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ABSTRACT

In geophysical research, gravity-based inversion is essential
for identifying geologic anomalies, mapping rock structures,
and extracting resources such as oil and minerals. However,
traditional gravity inversion methods face challenges, such as
the volumetric effects of gravity fields and the management of
large complex matrices. Unsupervised learning techniques often
struggle with overfitting and interpreting gravity data. This study
explores the application of various U-Net-based network archi-
tectures in gravity inversion, each offering distinct challenges
and advantages. Nested U-Net, although effective, requires a high
parameter count, leading to extended training periods. The
recurrent residual U-Net’s implicit attention mechanism restricts
its dynamic adaptability, whereas the attention U-Net’s lack of
residual connections raises concerns about gradient issues. This
research comprehensively analyzes the training processes, core

functionalities, and module distribution of these networks, includ-
ing the residual U-Net++. Our synthetic studies compare these
networks with traditional focused regularized gravity inversion
for reconstructing density anomalies. The results demonstrate that
the nested U-Net closely approximates the actual model despite
some redundancy. The recurrent residual U-Net indicates an im-
proved alignment with minimal redundancies, and the attention
U-Net is effective in density prediction but encounters difficulties
in areas of low density. Notably, the residual U-Net++ excels in
inversion modeling, achieving the lowest misfit percentage and
accurately replicating density values. In practical applications,
the residual U-Net++ impressively reconstructs the F2 salt diapir
in the Nordkapp Basin with well-defined boundaries that closely
match seismic data interpretations. These results underscore the
capabilities of the residual U-Net++ in geophysical data analysis,
structural reconstruction, and inversion, demonstrating its effec-
tiveness in simulated settings and real-world scenarios.

INTRODUCTION

Gravity-based exploration plays a pivotal role in geophysical in-
vestigations, significantly impacting the identification of geologic
anomalies, the delineation of rock structures, and the management
of engineering geologic surveys. It also serves as an essential tool
in explorating oil, gas, and mineral resources (Cai and Zhdanov,
2015; Layade et al., 2020; Alaofin, 2022; Li et al., 2023;
Sampietro et al., 2023).
In a geophysical context, gravity inversion is often an ill-posed

problem (Zhdanov, 2015; Xu et al., 2021a, 2021b; Liang et al.,
2023). The root of this challenge stems from the disparity between

the volume of observed data and the magnitude of potential solu-
tions; even minor fluctuations in the data can dramatically alter the
solution, making it nonunique and unstable. Therefore, selecting an
appropriate inversion method is crucial for addressing the issue of
solution multiplicity.
Conventional gravity inversion can be categorized into determin-

istic inversion (Marquardt, 1963; Backus and Gilbert, 1967; Backus
and Gilbert, 1968; Backus, 1970a, 1970b; Tikhonov and Arsenin,
1977; Wei and Sun, 2021) and probabilistic inversion (Foster,
1961; Franklin, 1970; Jackson, 1972; Tarantola and Valette,
1982; Tarantola, 2005; Wei and Sun, 2022). The former encom-
passes methods such as Newton’s approach (Zhang et al., 2021), the
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steepest descent method (Tseng and Lee, 2021), and the conjugate
gradient method (Qin et al., 2016; Gao and Huang, 2017; Wang
et al., 2017; Tian et al., 2019). However, these gradient minimiza-
tion techniques often struggle to escape from deep local minima,
particularly when error functions exhibit multiple local minima.
The Monte Carlo method provides a partial remedy by reducing

the likelihood of the gradient method becoming ensnared in local
minima (Press, 1968, 1970a, 1970b; Sambridge and Mosegaard,
2002; Wei et al., 2023). This method is divided into two main ap-
proaches. The first involves an exhaustive random search that aims
to resolve model parameters by generating predictive data that
closely approximate the observed data, thus identifying the global
minimum of the error function. Although effective, this method can
be susceptible to entrapment in multiple local minima (Keilis-Borok
and Yanovskaja, 1967) and may necessitate numerous steps for a
thorough search. To mitigate this, the second approach incorporates
optimization algorithms to streamline the search process, with tech-
niques such as simulated annealing (Nagihara and Hall, 2001) —
inspired by metallurgical heating and cooling processes — and the
genetic algorithm (Montesinos et al., 2005), which mimics natural
evolutionary processes. Despite these innovations, traditional grav-
ity inversion still faces challenges in addressing the volumetric ef-
fects of gravity fields, matrix underdetermination, and management
of large ill-conditioned matrices.
The advent of machine-learning (ML) methods that incorporate

a priori geologic information to resolve inverse problems has been
garnering considerable interest. Numerous studies have explored
the application of unsupervised ML algorithms, guided by prior
geologic insights, to address the challenges in gravity inversion.
Key techniques include clustering (Liu and Jin, 2020), linear clas-
sifiers (Marques-Silva et al., 2020), support vector machines (Li
et al., 2020), decision trees (Özbeyaz and Söylemez, 2020), and
stochastic prediction (Amiramjadi et al., 2023). These methods
have been used to mitigate the inherent ill-posedness of geophysi-
cal inverse problems. In addition, methods such as linear regres-
sion (Leggetter and Woodland, 1995), logistic regression (Paul,
2009), and polynomial regression (Ruppert, 1997) have proven
effective in revealing subsurface physical properties. However,
a major challenge remains in establishing clear objectives or
benchmarks to evaluate the performance of these algorithms.
Determining whether identified patterns or structures are meaning-
ful or merely coincidental remains complex. Furthermore,
unsupervised learning is prone to overfitting and presents difficul-
ties in result interpretation.
In the realm of ML, supervised learning demonstrates superior

generalization capabilities over unsupervised learning, owing to
its reliance on labeled data during the training process. This reliance
allows for easier performance evaluation and adjustments during the
algorithm’s learning phase (Wu et al., 2023). Deep learning, a sub-
set of supervised learning, primarily focuses on training multilayer
neural networks to extract hierarchical representations from com-
plex data. Initially, the backpropagation neural network was founda-
tional in deep learning’s application to gravity exploration (Guan
et al., 1998; Chen et al., 2018; Sun et al., 2022; Delcey et al.,
2023; Wang et al., 2023). However, limitations such as parameter
scalability and generalization capacity prompted geophysicists to
adopt convolutional neural networks (CNNs). Known for their local
connections and shared weights, CNNs offer enhanced generaliza-
tion and transfer learning capabilities, crucial for effectively

