symmetric
models. (a) Predicted depth error by DNN network model. (b) Predicted
depth error by ResU-Net++ network model. (c) Predicted depth error by
EfficientNetV2 network model. (d) Predicted density change factor β error
by DNN network model. (e) Predicted density change factor β error by
ResU-Net++ network model. (f) Predicted density change factor β error by
EfficientNetV2 network model.

Fig. 15. Asymmetric density basement model and Bouguer gravity anomaly
field. (a) Vertical sections of the 3-D model along X = 0 and Y = 0, where
the black line represents the true basement interface morphology. (b) Gravity
anomaly forward field plot of the asymmetric density basement model.

distance between measurement points and lines is set at 100 m,
totaling 2400 points.

Fig. 16, in a similar fashion, displays a comparative chart
of inversion results and fitting errors. From this figure, it is
evident that the predictions of the DNN network model are
shallower than the true model. The ResU-Net++ network
model also shows shallower predictions, while the Efficient-
NetV2 network model demonstrates the best fit to the model
[as seen in Fig. 16(a)–(c)]. In addition, the error map reveals
that the EfficientNetV2 network model yields the smallest
error in both the 3-D basement relief depth [Fig. 16(d)–(f)]
and the density change factor [Fig. 16(g)–(i)]. These findings
affirm the effectiveness of the EfficientNetV2 model, partic-
ularly in handling asymmetric basin models where accurate
representation of irregularities is crucial.

3) Complex Model: In actual exploration scenarios, the
basement interface of a basin typically exhibits a complex
structure, quite distinct from the simpler cases previously
discussed. Rather than being formed from a single depression,
it often consists of various depressions that appear alter-
nately and combine to form a complex model. Echoing the
methodology outlined in Sections III-B2 and III-B3, Fig. 17
illustrates a sedimentary basin model with dimensions of
8800 × 8800 m and a density-filled unit matrix sized 200 ×

200 × 40 m. Fig. 17(a) displays a vertical slice diagram along
X = 0 m and Y = 0 m, showing the undulating interface
of the basin base and the density change in the overlying
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Fig. 16. Comparison of asymmetric modulus results and errors predicted by
three networks. (a) 3-D prediction results. (b) X–Z section of the predicted
basement reliefs along Y = 0 m by the three networks. (c) X–Z section
of the predicted basement reliefs along X = 0 m by the three networks.
(d) Predicted depth error by DNN network model. (e) Predicted depth error
by ResU-Net++ network model. (f) Predicted depth error by EfficientNetV2
network model. (g) Predicted density change factor β error by DNN net-
work model. (h) Predicted density change factor β error by ResU-Net++

network model. (i) Predicted density change factor β error by EfficientNetV2
network model.

Fig. 17. Complex density basement model and Bouguer gravity anomaly
field. (a) Vertical sections of the 3-D model along X = 0 and Y = 0, where
the black line represents the true basement interface morphology. (b) Gravity
anomaly forward field plot of the complex density basement model.

strata for this complex model. Fig. 17(b) depicts the Bouguer
gravity anomaly of the complex model, with an observation
range of 4400 m along both the X - and Y -directions, a 200-m
spacing between measurement points and lines, and a total of
1936 measurement points.

Fig. 18, in a similar vein, presents the prediction results
and error comparisons for the complex basin model using
three different network structures. The DNN network model
shows the least satisfactory results, achieving only local fitting.
The ResU-Net++ network model demonstrates poor fitting,
especially in the upper right part of the basin. In contrast, the
EfficientNetV2 network model closely approximates the real
complex model.

The experimental results underscore the significant advan-
tages of the EfficientNetV2 network model in predicting both
the basement relief interface and the overlying stratum den-
sity of sedimentary basins. Its efficient structural design and
effective parameter combination make it adept at accurately
capturing geological features and stratigraphic variations. This
leads to improved accuracy and robustness in predictions.
When compared with the traditional DNN network model and
the ResU-Net++ network model, the EfficientNetV2 network

Fig. 18. Comparison of complex model results and error of three network
predictions. (a) 3-D prediction results. (b) X–Z section of the predicted
basement reliefs along Y = 0 m by the three networks. (c) X–Z section
of the predicted basement reliefs along X = 0 m by the three networks.
(d) Predicted depth error by DNN network model. (e) Predicted depth error
by ResU-Net++ network model. (f) Predicted depth error by EfficientNetV2
network model. (g) Predicted density change factor β error by DNN net-
work model. (h) Predicted density change factor β error by ResU-Net++

network model. (i) Predicted density change factor β error by EfficientNetV2
network model.

model not only shows a notable improvement in prediction
accuracy but also excels in handling complex model structures.

