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Abstract— Salt domes are very important in hydrocarbon
exploration and identification of potential drilling hazards. While
seismic data are indispensable for detailed subsurface imaging,
especially in delineating the geometry and properties of salt
bodies and their boundaries, gravity inversion provides an
additional layer of data by exploiting the density differential.
However, traditional methodologies for tackling this problem
are complicated by the ill-posedness of the inverse problems.
The alternative approach to gravity image is based on machine
learning (ML) algorithms. Despite the appealing attributes of
convolutional neural networks (CNNs), they are not exempt
from limitations, including diminished precision in pinpointing
geological features, complications in managing the varying scales
of geological structures, and inefficiencies in processing volumi-
nous, high-dimensional data. These deficits can be mitigated by
the proposed multiscale functional multiscale UNets (MS-UNets)
network, which, through integration with squeeze-and-excitation
(S-E) and strip pooling (S-P) modules, are designed to enhance
the capture of detailed information about salt domes. These
networks were subjected to rigorous testing using both synthetic
and real gravity data, showcasing their robustness across diverse
scenarios. This testing highlighted their significant potential
for applications in geophysical data interpretation, structural
modeling, and inversion processes.

Index Terms— 3-D inversion, gravity and gravity gradiometry,
multiscale UNets (MS-UNets).
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I. INTRODUCTION

SALT domes are large geological structures formed by the
upward movement of salt in the Earth’s crust. They are

often associated with oil and gas reservoirs, as the salt can cre-
ate traps that hold hydrocarbons in place. These traps can take
many forms, such as anticlines, fault blocks, and stratigraphic
traps, and understanding the geometry and structure of the
salt dome can help identify the type of trap present. Studying
salt dome morphology can also help identify potential hazards
associated with drilling in salt domes, such as the risk of
drilling into overpressured zones or encountering subsurface
salt cavities.

Seismic surveys are particularly useful, as they can provide
detailed information about the structure of the subsurface,
including the thickness and depth of the salt layer, the shape
and orientation of the dome, and the presence of any faults or
fractures. Researchers analyze 3-D seismic datasets to study
the internal architecture of the sea-bottom salt domes, utilizing
seismic attribute analysis and stratigraphic interpretation to
identify their layers and structures, including potential hydro-
carbon traps [1], [2], [3], [4]. A methodology for precisely
imaging the subsurface geometry of salt domes has been devel-
oped, which involves utilizing a combination of full-waveform
inversion and reverse-time migration techniques [5], [6], [7].

Recently, researchers utilized seismic technology and a
combination of techniques, including prestack depth migration
and reverse-time migration [8], [9], [10], [11], rock physics
modeling [12], [13], seismic inversion [14], [15], and structural
interpretation, to produce high-resolution images of the inter-
nal structure of salt domes, map their potential hydrocarbon
traps, and investigate the subsurface structure of salt domes.
Despite the detailed insights offered by seismic technology,
there are inherent challenges in interpreting salt-sediment
interfaces, particularly in complex geological environments.

In such scenarios, gravity inversion emerges as a comple-
mentary technique. It leverages the distinct density contrasts
between salt structures and surrounding formations, offering
a different modality of subsurface analysis that can validate
or refine seismic interpretations. Henke et al. [16] utilized
magnetotellurics (MT), integrated with seismic and gravity
data, to enhance the imaging of the Wedehof salt dome in the
Northern German Basin, reducing exploration drilling risks.
A new, easily applicable 2-D semiinversion gravitational tech-
nique has been introduced, utilizing Bouguer gravity anomaly
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data to separate Bouguer anomaly into its corresponding rock
formations, estimate and trace sedimentary formation depths
relative to the underlying geometry of Humble Salt Dome,
USA [17]. Ghari et al. [18] investigate the dome-shaped
salt unit in the Qarah-Aghaje area, Iran, using an integrated
approach that combines 3-D inversion models from gravity
and magnetic data, geological, and well observations, apply-
ing a weighted damped minimum length solution. Several
researchers proposed a multiphysics approach to study the salt
domes [19], [20], [21], [22], [23], [24], [25], [26], [27], [28].

Still, salt-dome interpretation based on seismic and other
types of geophysical data is a critical but time-consuming
and human-intensive process that can consume significant
resources during the model-building workflows of large 3-D
surveys, often spanning several weeks or months, which can
be further complicated by iterative sediment and salt-flooding
techniques requiring multiple rounds of salt interpretation.

The infusion of prior geological information to unravel
inverse problems via the lens of machine learning (ML)
has seen growing interest. Numerous recent studies propose
deploying unsupervised ML algorithms to tackle inverse grav-
ity problems [29], [30], [31], [32]. Despite this, unsupervised
learning necessitates a degree of geological knowledge to ver-
ify the output. Contrarily, supervised ML techniques, informed
by a priori geological information, can extrapolate geologi-
cal models from new and unseen data that extends beyond
the range of the training data. Prevalent classification and
regression algorithms, including linear classifiers [33], [34],
support vector machines [35], decision trees [36], and random
forests [37], [38], have been harnessed to grapple with the
ill-posed problems inherent to geophysical inverse situations.
Additionally, linear regression [21], logistic regression [39],
and polynomial regression [40], [41] have proven effective in
restoring subsurface physical characteristics. However, despite
its efficacy, traditional supervised learning methods, distinct
from deep learning (DL) approaches, often face limitations in
handling complex tasks, and the computational demands of
their training processes, while significant, are generally less
than those required for DL models.