extracting and modeling geophysical field characteristics (Zhao
et al., 2020; He et al., 2021; Annan and Wan, 2022). Nonetheless,
to capture detailed subsurface structures and precise boundary in-
formation, it is crucial to maintain extensive local and location data.
Traditional CNNs, focusing primarily on global information, often
fall short in predicting complex geologic phenomena accurately.
The U-Net architecture, integrating encoder and decoder mech-

anisms, excels in semantic information extraction and spatial detail
restoration in image segmentation tasks (Ronneberger et al., 2015;
Jiang et al., 2021; Chen et al., 2023; Liu et al., 2023; Wang et al.,
2024). Despite its strengths, U-Net faces challenges in handling the
inversion of intricate geologic structures due to its uniform weight-
ing of features at equivalent levels during the encoding and decod-
ing processes, which can obscure critical geologic features under
less significant ones.
Recent innovations have led to the development of U-Net

derivatives, enhancing performance and generalization in image
segmentation. Notably, the nested U-Net, proposed by Zhou et al.
(2018), features a deeply nested structure that integrates multilevel
features, enabling simultaneous processing of feature information
across different scales. This architecture enhances the understand-
ing of local and global geologic contexts and reduces information
loss, proving effective in reconstructing subsurface structures
(Zhang and Sheng, 2020; Gao et al., 2021). However, due to its
deep and complex architecture, its complexity requires significant
computational resources and training time.
The recurrent residual U-Net (R2U-Net), introduced by Alom

et al. (2018), mitigates the high parameter count of traditional net-
works by incorporating recurrent residual units (R2Us), simplifying
the network and reducing overfitting risks. Nevertheless, its implicit
attention mechanism limits dynamic feature weighting adjustment,
curbing its application in diverse geophysical surveys. In contrast,
the attention U-Net (AttU-Net), introduced by Oktay et al. (2018),
uses an explicit attention mechanism that dynamically adjusts fea-
ture weights, significantly enhancing generalization for geophysical
applications (Tian et al., 2022; Sui et al., 2023). However, the
absence of residual connections in AttU-Net raises concerns about
potential gradient vanishing issues.
Recently, the residual U-Net++ (ResU-Net++) network, pro-

posed by Jha et al. (2019), incorporates residual connections, which
facilitate more direct gradient propagation, effectively addressing
the issue of gradient vanishing. In addition, the integration of
the squeeze-and-excitation (S-E) module, a lightweight attention
mechanism, significantly enhances the network’s ability to discern
local and global geophysical features. Furthermore, the atrous-spa-
tial-pyramid-pooling (ASPP) module of ResU-Net++ captures se-
mantic information at various scales, improving the accuracy and
robustness of the segmentation efforts. Despite these technological
advances, ResU-Net++ has not been widely adopted in geophysical
applications yet. The limited application of these four network types
in geophysical inversion has resulted in scarce research on their
ability to accurately and efficiently reconstruct underground geo-
logic structures, particularly considering their unique structural
differences.
This study details the training methodologies, operational prin-

ciples, and core functionalities of four U-Net-based networks: the
nested U-Net, R2U-Net, AttU-Net, and ResU-Net++. We compare
the distribution of their main feature modules and systematically
evaluate their performance against traditional focused regularized
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inversion in density imaging tasks. The validation process is
segmented into two primary phases to assess the networks’ effec-
tiveness in synthetic environments and real-world applications.
Initially, we generate extensive data sets for the simulation, train
the networks, and establish the verification models to compare each
network’s effectiveness against conventional inversion methods. In
the second phase, the network showing the most promising results
from the simulation tests is selected to perform an inversion on
actual gravity data from the salt dome geologic structures in the
Nordkapp Basin.

INVERSION METHODOLOGY BASED ON
U-NET NETWORKS

Generation of training sets

Achieving precision in the attributes of density, depth, and size of
geologic targets necessitates the development of a detailed training
sample set that encompasses a diverse array of geologic body
shapes. This set should ideally mirror the most likely distributions
of the geologic bodies and their corresponding gravity anomalies.
Thus, selecting appropriate techniques and parameters to construct
a training set that offers optimal performance, wide applicability,
and the ability to mimic real-world data distribution presents a sig-
nificant challenge.
For gravity data forward modeling, we initially divided the lower

half-space of the observation area (4000 m × 4000 m × 4000 m)
into 20 × 20 × 20 rectangular prisms, each measuring 200 m
on each side (Figure 1). In constructing the model, we uniformly

assigned a density of 1 g/cm3 to each prism. To mitigate the boun-
dary effects, we excluded at least three cells (cumulatively 600 m)
along the model’s perimeter.
To simulate a wide variety of geologic bodies that exhibit gravity

anomalies, we used two distinct model generation methods. The
first method creates “separated combined models” from two inde-
pendently generated simple models. The second method, “contact
assembly models,” integrates multiple individual models under spe-
cific constraints, differing from the separated models that stem from
randomly selected single models within predefined constraints.
Figure 2 shows four randomly chosen data sets, each varying in
size and shape, to demonstrate this methodology. Overall, we
produced a total of 10,000 model sets, allocating 8000 for neural
network training and 2000 for validation purposes.
Following this, the corresponding gravity responses, denoted

as fgψz gNψ¼1; N ¼ 10;000, are simulated using forward modeling.
The vertical component of the gravity field, denoted as
gzðrÞ, can be mathematically represented by the equation
gzðrÞ ¼ AzðρÞ ¼ γ

RRR
Dðρðr 0Þ=jr 0 − rj3ÞKzðr 0 − rÞdv 0, where

r ∈= D. Here, γ symbolizes the gravitational constant
(γ ¼ 6.67384 × 10−11 m3=kg · s2), ρ represents the density distri-
bution within some anomalous domain D in the subsurface, and
Az represents the corresponding linear operators of forward mod-
eling. The kernels Kzðr 0 − rÞ ¼ z 0 − z. This formulation is essen-
tial for calculating the gravitational influence of a specified density
distribution on the surrounding points in space, typically used in
gravity inversion tasks to model subsurface structures.
From these simulations, interior features are extracted to

establish their inherent relationship with the labeled information.
Figure 3b shows the forward-modeled vertical component of the
gravitational data gz computed from the density model (Figure 3a).