4) Robustness: We assessed stability by adding 5% Gaus-
sian noise to the original Bouguer gravity anomaly data and
predicting results using the trained EfficientNetV2 network.
Fig. 19 shows that even with noise, the deep neural network
predicts results accurately, demonstrating strong robustness.
This indicates that our network maintains high prediction
accuracy with noisy data.

Regarding the instability and nonuniqueness issues of tra-
ditional inversion techniques, our method offers effective
solutions. Traditional methods easily fall into local minima,
resulting in nonunique solutions and poor performance under
noise interference. However, our deep learning method enables
the network to learn robust features and patterns by training
with large datasets. As a result, deep neural networks provide
stable and reliable prediction results even in noisy environ-
ments.

Our method also demonstrates strong noise immunity. The
Gaussian noise test shows that the trained EfficientNetV2 net-
work tolerates noise well, significantly improving the stability
of traditional inversion methods under noisy conditions. This
feature enhances the practicality and reliability of our method
in real-world applications.

IV. CASE STUDY

A. Geological Background of Poyang Lake Basin

The Poyang Lake Basin, situated in northern Jiangxi
Province, China, spans between 115◦30′ and 117◦00′ East
longitude, and 28◦20′ and 29◦30′ North latitude, as depicted in
the left panel of Fig. 20. This region, covering approximately
11 230 km2, is a fault basin, formed during the Meso-Cenozoic
era and laid atop Paleozoic strata. It predominantly extends
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Fig. 19. Comparison of the noisy Bouguer gravity anomaly data and the
EfficientNetV2 network prediction results. (a) Bouguer gravity anomaly data
without noise data. (b) Bouguer gravity anomaly data with 5% Gaussian noise.
(c) Basin basement depth error predicted by the EfficientNetV2 deep neural
network for the noise-free data. (d) Basin basement depth error predicted by
EfficientNetV2 deep neural network on 5% noise data. (e) Density change
factor error predicted by EfficientNetV2 deep neural network on noiseless
data. (f) Density change factor error predicted by EfficientNetV2 deep neural
network on noiseless data.

Fig. 20. Map of Poyang Lake Basin working area and Bouguer gravity
anomaly. (a) Geological profile map of Poyang Lake Basin and the research
work area marked with red boxes. (b) Bouguer gravity anomaly map, where
the black solid line B–B ′ is the seismic 2-D survey line, the white solid circle
is the formation verification wells (Well-C and Well-D), and the black solid
points are distributed along the north–south direction of gravity observation
points.

from north to east-northeast. The basin is notable for encom-
passing five major river systems, converging into the renowned
Poyang Lake, which occupies about 3050 km2 in the basin’s
eastern sector.

The Upper Paleozoic tectonic landscape was primarily
shaped by the NW-SE compressive stress field during the
Indosinian to Early Yanshan periods. Situated south of the
Changchang–Boyang line is the Nanyang Depression, with
the Pingxiang–Leping Depression above it, resulting from

sea–land interactions and sedimentation from the Upper Pale-
ozoic to the Triassic period. This region features significant
thrusts and folds in the Upper Paleozoic strata, characterized
by eastward and northeastward reverse faults north of the
rift valley, accompanied by left-lateral strike-slip faults along
northeastward trends. In the early Mesozoic era, major reverse
faults transformed into tensional positive faults under the
late Yanshan extension’s influence, guiding the Cretaceous
sediment deposition in the depression. Thus, the Mesozoic
tectonic pattern, to an extent, continues the early tectonic
framework but shifts from being dominated by northeastward
and northward-trending rifts to normal faults.