Overview of the structures of the U-Net-based networks

Nested U-Net network

The nested U-Net network represents a significant advancement
in deep-learning architectures for geophysical applications. It incor-
porates a nested structure within the traditional U-Net framework,
which allows it to capture multiscale gravity-density features at

Figure 1. Schematic illustration of the lower half-space in the ob-
servation area partitioned into 20 × 20 × 20 rectangular prisms for
the application of gravity data forward modeling. Each prism mea-
sures 200 m × 200 m × 200 m.

Figure 2. Four arbitrarily selected data sets: (a and d) the separated
combined model and (b and c) the contact assembly model.
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various depths. This innovative approach improves segmentation
accuracy and robustness, while effectively mitigating gradient van-
ishing issues and optimizing parameter sharing and memory usage
for more stable and efficient training.
The architecture is shown in Figure 4a. The encoder, outlined in a

dotted gray box, alternates between convolutional layers for feature
extraction and downsampling (pooling) layers to reduce spatial di-
mensions while preserving important features. This is followed by a
U-shaped connection module that links feature maps from different
encoder levels to corresponding levels in the decoder, enhancing the
flow of information.
Figure 4b details the nested architecture. During the encoding

phase, the convolutional layers (denoted as Xi;j) extract and process
local information through filters, achieving a detailed representation
of the gravity field image. The downsampling layers aim to
condense the feature map’s spatial dimensions, using maximum
pooling to maintain crucial features. The integrated U-shaped con-
figuration between the encoder and decoder maintains multiscale
feature information, minimizing information loss and resolution
degradation, which is crucial for precise target localization and seg-
mentation. In the decoding phase, the upsampling layers gradually
restore and enlarge the feature map from the encoder to match the
size of the original input image. Concurrently, the convolutional
layers further refine and enhance these features, improving the se-
mantic richness of the output, which is critical for accurate image
segmentation and gravity field interpretation.
Diverging from traditional network formulas, the mathematical

expression for the nested structure is unique. As shown in Figure 4c,
Xi;j represents different nodes. The relationship between X0;0 and
X0;1 is defined as X0;1 ¼ H½X0;0; UðX1;0Þ�, where H is the convo-
lution operation followed by the activation function, U signifies the
upsampling layer, and ½ · · · � indicates the cascading layer. From this
recursion, we derive X0;4 ¼ H½X0;0; X0;1; X0;2; X0;3; UðX1;2Þ�,
showcasing the intricate relationship between various layers and
their functions within the network.

R2U-Net network

The R2U-Net network stands out in the landscape of deep-learn-
ing architectures, distinguished by its innovative R2U structure.
This design ingeniously merges the functionalities of recurrent
and residual connections, significantly enhancing the efficiency
of feature extraction and information transfer. R2U-Net is adept
at capturing local and global features within images, improving seg-
mentation accuracy and robustness. Its streamlined parameter count
and reduced computational complexity make it exceptionally effec-
tive in environments with limited resources.

Figure 5a shows the structural design of R2U-Net, in which the
core features the integration of the recurrent neural networks, which
bolsters the network’s capability of representing features and trans-
mitting contextual information through recurrent connections. In its
encoder phase, R2U-Net adopts a layout similar to U-Net, consist-
ing of convolutional and pooling layers, wherein the convolutional
layer is tasked with extracting diverse feature information from the
gravity image, using various filters to process local and global in-
formation, thereby encoding image features. The pooling layers fo-
cus on reducing the feature map size while preserving critical data
and minimizing the number of parameters, thereby facilitating the
multiscale feature extraction and encoding into a comprehensive 3D
density representation. The decoder phase mirrors this structure,
comprised of upsampling layers and convolutional modules, where
the upsampling layer methodically restores and enlarges the feature
map from the encoder, aligning its dimensions with those of the

Figure 3. (a) Randomly selected density model and (b) forward-
modeled gravity data.

Figure 4. Overview of the structures of the nested U-net network:
(a) structural design with an encoder and decoder, (b) structure dia-
gram of the nested architecture, and (c) detailed schematic diagram
of the nested architecture (modified from Zhou et al., 2018).

Figure 5. Overview of the structures of the R2U-Net network:
(a) structure diagram of the nested architecture and (b) schematic
diagram of R2U (modified from Alom et al., 2018).
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original input image. The convolutional layer furthers this process
by extracting and refining features for a more semantically rich fea-
ture representation.
Figure 5b shows each R2U, which consist of two sequential

convolution blocks. Each block includes a rectified linear unit
(ReLU) layer, a 3 × 3 convolution layer, and residual connections,
which are crucial for capturing long-term dependencies and
contextual information. This enhances the network’s semantic
understanding and generalization ability, especially in the domain
of geophysical gravity inversion. Here, R2U-Net’s residual struc-
tures play a vital role in training deep neural networks to manage
gravity-related data, countering the increased training errors and
issues such as “gradient dispersion or explosion” common with
deeper networks. The incorporation of residual units not only sim-
plifies the training process but also ensures the seamless flow
of gravity information through the network. Consequently,
R2U-Net exhibits superior performance, surpassing traditional
deep-learning models in the precision and accuracy of geophysical
model predictions.