The Nanpoyang Depression was divided into two primary
sections: west and east. The eastern section follows an NW–SE
trend and includes smaller tectonic units such as the Nanjing
Depression, Ruihong Uplift, and Erjiacun Depression. This
study focuses on an 1120-km2 area in the northeast of the
Erjiacun Depression, delineated by the boundary fault and
the southern edge of the Ruihong metamorphic rocks, where
gravity data were collected. Dominant Mesozoic strata in
this area include the Late Cretaceous Ganzhou Group and
Guifeng Group. The depression’s interior hosts three Mesozoic
graben-type subdepressions interspersed with uplift zones. The
main fault significantly influences the depression’s tectonic
morphology, with formation depths reaching about 1000 m
and the deepest subdepression exceeding 3000 m. The Upper
Paleozoic remnants, over 1000 m thick, represent the largest
Upper Paleozoic remnant belt in the eastern part of Nanpoyang
Depression. During the Indo-Chinese to Early Yanshan peri-
ods, parts of the Upper Paleozoic strata underwent folding
and overturning, remaining elevated for an extended time and
subject to continuous erosion. Seismic interpretations reveal
substantial denudation in many Upper Paleozoic locations,
while geological outcrop investigations indicate that Upper
Triassic and Lower Jurassic strata are confined to specific
residual tectonic syncline areas.

B. Inversion Results and Interpretation

To suit the EfficientNetV2 network’s requirement for a
standardized matrix cell as input, the irregularly arranged
Bouguer gravity anomaly data in Fig. 20(b) are interpolated to
form a uniform 45 × 45 observation matrix. This matrix serves
as the input for the EfficientNetV2 network. For validation
purposes, the effectiveness of our approach is benchmarked
against traditional smooth inversion. In addition, the seismic
profile lateral line B–B ′ and well logs from Well-D to Well-C
provide a comparative analysis of horizon densities.

1) Training on Real Data: In basin prediction using deep
learning, it is crucial to employ training datasets that reflect
the geological nuances of different work areas. While the
simulation test stage’s training set showcases the advantages
of the EfficientNetV2 network over the DNN and ResU-
Net++ networks, these datasets may not fully capture the
geological features of the target basin in actual data prediction.
Thus, it is necessary to establish a dataset tailored to the
geological conditions of the specific work area and adjust
the parameters of the corresponding EfficientNetV2 network
model to enhance prediction accuracy and reliability.
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Fig. 21. Comparison of the seismic imaging along B–B ′ profile with different imaging results implemented by the traditional smooth and EfficientNetV2
network inversion. And 3-D-view of basement interface and the comparison of contour maps of depth-to-basement. (a) Vertical density section obtained
from traditional gravity smoothing inversion. (b) Vertical density section obtained from EfficientNetV2 network. (c) Seismic imaging overlapping with traces
of interfaces predicted by traditional gravity smoothing inversion and EfficientNetV2 network. (d) Schematic diagram of 3-D basement model retrieved by
EfficientNetV2 network. (e) Contour map of depth-to-basement predicted by EfficientNetV2 network. (f) Contour map of depth-to-basement predicted by
traditional smooth inversion results.

In this study, the actual training data label
{ZψATU, β

ψ
ATU}

NATU
ψ=1 , NATU = 3000, and corresponding training

input data {1gψATU}
NATU
ψ=1 , NATU = 3000, derived from traditional

smooth inversion based on measured Bouguer gravity anomaly
data [Fig. 20(b)], are input into the EfficientNetV2 network
for training. Before employing the trained EfficientNetV2
model for prediction, the irregular Bouguer gravity anomaly
data in Fig. 20(b) are interpolated to create a standardized
45 × 45 observation matrix for the network’s input.

2) Inversion Results and Interpretation: Fig. 21(a) and (b)
displays the vertical section plots of 3-D smooth inversion
results and EfficientNetV2 inversion results along the B–
B ′ seismic lateral line. The black lines (dashed and solid)
represent the predicted sedimentary basement relief by both
methods, following the peak intensity transitions in the stan-
dard jet color bar [green to yellow in Fig. 21(a) and light
red to dark red in Fig. 21(b)], with a density contrast value
of −0.08 g/cm3. Wells-C and D, projected onto all inversion
sections, help verify the objective boundary. Notably, the black
dashed line matches the strata markers K2z_b, indicating the
Cretaceous basement boundaries from Wells-C and D with an
anomalous density range of −0.068 to −0.097 g/cm3 [61].
In contrast, the black solid line does not align with these
strata markers. Projecting both black lines onto the seismic
profile along B–B ′ [Fig. 20(c)] reveals a critical limitation
of traditional inversion methods; while they generally depict
the main depression effectively, they often fail to represent
minor sags evident in seismic sections. This discrepancy
arises from the inherent limitations in the resolution and
sensitivity of traditional inversion techniques. Conversely, the
EfficientNetV2-based approach proposed in our work shows
significant improvement. This ML method not only cap-
tures the main depression but also distinctly identifies minor
sags that traditional methods often overlook. This enhanced

capability results from the advanced feature extraction and
pattern recognition abilities of the EfficientNetV2 architecture,
enabling more precise and detailed inversion results.

Fig. 21(d) presents a 3-D view of the basement inter-
face predicted by EfficientNetV2. Fig. 21(e) and (f) shows
the contour maps of the depth-to-basement at 200-m inter-
vals, constructed from the interpreted basement interfaces in
Fig. 21(a) and (b). These maps, with a realistic density contrast
value of −0.08 g/cm3 within the well-measured anomalous
density range of −0.068 to 0.097 g/cm3, provide a reliable
reference for future seismic survey planning.

V. CONCLUSION

Geophysical exploration plays a pivotal role in the quest for
oil and gas resources, offering indispensable technical and data
support. The evolution of inversion techniques presents both
new opportunities and challenges in the field of geophysics.
The main challenges of the traditional deterministic gravity
inversion methods are related to the inherent nonuniqueness
and instability of the inverse problem solutions. The Monte
Carlo method requires an enormous volume of computations
and is very time-consuming. Unsupervised ML methods fall
short in evaluating the correlation between the model and
the data, and deep learning approaches may struggle with
insufficient data correlation and global information.

This article employs the EfficientNetV2 network model,
which demonstrates a robust capability in mapping complex
gravity field data to 3-D basin models. This is achieved
through two convolutional techniques, Fuded-MBConv and
MBconv, combined with composite scaling techniques. In our
simulation study, while DNN and ResU-Net++ networks
could approximate the relief morphology of 3-D sedimentary
basins and the distribution of overlying strata density, they
exhibited significant discrepancies from the actual models.
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Compared to EfficientNetV2, DNN and ResU-Net++ showed
slower loss reduction and larger errors.

In our practical data study, we utilized both traditional
smooth inversion and the EfficientNetV2 network model to
predict the basement interface and overlying stratum density of
the Poyang Basin. The EfficientNetV2 model’s predictions for
the Cretaceous basin’s basal interface along the B–B ′ seismic
line align well with the primary and secondary depressions
indicated in the seismic profile. Moreover, the predicted loca-
tion and anomalous density values at the Cretaceous interface
in the two verification wells (Well-C and Well-D) match the
depth of the Cretaceous formation (K2z_b) and the anomalous
density of laboratory rock samples from the wells.

These outcomes suggest that the EfficientNetV2 network
may represent an efficient additional technique in the toolkit
of gravity inversions. By retrieving the basement’s undulating
interface and the density changes in the overlying strata, this
novel technique makes it possible to capture geological details
more comprehensively, thereby enhancing the accuracy and
reliability of the inversion results.

ACKNOWLEDGMENT

The authors would like to thank Chengdu University of
Technology, Chengdu, China; the Consortium for Electromag-
netic Modeling and Inversion (CEMI), University of Utah, Salt
Lake City, UT, USA; and Changchun University of Science
and Technology, Changchun, China.

REFERENCES

[1] R. A. Willoughby, “Solutions of ill-posed problems (AN Tikhonov and
VY Arsenin),” SIAM Rev., vol. 21, no. 2, p. 266, 1979.

[2] K. Ji, Y. Shen, Q. Chen, B. Li, and W. Wang, “An adaptive regularized
solution to inverse ill-posed models,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 4209715.

[3] G. Backus and F. Gilbert, “The resolving power of gross Earth data,”
Geophys. J. Int., vol. 16, no. 2, pp. 169–205, Oct. 1968.

[4] G. E. Backus and J. F. Gilbert, “Numerical applications of a formalism
for geophysical inverse problems,” Geophys. J. Int., vol. 13, nos. 1–3,
pp. 247–276, Jul. 1967.