AttU-Net network

The AttU-Net network is at the forefront of deep-learning innova-
tions, notably distinguished by its integration of an attention gate
(AG) module. This module significantly enhances
the network’s capacity to pinpoint and process
key features at local and global scales, thereby
boosting the efficiency of feature extraction and
information transfer. These enhancements lead
to increased accuracy and robustness in segmen-
tation tasks, making AttU-Net particularly effec-
tive in resource-constrained settings due to its
low parameter count and reduced computational
complexity.
As shown in Figure 6a, the structure of the

AttU-Net in the encoder phase follows the
U-Net design, featuring convolutional and pool-
ing layers enriched with an AG module. The
decoder consists of alternating upsampling and
convolutional layers. Similar to R2U-Net, the
AttU-Net’s encoder uses convolution layers to
extract and encode detailed feature information,
whereas the pooling layers refine the feature
maps, strategically preserving essential features
for advanced semantic segmentation. The decod-
er’s layers play a pivotal role in meticulously re-
constructing the image’s detailed and semantic
aspects, which is crucial for precise pixel-level
classification and segmentation.
The AG module, as shown in Figure 6b, is

vital for dynamically adjusting the weights of
the feature map, enabling focused enhancement
of the features critical for segmentation tasks.
This module increases the network’s sensitivity
and capacity to identify and emphasize essential
features by merging the feature map from the
encoder with attentively adjusted weights. The
selective enhancement of relevant gravity infor-
mation by the AG module ensures that the
network prioritizes crucial data over less signifi-

cant details, effectively filtering out irrelevant data. This targeted
approach not only streamlines the feature mapping process but also
significantly improves the efficiency and accuracy of gravity inver-
sion tasks. Detailed information about the AG module is given in
Appendix A.

Figure 6. Overview of the structures of the AttU-Net network:
(a) structural diagram and (b) structure diagram of the AG module
(modified from Oktay et al., 2018).

Figure 7. (a–c) Encoder-decoder structure of the ResU-Net++ network comprising a
stem block, four encoder blocks, ASPP modules, and three decoder blocks. It incorpo-
rates features such as residual blocks and S-E modules; notably, it integrates residual
modules within the encoding and decoding sections (highlighted by the dashed black
rectangles) (modified from Jha et al., 2019).
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ResU-Net++ network

The ResU-Net++ network marks a significant evolution in
deep-learning architectures, effectively combining the strengths
of residual connections and the U-Net structure. This advanced net-
work enhances the traditional R2U-Net by integrating a normaliza-
tion layer within its convolutional layers, thereby creating a more
refined, recurrent residual unit. This innovation significantly boosts
the network’s feature extraction and information transfer capabil-
ities, enabling it to adeptly manage local and global image features,
thereby elevating segmentation accuracy and robustness.
Figure 7a shows the comprehensive structure of the ResU-Net++

network, featuring a stem block followed by four encoder blocks,
an ASPP module, and three decoder blocks. These components
include residual blocks and attention blocks to enhance detail
capture and noise reduction. Each encoder block, shown in the
left-side gray section of Figure 7b, contains a residual unit paired
with an S-E module (detailed in Figure 7b). This module boosts
crucial gravity map features by increasing the weight of the
informative channels while reducing less relevant data, thereby
optimizing feature representation. Detailed information about
the AG module is provided in Appendix B. The decoder blocks,
detailed in the right-side gray section, combine the attention mech-
anisms with upsampling and concatenation processes to preserve
critical information through residual connections, enhancing the
predictive performance of the network.
To address the challenges, such as increasing training errors and

gradient dispersion or explosion associated with deeper networks,
ResU-Net++ uses improved, recurrent, residual units in the encoder
and decoder blocks. These units consist of two consecutive convo-
lution blocks that include a batch normalization (Batch Norm or
BN) layer and a ReLU layer, which streamline the training process
and ensure consistent information flow through the network. This
structure not only simplifies training but also enhances the net-
work’s ability to accurately predict and model complex geophysical
structures, outperforming traditional deep-learning models.
In addition to classical pooling mechanisms, such as max pooling

and average pooling which are used to reduce the spatial dimen-
sions of feature maps, the ASPP module introduces a novel ap-
proach to maintain spatial resolution. By implementing dilated
convolutions, the ASPP module allows for varied contextual infor-
mation processing from the encoder to the decoder at different
scales without losing the original input’s resolution. This capability
is crucial for accurately capturing narrow geologic features such as
strata, faults, and fractures often seen in geophysical data. The
ASPP module, using spatial pyramid pooling techniques, performs
multiscale sampling of gravity data features, enhancing the preser-

vation of detailed gravitational data. Each dilation rate (Figure 7c)
in the ASPP module adjusts the convolution kernel size, allowing
the network to capture a broad range of scale information effec-
tively. A detailed description of the ASPP module is given in
Appendix C.
Finally, the network’s output is refined through an ASPP module

before being processed by a 1 × 1 convolution with a sigmoid ac-
tivation function to produce the final model image. This output is
then integrated into a fully connected feedforward 3D mapping
layer, which correlates the subsurface geology with the observed
gravity variations based on the network’s training on supervised
learning labels. This training encapsulates the relationships between
the observed gravity anomalies and the density variations within the
inversion domain, enabling the network to accurately predict the
underground density models. The efficacy and comparative perfor-
mance of the four networks, including ResU-Net++, are systemati-
cally summarized in Table 1, which organizes the module types
across the four networks, indicating the presence of specific mod-
ules with an “X.”
Table 1 highlights the distinct configurations and functionalities:

1) Nested U-Net uses “nested Structures” and residual unit
(labeled as “Unit”) modules. These components effectively
decrease the size of the feature map while simultaneously
extracting local and global information from gravity images.
This dual approach ensures comprehensive analysis of
the data.

2) R2U-Net builds upon the basic capabilities of the residual
unit by incorporating recurrent connections (denoted as
“Re.” in Table 1) into the “Unit”. This enhancement enriches
the network’s capacity for feature representation and facili-
tates the transmission of contextual information, making it
adept at handling complex data structures.

3) AttU-Net features the “AG module”, which excels in filtering
out irrelevant data and enhancing the efficiency of feature
mapping. This module prioritizes significant information
within the gravity data, ensuring that the network focuses
on the most pertinent features.

4) ResU-Net++ advances the “Unit+Re.” configuration by add-
ing a Batch Norm layer (designated as “Unit+Re.+BN.”),
which ensures stability and reliability in feature representa-
tion across different layers, thus boosting the overall
capacity of the network to interpret and represent features
accurately. Similar to AttU-Net, ResU-Net++ uses the
“S-E module” to amplify essential features in gravity maps
by assigning greater weights to significant channels while
reducing noise and less critical elements. Moreover, the

Table 1. Comparison of the four main feature modules’ distribution across four networks.