[5] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441,
Jun. 1963.

[6] D. W. Marquardt, “Generalized inverses, ridge regression, biased linear
estimation, and nonlinear estimation,” Technometrics, vol. 12, no. 3,
p. 591, Aug. 1970.

[7] J. N. Franklin, “Well-posed stochastic extensions of ill-posed linear
problems,” J. Math. Anal. Appl., vol. 31, no. 3, pp. 682–716, Sep. 1970.

[8] M. Foster, “An application of the Wiener–Kolmogorov smoothing theory
to matrix inversion,” J. Soc. Ind. Appl. Math., vol. 9, no. 3, pp. 387–392,
Sep. 1961.

[9] D. D. Jackson, “Interpretation of inaccurate, insufficient and inconsistent
data,” Geophys. J. Int., vol. 28, no. 2, pp. 97–109, Jun. 1972.

[10] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter
Estimation. Philadelphia, PA, USA: SIAM, 2005.

[11] A. Tarantola and B. Valette, “Generalized nonlinear inverse problems
solved using the least squares criterion,” Rev. Geophys., vol. 20, no. 2,
pp. 219–232, May 1982.

[12] M. S. Zhdanov, Advanced Methods of Joint Inversion and Fusion of
Multiphysics Data. Singapore: Springer, 2023.

[13] M. S. Zhdanov, Inverse Theory and Applications in Geophysics.
Amsterdam, The Netherlands: Elsevier, 2015, p. 799.

[14] R. Zhang, T. Li, C. Liu, X. Huang, K. Jensen, and M. Sommer,
“3-D joint inversion of gravity and magnetic data using data-space and
truncated Gauss–Newton methods,” IEEE Geosci. Remote Sens. Lett.,
vol. 19, pp. 1–5, 2022.

[15] C.-C. Tseng and S.-L. Lee, “Implementation of temperature data denois-
ing operator using steepest descent method,” in Proc. 20th Int. Symp.
Commun. Inf. Technol. (ISCIT), Oct. 2021, pp. 150–153.

[16] X.-H. Gao and D.-N. Huang, “Research on 3D focusing inversion of
gravity gradient tensor data based on a conjugate gradient algorithm,”
Chin. J. Geophys., vol. 60, no. 4, pp. 1571–1583, 2017.

[17] P. Qin, D. Huang, Y. Yuan, M. Geng, and J. Liu, “Integrated gravity and
gravity gradient 3D inversion using the non-linear conjugate gradient,”
J. Appl. Geophys., vol. 126, pp. 52–73, Mar. 2016.

[18] L. Bianco, M. Tavakoli, A. Vitale, and M. Fedi, “Multiorder sequential
joint inversion of gravity data with inhomogeneous depth weighting:
From near surface to basin modeling applications,” IEEE Trans. Geosci.
Remote Sens., vol. 62, 2024, Art. no. 4700311.

[19] T.-H. Wang, D.-N. Huang, G.-Q. Ma, Z.-H. Meng, and Y. Li, “Improved
preconditioned conjugate gradient algorithm and application in 3D
inversion of gravity-gradiometry data,” Appl. Geophys., vol. 14, no. 2,
pp. 301–313, Jun. 2017.

[20] R. Varfinezhad, M. Fedi, and M. Milano, “The role of model weighting
functions in the gravity and DC resistivity inversion,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 4507915.

[21] Z. Chen, X. Zhang, and Z. Chen, “Combined compact and smooth
inversion for gravity and gravity gradiometry data,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022, Art. no. 5903210.

[22] N. Wang, G. Ma, L. Li, T. Wang, and D. Li, “A density-weighted
and cross-gradient constrained joint inversion method of gravity and
vertical gravity gradient data in spherical coordinates and its application
to lunar data,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 4511211.

[23] B. Chen, S. Li, Y. Sun, J. Du, J. Liu, and G. Qi, “Joint inversion of
gravity gradient tensor data based on L1 and L2 norms,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5925208.

[24] Z. Li and C. Yao, “An investigation of L p-norm minimization for the
artifact-free inversion of gravity data,” Remote Sens., vol. 15, no. 14,
p. 3465, Jul. 2023.

[25] X. Feng, W. Wang, and B. Yuan, “3D gravity inversion of basement relief
for a rift basin based on combined multinorm and normalized vertical
derivative of the total horizontal derivative techniques,” Geophysics,
vol. 83, no. 5, pp. G107–G118, Sep. 2018.

[26] X. Feng, S. Liu, R. Guo, P. Wang, and J. Zhang, “Gravity inversion
of blocky basement relief using L0 norm constraint with exponential
density contrast variation,” Pure Appl. Geophys., vol. 177, no. 8,
pp. 3913–3927, Aug. 2020.

[27] F. Press, “Earth models consistent with geophysical data,” Phys. Earth
Planet. Interiors, vol. 3, pp. 3–22, Jan. 1970.

[28] F. Press, “Earth models obtained by Monte Carlo inversion,” J. Geophys.
Res., vol. 73, no. 16, pp. 5223–5234, Aug. 1968.

[29] F. Press, “Regionalized Earth models,” J. Geophys. Res., vol. 75, no. 32,
pp. 6575–6581, Nov. 1970.

[30] M. Sambridge and K. Mosegaard, “Monte Carlo methods in geophys-
ical inverse problems,” Rev. Geophys., vol. 40, no. 3, pp. 3-1–3-29,
Sep. 2002.

[31] V. I. Keilis-Borok and T. B. Yanovskaja, “Inverse problems of seismol-
ogy (structural review),” Geophys. J. Int., vol. 13, nos. 1–3, pp. 223–234,
Jul. 1967.

[32] L. Li and G. Ma, “The inversion of seabed terrain of the South China
Sea by simulated annealing based on gravity gradient data,” Prog.
Geophysiscs, vol. 29, no. 2, pp. 931–935, Aug. 2014.

[33] X. Ke, Y. Wang, and H. Xu, “3D density inversion with genetic
algorithm,” J. Geodesy Geodynamics, vol. 29, no. 1, pp. 41–45,
Jan. 2009.

[34] V. Chakravarthi, S. R. Sastry, and B. Ramamma, “MODTOHAFSD—A
GUI based Java code for gravity analysis of strike limited sedimentary
basins by means of growing bodies with exponential density contrast–
depth variation: A space domain approach,” Comput. Geosci., vol. 56,
pp. 131–141, Jul. 2013.

[35] L. F. Athy, “Density, porosity, and compaction of sedimentary rocks,”
AAPG Bull., vol. 14, no. 1, pp. 1–24, 1930.

[36] L. Cordell, “Gravity analysis using an exponential density-depth func-
tion; San Jacinto Graben, California,” Geophysics, vol. 38, no. 4,
pp. 684–690, Aug. 1973.

[37] H. Granser, “Three-dimensional interpretation of gravity data from sed-
imentary basins using an exponential density-depth function,” Geophys.
Prospecting, vol. 35, no. 9, pp. 1030–1041, Nov. 1987.

[38] Y. Chai and W. J. Hinze, “Gravity inversion of an interface above
which the density contrast varies exponentially with depth,” Geophysics,
vol. 53, no. 6, pp. 837–845, Jun. 1988.

Authorized licensed use limited to: The University of Utah. Downloaded on November 04,2024 at 17:33:52 UTC from IEEE Xplore.  Restrictions apply. 



4508915 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

[39] V. Chakravarthi, M. P. Kumar, B. Ramamma, and S. R. Sastry, “Auto-
matic gravity modeling of sedimentary basins by means of polygonal
source geometry and exponential density contrast variation: Two space
domain based algorithms,” J. Appl. Geophys., vol. 124, pp. 54–61,
Jan. 2016.

[40] H. Cai and M. Zhdanov, “Application of cauchy-type integrals in
developing effective methods for depth-to-basement inversion of gravity
and gravity gradiometry data,” Geophysics, vol. 80, no. 2, pp. G81–G94,
Mar. 2015.

[41] M. H. P. Bott, “The use of rapid digital computing methods for direct
gravity interpretation of sedimentary basins,” Geophys. J. Int., vol. 3,
no. 1, pp. 63–67, Mar. 1960.

[42] D. W. Oldenburg, “The inversion and interpretation of gravity anoma-
lies,” Geophysics, vol. 39, no. 4, pp. 526–536, 1974.