Networks Nested structures Residual module Attention mechanisms

ASPP
moduleUnit Unit + Re. Unit + Re. + BN AG S-E

Nested U-Net X X

R2U-Net X X

AttU-Net (see Appendix A) X

ResU-Net++ (see Appendices B and C) X X X X X
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introduction of the “ASPP module” in ResU-Net++ uses
varying dilation rates to capture semantic information at
multiple scales. This feature allows the network to more ef-
fectively discern local and global features in images, thereby
enhancing the accuracy and robustness of the segmentation
tasks. This multiscale approach is pivotal for detailed and
precise geophysical data analysis.

In the upcoming simulation and verification stages, we will use
these four networks to reconstruct the amplitude and shape of
underground abnormal-density bodies. This initiative will allow
us to comprehensively assess the networks’ effectiveness in accu-
rately representing the physical properties of subsurface structures.
This evaluation is crucial for advancing our understanding of how
these deep-learning architectures perform in real-world geologic
scenarios.

Validation

To validate the robustness of the various U-Net-based networks,
this study uses normalized misfit E, to portray the gravity observa-
tion loss during training. The specific formula for this loss is as
follows:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
1 ðgobsn − gpren Þ2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
1 ðgobsn Þ2

p ; (1)

where N is the total number of observed points, gobs denotes the
theoretical observed gravity data, and gpre represents the predicted
gravity data.

SYNTHETIC STUDY

To assess the network’s effectiveness in feature detection, we de-
velop two straightforward simulation models. Figures 8 and 9 show
visual depictions of a contact assembly model, featuring a rectan-
gular and a trapezoidal anomaly and a separated, combined model
comprised of five block anomalies, respectively, which are targeted
for predictive analysis. Both models maintain a uniform density of

1.0 g/cm3, as reported by Huang et al. (2021) and Wang et al.
(2024). The observation field spans 0–4000 m along the x-axis and
0–4000 m along the y-axis, with an interval of 200 m between data
points, culminating in a total of 441 data points to evaluate
the vertical component of gravity. The inversion domain, conceived
in three dimensions, was partitioned into 8000 cubic cells
(20 m × 20 m × 20 m), each with side lengths of 200 m. For im-
proved legibility, all 3D perspectives are in portions with a density
exceeding 0.5 g/cm3.

Results and interpretation

Contact assembly model

Figure 10 shows a comparative analysis, presenting the contact
assembly model (Figure 10a) against the inversion outcomes
using regularized focusing conjugate gradient (RCG) inversion
(Figure 10b) and various networks: the nested U-Net (Figure 10c),
R2U-Net (Figure 10d), AttU-Net (Figure 10e), and ResU-Net++
(Figure 10f). In Figure 10a, the first and second columns display
3D views showing horizontal sections at X = 2200 m and cross
sections at Y = 1000 m, respectively, and the third column shows
the observed gravity field. Figure 10b–10f shows the recon-
structed densities at these sections, with the third column display-
ing the predicted gravity field for each method.
It is evident from Figure 10b that the shape reconstructed via

regularized focusing RCG shows a more divergent characteristic
and achieves lower amplitude recovery. The nested U-Net’s results
(Figure 10c) closely mimic the actual model, albeit with slight
variations in residual density around the anomaly edges. R2U-Net
(Figure 10d) improves the alignment of the recovered shapes, particu-
larly in defining clearer boundaries at the cube’s edges. AttU-Net
(Figure 10e) accurately predicts the density values, closely reflecting
the theoretical predictions, particularly evident in the lateral views.
Yet, subtle low-density areas within the trapezoidal anomaly remain
a challenge. ResU-Net++ (Figure 10f) exhibits the best inversion
modeling performance, with density values that closely replicate
the actual model, leading to superior inversion results. Figure 11 de-
picts the mean-squared error (MSE) loss curves for the four U-Net
variants, showing a clear convergence in the loss functions as the

Figure 9. (a) The 3D view of the separated combined model, (b) x-z
view, (c) y-z view, and (d) gravity anomaly.

Figure 8. (a) The 3D view of the contact assembly model, (b) the x-
z view, (c) the y-z view, and (d) the x-y view.
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training progresses. Notably, by epoch 100, all
four networks demonstrate convergence in their
loss functions. This convergence signifies the suc-
cessful minimization of the difference between the
predicted and actual values, indicating that the
models have reached a stable state in their training
process.
Figure 12 shows the misfit analysis for the

four networks. It is evident from the data that
the misfit values predicted by all four networks
remain under 5%. Notably, the ResU-Net++
network exhibits the lowest misfit percentage,
underscoring its superior predictive accuracy
compared with the others. Due to the striking
similarity between the misfit map of the focus-
ing RCG inversion and that of the ResU-Net++,
it has not been included in this paper for brevity.
To verify the robustness of ResU-Net++

against noise, we added Gaussian random
noise at different levels to the gravity data and
performed density predictions. Figure 13a–13c
shows the prediction results without noise, with
5% noise, and with 10% noise, respectively,
illustrating that the network maintains a close
alignment between the observed and predicted
gravity fields across all noise levels.
The relationship between the complexity of a

network and its training duration is meticulously
outlined in Table 2, highlighting that more so-
phisticated networks necessitate longer training
periods. Specifically, (1) the R2U-Net, the sim-
plest in this study with more than 51 million neu-
rons, boasts the shortest training duration of
10 min, making it ideal for scenarios requiring
rapid model training. (2) The Nested U-Net, with
almost 72 million neurons, requires a slightly
longer training time of 12 min, reflecting a
modest increase in complexity and enhanced
capability for capturing detailed features.
(3) The AttU-Net, significantly more complex
with more than 100 million neurons, demands
15 min of training time. (4) The ResU-Net++,
the most intricate model evaluated, with more
than 102 million neurons, necessitates the lon-
gest training period of 16 min. This extended
training time is indicative of its superior capacity
for detailed data processing and accuracy, essen-
tial for complex gravity inversion tasks. For a
comprehensive understanding of the networks’
configurations, see Table 3, which details the hy-
perparameters used during network training.