[43] R. L. Parker and S. P. Huestis, “The inversion of magnetic anomalies
in the presence of topography,” J. Geophys. Res., vol. 79, no. 11,
pp. 1587–1593, Apr. 1974.

[44] S. Liu and S. Jin, “3-D gravity anomaly inversion based on improved
guided fuzzy C-means clustering algorithm,” Pure Appl. Geophys.,
vol. 177, no. 2, pp. 1005–1027, Feb. 2020.

[45] J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ignatiev, and
N. Narodytska, “Explaining Naive Bayes and other linear classifiers
with polynomial time and delay,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 33, 2020, pp. 20590–20600.

[46] M. Li, Y. Li, N. Wu, Y. Tian, and T. Wang, “Desert seismic random noise
reduction framework based on improved PSO-SVM,” Acta Geodaetica
et Geophysica, vol. 55, no. 1, pp. 101–117, Mar. 2020.

[47] A. Özbeyaz and M. Söylemez, “Modeling compaction parameters
using support vector and decision tree regression algorithms,” TURK-
ISH J. Electr. Eng. Comput. Sci., vol. 28, no. 5, pp. 3079–3093,
Sep. 2020.

[48] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden Markov
models,” Comput. Speech Lang., vol. 9, no. 2, pp. 171–185, Apr. 1995.

[49] P. S. Paul, “Predictors of work injury in underground mines—An
application of a logistic regression model,” Mining Sci. Technol. (China),
vol. 19, no. 3, pp. 282–289, May 2009.

[50] D. Ruppert, “Empirical-bias bandwidths for local polynomial nonpara-
metric regression and density estimation,” J. Amer. Stat. Assoc., vol. 92,
no. 439, p. 1049, Sep. 1997.

[51] S. He, H. Cai, S. Liu, J. Xie, and X. Hu, “Recovering 3D basement relief
using gravity data through convolutional neural networks,” J. Geophys.
Res., Solid Earth, vol. 126, no. 10, Oct. 2021, Art. no. e2021JB022611.

[52] S. Zhao, D. Liu, Q. Yuan, and J. Li, “A global gravity reconstruction
method for mercury employing deep convolutional neural network,”
Remote Sens., vol. 12, no. 14, p. 2293, Jul. 2020.

[53] R. F. Annan and X. Wan, “Recovering bathymetry of the Gulf of Guinea
using altimetry-derived gravity field products combined via convolu-
tional neural network,” Surveys Geophys., vol. 43, no. 5, pp. 1541–1561,
Jul. 2022.

[54] D. Jha et al., “ResUNet++: An advanced architecture for medical image
segmentation,” in Proc. IEEE Int. Symp. Multimedia (ISM), Dec. 2019,
pp. 2250–2255.

[55] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Comput-
ing and Computer-Assisted Intervention—MICCAI. Cham, Switzerland:
Springer, 2015, pp. 234–241.

[56] H. Chen et al., “A landslide extraction method of channel attention mech-
anism U-Net network based on Sentinel-2A remote sensing images,” Int.
J. Digit. Earth, vol. 16, no. 1, pp. 552–577, Oct. 2023.

[57] X. Zhou, Z. Chen, Y. Lv, and S. Wang, “3-D gravity intelligent inversion
by U-Net network with data augmentation,” IEEE Trans. Geosci. Remote
Sens., vol. 61, 2023, Art. no. 5902713.

[58] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convo-
lutional neural networks,” in Proc. 36th Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[59] M. Tan and Q. Le, “EfficientNetV2: Smaller models and faster training,”
in Proc. 38th Int. Conf. Mach. Learn., 2021, pp. 10096–10106.

[60] V. A. Litinsky, “Concept of effective density; Key to gravity depth
determinations for sedimentary basins,” Geophysics, vol. 54, no. 11,
pp. 1474–1482, 1989.

[61] Z. Xu, R. Wang, W. Xiong, J. Wang, and D. Wang, “3D hybrid imaging
based on gravity migration and regularized focusing inversion to predict
the Poyang basin interface,” Geophysics, vol. 86, no. 4, pp. G55–G67,
Jul. 2021.