Separated combined model (five block
anomalies)

Similarly, Figure 14 shows a visual compari-
son of the second synthetic model (illustrated
in Figure 14a) against the inversion results from
focused RCG inversion (Figure 14b) and the
four networks: the nested U-Net (Figure 14c),

Figure 10. Comparison of the inversion results of the contact assembly model with
noise-free (a) initial model, (b) model recovered by regularized focusing gravity inver-
sion, (c) model recovered by the nested U-Net network, (d) model recovered by the
R2U-Net network, (e) model recovered by the AttU-Net network, and (f) model recov-
ered by the ResU-Net++ network.
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R2U-Net (Figure 14d), AttU-Net (Figure 14e), and ResU-Net++
(Figure 14f).
In Figure 14a, the first and second columns provide 3D perspec-

tives, featuring a horizontal section at Z = 2000 m and a cross section
at X = 2400 m, respectively. The third column displays the observed
gravity field. In Figure 14b–14f, the first and second columns depict
the reconstructed density at the same horizontal and cross sections,
respectively, whereas the third column presents the predicted gravity
field, facilitating a direct comparison of the inversion outcomes across
different methods.

It is evident that the model predictions by nested U-Net (Fig-
ure 14c) closely resemble the actual model (Figure 14a), though with
slight deviations in the residual density around the edges of the five
rectangular blocks. Upon examining the R2U-Net network (Fig-
ure 14d), the alignment of the reconstructed shape with the actual
model shows enhanced accuracy, particularly in the definition of
the boundaries and the clarity of the residual densities along the sides
of the rectangular blocks. The AttU-Net network (Figure 14e) show-
cases impressively accurate predicted density values, particularly
from the Y-Z perspectives, closely matching the theoretical expecta-
tions. This highlights the progress deep-learning networks have made
in capturing edge cells, a feature initially overlooked by the nested U-
Net. Nevertheless, the issue of excessive density units at the base of
the blocks remains unresolved. In contrast, the ResU-Net++ network
(Figure 14f) outperforms in inversion modeling, precisely replicating
the actual model’s density values and delivering an exemplary
inversion result. In addition, compared with the focused RCG inver-
sion shown in Figure 14b, it becomes clear that traditional methods
struggle to accurately reconstruct the shape and amplitude of the five
anomalous bodies, predominantly due to volume effects.

Figure 11. The MSE error diagram for (a) nested U-Net network,
(b) R2U-Net network, (c) AttU-Net network, and (d) ResU-Net++
network.

Figure 12. Comparison of the misfit behaviors of the contact
assembly model by the (a) nested U-Net, (b) R2U-Net, (c) AttU-
Net, and (d) ResU-Net++.

Table 2. Number of network neurons, training time, and
number of training grids.

Networks
Number of
neurons

Training
time (min)

Number of
training grids

R2U-Net 51,354,435 10 8000

Nested U-Net 71,868,240 12 8000

AttU-Net 100,423,436 15 8000

ResU-Net++ 102,174,496 16 8000

Table 3. Network training parameters.

Parameters Values

Learning rate 0.00001

Epoch 100

Batch size 256

Dropout 0.5

Kernel size 3

Activation function ReLU

Early stopping 200

Figure 13. Comparison of the inversion results by ResU-Net++
under various noise conditions. Gravity field fitting diagram, den-
sity prediction, and form recovery with (a) no noise, (b) 5% Gaus-
sian noise, and (c) 10% Gaussian noise, respectively.
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To assess the network’s robustness against noise in various
models, the prediction outcomes presented here include an addi-
tion of 5% Gaussian noise. Figure 15 shows the misfit degree chart
for the field predictions made by the four networks. The chart
reveals that all the networks sustain a misfit below 5%, with
ResU-Net++ showcasing the lowest misfit degree. This indicates
that ResU-Net++ surpasses the other networks in terms of predic-
tion accuracy.

To provide a more quantitative evaluation of the inversion
results from the four networks, we computed the field map fitting
errors for each network using equation 1, as shown in Table 4. A
lower field value fitting error indicates a better alignment between
the predicted and observed field maps, reflecting a network’s
enhanced predictive capability. Conversely, a higher error suggests
a weaker prediction performance. The data in Table 4 show
that the field value fitting error for all the networks is under

10%, indicating that each network achieves a
commendable level of predictive accuracy.
Notably, the AttU-Net and ResU-Net++ net-
works exhibit field value fitting errors below
5%, signaling more accurate predictions. Spe-
cifically, the ResU-Net++ network has the low-
est field value fitting error, underscoring its
superior performance in model validation trials.
This outcome emphasizes the ResU-Net++ net-
work’s effectiveness in retaining and processing
essential original information.
To address the challenge of overfitting, our strat-

egy involves a detailed analysis of the loss curve.
Indicators of overfitting include a consistent de-
cline in the training error alongside a stagnating
or increasing validation error, which often suggests
that the model, although performing well on the
training data, fails to replicate these results on
the validation data. In tackling the complex de-
mands of gravity inversion, we have implemented
several countermeasures to prevent overfitting.
These include the use of dropout, early stopping,
learning rate adjustment, and weight regulariza-
tion. Each of these techniques is deliberately se-
lected and applied to improve the model’s
generalization ability and robustness, ensuring
its reliability and efficacy in various testing envi-
ronments.

CASE STUDY

Geologic characteristics of the area of a
3D marine gravity survey

A full tensor gradiometry (FTG) survey was
conducted in the Nordkapp Basin, located
offshore Norway in the Barents Sea, as shown
in Figure 16a. This basin is divided into the
southwestern part (SWP) and the northeastern part
(NEP). The SWP, particularly in the Obelix survey
area, features a narrow geologic formation that
extends 150 km in length and ranges from 25
to 50 km in width, with a northeast orientation.
This area is notable for containing more than
17 complex salt diapirs, which are significant
geologic structures within this subbasin (refer
to Figure 16b). In contrast, the NEP subbasin
measures approximately 200 km in length and
50–70 km in width and is home to more than
16 salt formations. Hydrocarbon exploration in
the Nordkapp Basin began in the 1980s, with
three wells drilled to date, all located at the

Figure 14. Comparison of the inversion results of the separated combined model with
noise-free (a) initial model, (b) model recovered by regularized focusing gravity inver-
sion, (c) model recovered by the nested U-Net network, (d) model recovered by the
R2U-Net network, (e) model recovered by the AttU-Net network, and (f) model recov-
ered by the ResU-Net++ network.
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basin’s periphery. Recent geologic and geophysical surveys, coupled
with the discoveries of hydrocarbon deposits in adjacent wells,
suggest that the Nordkapp Basin may hold untapped hydrocarbon
reservoirs.
The primary geologic targets within the Nordkapp Basin are the

F2 salt diapirs, identifiable by their lack of clearly delineated seis-
mic horizons, as shown in Figure 17. As seismic techniques and
structural interpretations advance, mapping the salt structures in
the basin has become increasingly complex. Salt stocks, originally
characterized by vertical sides, have evolved into formations with
expansive diapiric overhangs supported by narrow stems.
However, the seismic depth migration images along profiles K-K

′ (Figure 18a) and S-S′ (Figure 18b) often exhibit distortions due to
the properties of the salt and the underconstrained inversion models
of the salt isopach. These challenges limit the effectiveness of
seismic tools in accurately mapping the base of the salt formations.
In response, the FTG survey provides additional data that help in
assessing these complex salt overhang structures. Due to its sensi-
tivity to geologic anomalies with significant density variations, the
FTG methodology is particularly effective in tackling such chal-
lenges. Statoil offers two types of interpretations for the salt base
along S-S′ (Figure 18b): one derived from the seismic data, depicted
by a solid purple line, and another based on the FTG data, shown by
a dashed red line (Xu et al., 2020). These dual interpretations will be
used to identify and validate the inversion results.
The specific challenge addressed here pertains to the difficulties

in interpreting salt structures using seismic data, thus necessitating

Figure 16. (a) Main structural elements in the Barents Sea area, lo-
cation of the Nordkapp Basin and 3D FTG survey (modified from
Johansen et al., 1993). (b) Simplified structural map of the Nordkapp
Basin showing salt diapirs and main fault zones. Black zones show
subcrops of the diapirs at or near the Pliocene-Pleistocene uncon-
formity (modified from Zhdanov and Lin, 2017).

Table 4. Comparison of the misfit behavior corresponding to
the four networks.

U-Net-based networks Misfit behavior 1 Misfit behavior 2

Nested U-Net 0.0905 0.0825

R2U-Net 0.0900 0.0702

AttU-Net 0.0434 0.0496

ResU-Net++ 0.0404 0.0366

Figure 17. Obelix 3D FTG survey grid with seis-
mic horizons. The main geologic targets are the
salt diapirs G2 and F2, which are manifested by
the absence of well-resolved seismic horizons.
The area marked with the solid red line is the origi-
nal FTG survey grid. The subset marked with a
solid black line of the original FTG data focuses
on the F2 salt diapir areas. The seismic survey
lines K-K′ and S-S′ are uniformly marked with
the dashed red lines.

Figure 15. Comparison of the misfit behaviors of the separated
combined model by the (a) nested U-Net, (b) R2U-Net,
(c) AttU-Net, and (d) ResU-Net++.
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precise 3D inversion of the FTG data. Numerous studies have
focused on achieving sharp boundary inversion of the FTG data
in the Nordkapp Basin through focusing regularization techniques
(Zhdanov and Lin, 2017; Xu et al., 2020; Tao et al., 2021; Tu and
Zhdanov, 2022). This paper presents the preliminary results from
using the ResU-Net++ network, which effectively connects the la-
bels, geologic models, trained data, and forecasted outcomes to
delineate the sharp density contrasts between the salt structures
and the surrounding host rock.

Results and interpretation

In our study, as detailed in Table 1, the ResU-Net++ network
incorporates a comprehensive array of modules found in nested
U-Net, R2U-Net, and AttU-Net. This includes elements such
as residual connections and attention mechanisms, providing
ResU-Net++ with a robust structure and theoretically enhanced pre-
diction capabilities. Our simulation tests, specifically with model 1
(the contact assembly model) and model 2 (the five separated com-
bined model), have shown that ResU-Net++ surpasses traditional

inversion methods and the other three networks
in terms of clarity in the morphology and ampli-
tude recovery of the inversion model. It also con-
sistently exhibits the smallest error in field map
recovery. Based on these strong performance
indicators, we chose to use the ResU-Net++ net-
work for processing actual data, leveraging its
superior performance demonstrated in the simu-
lation tests.
Focusing on the primary geologic objective,

the F2 salt diapir, we isolated a subset of the
FTG data from the initial data set to specifically
target the regions highlighted by the F2 marker.
We present a vertical cross-sectional comparison
of the inversion results alongside the S-S′ and
K-K′ seismic profiles. In this preliminary appli-
cation of the ResU-Net++ network, the vertical
component of the gravity field (gz) was used
for the inversion process. The designated inver-
sion area spans a 4 km cube in the east–west
(x-axis) and north–south (y-axis) dimensions
and extends to a depth of 4 km (z-axis). This in-
version volume was divided into 8000 cubic
cells, each measuring 200 m × 200 m × 200 m.
Figure 19a shows the zone of the observed

data used for the inversion. The multiscale mod-
ule does not impose any constraints on either the
size of the observation surface or the number of
observation points. Figure 19b shows the fore-
casted observed gravity data map, generated
through the application of the ResU-Net++ net-
work, exhibiting a high degree of similarity with
the genuine observed data. In addition, Figure 20

shows the degree of nonfitting error corresponding to Figure 19a
and 19b. The error is less than 1%, illustrating that the ResU-
Net++’s predictions for the underground salt dome and surrounding
rock closely align with the observed gravity field in the data space.
This indicates a high degree of accuracy in the network’s predictive
capabilities.
To evaluate the precision of our results, we compared the density

inversions from the ResU-Net++ (Figures 21a and 22a) and the
traditional focusing RCG inversion (Figures 21b and 22b) along
the seismic profiles K-K′ (Figure 21) and S-S′ (Figure 22). The con-
ventional inversion method’s reconstructions of the salt dome
geometries display divergent contours with smoother less-defined
boundaries. In contrast, ResU-Net++ achieves sharper boundary de-
lineations that align closely with the seismic interpretation data.
These comparisons highlight ResU-Net++’s effectiveness and af-
firm the superiority of deep-learning approaches in delivering more
precise predictive outcomes.