Yu Zhang received the B.S. degree in geophysics
from Chengdu University of Technology, Chengdu,
China, in 2023, where he is currently pursuing the
Ph.D. degree.

His research interests include gravity and magnetic
inversion imaging.

Zhengwei Xu received the M.Sc. degree in
geo-exploration science and information technology
from Jilin University, Changchun, China, in 2008,
and the Ph.D. degree in geophysics from the Uni-
versity of Utah, Salt Lake City, UT, USA, in 2013.

He is currently a Researcher with the College
of Geophysics, Chengdu University of Technol-
ogy, Chengdu, China. His research interests include
gravity, magnetic, and electromagnetic forward mod-
eling and inversion theory, as well as incorporation
and joint inversion of multigeophysical data using
artificial intelligence.

Minghao Xian received the B.S. degree in geo-
physics from Chengdu University of Technology,
Chengdu, China, in 2023, where he is currently
pursuing the M.S. degree.

His research interests include gravity and magnetic
inversion imaging.

Michael S. Zhdanov (Senior Member, IEEE)
received the M.Sc. degree in geophysics from
Moscow Gubkin State University of Oil and Gas,
Moscow, Russia, in 1968, and the Ph.D. degree in
physics and mathematics from Moscow State Uni-
versity, Moscow, in 1970.

He was the Founding Director of the Geoelec-
tromagnetic Research Institute, Russian Academy
of Sciences, Moscow, and the Deputy Director of
the Institute of Terrestrial Magnetism, Ionosphere
and Radio Wave Propagation, Russian Academy of

Sciences. He is currently a Distinguished Professor with the Department of
Geology and Geophysics, University of Utah, Salt Lake City, UT, USA;
the Director of the Consortium for Electromagnetic Modeling and Inver-
sion (CEMI), University of Utah; and the CEO and the Chairperson of
TechnoImaging, Salt Lake City. He is also an Honorary Gauss Professor
with Göttingen Academy of Sciences, Göttingen, Germany, and an Honorary
Professor with China National Centre for Geological Exploration Technol-
ogy, Beijing, China. His research interests include fundamental and applied
geophysics, inversion theory, electromagnetic theory and methods, as well as
integration and joint inversion of multiphysics data.

Dr. Zhdanov is a fellow of the Russian Academy of Natural Sciences, the
Electromagnetics Academy, USA, and an Honorary Member of the Society
of Exploration Geophysicists.

Authorized licensed use limited to: The University of Utah. Downloaded on November 04,2024 at 17:33:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: 3-D BASEMENT RELIEF AND DENSITY INVERSION 4508915

Changjie Lai received the B.S. degree in geo-
physics from Xi’an Shiyou University, Xi’an, China,
in 2010, and the M.Sc. degree from China University
of Petroleum, Beijing, China, in 2013.

His research interests include basic geological sur-
vey and resource evaluation of unconventional oil
and gas.

Rui Wang received the Ph.D. degree in traffic
and transportation engineering from Jilin University,
Changchun, China, in 2014.

He is currently an Associate Professor and the
Head of the Software Engineering Department,
School of Computer Science and Technology,
Changchun University of Science and Technology,
Changchun. His main research interests include
machine learning, computer vision, and geophysics.

Lifeng Mao received the M.Sc. and Ph.D. degrees
in geophysics from Chengdu University of Technol-
ogy (CDUT), Chengdu, China, in 2004 and 2007,
respectively.

He is currently a Professor with the College of
Geophysics, CDUT. His research interests include
the forward and inversion theory of geophysical
electromagnetic methods, with a focus on the 3-D
simulation of electromagnetic fields in both time and
frequency domains.

Guangdong Zhao received the B.S. degree
in prospecting technology and engineering from
Chang’an University, Xi’an, China, in 2015, and the
Ph.D. degree in geophysical prospecting and infor-
mation technology from Central South University,
Changsha, China, in 2021.

He is currently an Associate Researcher with
the College of Geophysics, Chengdu University of
Technology, Chengdu, China. His research interests
include forward and inversion modeling methods of
gravity and magnetic, with the application to lunar

mascon basins and the Tibetan plateau.

Authorized licensed use limited to: The University of Utah. Downloaded on November 04,2024 at 17:33:52 UTC from IEEE Xplore.  Restrictions apply. 