Figure 18. Seismic depth migrated profile from a 3D survey showing the salt feature F2
and typical imaging ambiguity of the high-resolution seismic along (a) K-K′ and (b) S-S′
(modified from Xu et al., 2020).

Figure 19. Comparison of (a) the observed gravity data and (b) predicted gravity data
based on ResU-Net++.

Figure 20. Data misfit between the observed and predicted gravity
data.
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CONCLUSION

Gravity-based inversion is crucial in geophysical research,
aiding in identifying geologic anomalies, mapping rock forma-
tions, and extracting resources such as oil and minerals. However,
traditional gravity inversion methods face challenges such as
the volumetric effects of gravity fields, underdetermined matrices,
and the management of large ill-posed matrices. Furthermore,
unsupervised learning methods often struggle with overfitting
and complexities in interpreting gravity data. In the realm of
U-Net-based architectures, each presents distinct challenges and
benefits. For instance, the nested U-Net is robust but requires
many parameters, leading to longer training times. R2U-Net,
with its implicit attention mechanism, is limited in adjusting
geophysical feature weights dynamically. Conversely, AttU-Net,
lacking residual connections, faces potential issues with gradient
vanishing.
This paper delineates the training methodologies, principles,

and functions of the primary feature modules of nested
U-Net, R2U-Net, AttU-Net, and ResU-Net++. It explores how
these modules are distributed across the networks and evaluates
their effectiveness compared with traditional focusing RCG inver-
sion for density anomaly reconstruction. Our synthetic studies in-
dicate that although the RCG technique struggles with low
amplitude recovery and divergent geometric representations, the
nested U-Net shows a close resemblance to the actual model
but tends to produce redundant density units. R2U-Net improves
the model alignment but struggles with slight redundancies, and

AttU-Net excels in density prediction despite the challenges with
low-density areas. Remarkably, ResU-Net++ outperforms all in
inversion modeling, replicating density values more accurately
and exhibiting the lowest misfit percentage, showcasing its excep-
tional predictive accuracy and robustness against noise. In prac-
tical scenarios, ResU-Net++’s reconstructed model of the F2
salt diapir in the Nordkapp Basin displays sharply defined boun-
daries and closely mirrors seismic interpretations, underscoring its
capability in geophysical data analysis, structural reconstruction,
and inversion tasks.
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Figure 22. The comparison of the anomalous density recovered
by (a) the ResU-Net++ network model and (b) focusing the RCG
inversion along the seismic line profile S-S′.

Figure 21. The comparison of the anomalous density recovered
by (a) the ResU-Net++ network model and (b) focusing the RCG
inversion along the seismic line profile K-K′.
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APPENDIX A

DERIVATION FORMULA OF AG MODULE

The output of AG (Figure 6b), defined as x̂li, is the element-wise
multiplication of input feature maps xli and attention coefficients
αli as

x̂li ¼ xli · α
l
i; (A-1)

where αli can be expressed as

αli ¼ σ2ðqlattÞ; (A-2)

where σ2ð : : : Þ corresponds to the sigmoid activation function
and qlatt is an inner function in a compound function αli shown
in equation A-2 as

qlatt ¼ ψTðσ1ðWT
x xli þWT

g gi þ bgÞÞ þ bψ ; (A-3)

where ψ ∈ RFint×1 represents the linear transformations computed
using channel-wise 1 × 1 × 1 convolutions for the input tensors;
σ1ð : : : Þ corresponds to the ReLU activation function;
Wx ∈ RFi×Fint and Wg ∈ RFg×Fint are defined as the corresponding
weighting for xli and gi, respectively; bg ∈ RFint and bψ ∈ R are de-
fined as the corresponding bias terms; and T represents the matrix
transpose.

APPENDIX B

DERIVATION FORMULA OF SE MODULE

The S-E operation compresses the input U ∈ RH×W×C into a vec-
tor FsqðucÞ through global pooling, as shown in equation B-1 as

FsqðucÞ ¼ 1
H×W

P
H
i¼1

P
W
j¼1 ucði; jÞ; (B-1)

where ucði; jÞ represents the cth element in the input U ∈ RH×W×C

and H and W represent the numbers of the row and column of the
extracted gravity input data by convolution throughout the designed
number of channels (C), respectively.
To discern the channel-level dependencies, which involve giving

larger weights to the crucial feature maps within a feature channel to
emphasize the key elements while shrinking the unimportant ones
during the feature extraction, an excitation operation is used. This
operation produces a weight value for each feature channel through
the implementation of two fully connected layers.
The resulting output is derived by multiplying each channel by its

associated channel weight. The output of this mapping operation is
given by

s ¼ Fexðz;WÞ ¼ σðW2δðW1zÞÞ; (B-2)

where z represents a single 2D tensor as an element of X ∈ RH×W of
the input U ∈ RH×W×C and σ represents the sigmoid function. The
weight matrices are denoted as W1 ∈ RðC=rÞ×c and W2 ∈ RðC=rÞ×c,

where the hyperparameter r dictates the compression ratio of the
parameters in the initial fully connected layer.

APPENDIX C

THE KERNEL IN THE ASPP MODULE

In the structure of the ASPP module (Figure 7c), the size of
the equivalent convolution kernel (i.e., the receptive field) of an
expansive convolution is as follows:

kernel ¼ kþ 2ðk − 1Þðrate − 1Þ; (C-1)

where k is the original convolution kernel size (e.g., 3 × 3
in Figure 7c) and rate is the expansion coefficient. The
output size obtained after the convolution is defined as
out ¼ ððinput − kernelþ 2 × paddingÞ=strideÞ, where out denotes
the output size and input denotes the input size. The stride repre-
sents the length of a stride. The padding operation addresses
the information loss near the image boundary following each con-
volution operation. This is achieved by substituting the absent
boundary sections with zero.
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