DL, while often associated with supervised learning, is a
versatile approach that is also applicable in unsupervised
learning and reinforcement learning contexts. It employs a
neural network to emulate the analytical learning mechanism
of the human brain, thereby aiding in the interpretation of
geoscience data through the comprehension of data-model
property relationships [42], [43]. Given its superior capabilities
in feature learning and information extraction, DL presents
a potent supplement to traditional geophysical inversion. For
instance, alterations in density values, 3-D structures, and
the distribution of anomalous bodies beneath the surface
precipitate changes in 2-D gravity observational data at the
surface. Convolutional neural networks (CNNs) utilize end-to-
end learning to discern and map the relationships between 2-D
gravity data and their associated 3-D density models [44], [45],
[46], [47], [48]. However, the limitations of traditional CNNs
are particularly evident in scenarios where high-resolution
spatial information is paramount. For instance, in the case of
gravity inversion, the loss of fine-grained details can lead to

inaccurate localization of subsurface features, such as faults
and fractures. This is further compounded when dealing with
geological structures that vary widely in scale, from vast
sedimentary layers to narrow mineral veins, which CNNs
struggle to simultaneously resolve. Moreover, the high dimen-
sionality of geophysical data often necessitates a prohibitive
amount of labeled data for training, which is not always
feasible.

UNets, initially proposed by Ronneberger et al. [49],
addresses these limitations with its unique architecture, thus
potentially offering significant advantages in the context of
gravity inversion in geophysical exploration. Recent stud-
ies [50], [51], [52], [53] have highlighted the potential of
UNets in addressing the multifaceted challenges of gravity
inversion. However, these conventional networks may inad-
vertently homogenize critical features, such as the subtle
gradations in density that delineate the edges of salt domes. For
example, the homogenization issue becomes apparent when
UNets fail to differentiate between the dome cap rock and
surrounding sediments, leading to a blurred representation of
the geometry of salt dome [54], [55], [56], [57].

The quest for accurate subsurface imaging has led to the
adoption of various ML algorithms, with recent research advo-
cating for UNets to tackle the complexities of gravity inversion
for delineating salt dome geometries [53], [58], [59], [60].
Despite their potential, conventional UNets often fall short in
capturing the full spectrum of geological intricacies, some-
times over-simplifying or overlooking critical details. Hence,
to better capture the complex interdependencies between dif-
ferent geological structures, the squeeze-and-excitation (S-E)
module is introduced and architected with the objective of
enhancing the efficacy of UNets in identifying and utilizing
the intricate interdependencies across varying channels. This
design aims to bolster UNets’ performance in complex tasks
such as geophysical inversion. Within the geophysics commu-
nity, efforts are being made toward integrating UNet and S-E
modules to generate high-precision imaging of salt domes [61],
[62]. Meanwhile, the introduction of the strip pooling (S-P)
module in the DL algorithm helps overcome the difficulties
associated with accurately detecting and interpreting intricate,
strip-like formations within data, which is important for sub-
surface modeling. However, no published studies are exploring
the application of the S-P module for the recovery of salt
domes through geophysical data analysis.

This article proposes a novel inversion networks model
based on the UNet encoder-decoder architecture, designed
to establish a neural network framework that transitions
from surface gravity response data to the subsurface semi-
infinite geological model. Subsequently, a multiscale UNet
(MS-UNet) architecture inspired by the amalgamation of
S-P and S-E modules is formulated to tackle the vari-
able scale data input problem, enhancing the delineation
of the salt dome boundary. Finally, the network mode’s
capability to reconstruct the density distribution in response
to acquired gravity data is validated by analyzing syn-
thetic and real gravity data collected in Nordkapp Basin,
Barents Sea, which tests the network robustness and
accuracy.
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II. INVERSION METHODOLOGY BASED ON MS-UNET
NETWORK

A. Generation of Training Sets

In order to obtain accurate density, depth, size, and other
attributes of geological targets, it is necessary to construct a
comprehensive training sample set comprising diverse geolog-
ical body shapes. Theoretically, the training sample set should
simulate the most probable distribution of the geological
bodies and their corresponding gravity anomalies. Therefore,
selecting appropriate methods and parameters for generating
a training sample set with optimal performance, universality,
and the ability to mimic real data distribution is a significant
challenge.

We now delve into the practical implementation of these
concepts, focusing on the construction of training density
model sets first.

1) Training Density Models Sets: In the implementation of
gravity data forward modeling, we define the lower half-space
of the observation area as a 4000 × 4000 × 4000 m volume.
This space is initially divided into 20 × 20 × 20 rectangular
prisms, each measuring 200 × 200 × 200 m. A total of 1681
(41 × 14) observation points are strategically placed above
this half-space on a measurement plane. The density values for
these models are randomly assigned as either 0.5 or 1 g/cm3 to
create a realistic underground simulation. We employ three dis-
tinct model generation methods—single block, isolated blocks,
and contact assembly blocks—to simulate a wide range of
geological bodies with varying density anomalies. To mitigate
edge effects, our model deliberately excludes two cells (400 m
in total) along the grid line’s edge. Fig. 1 illustrates a flowchart
of this training set generation process. Ultimately, gravitational
anomaly values at each point within the measurement network
space are calculated using a forward modeling formula.

This process generates either a single or combined random
model with a total of 14 200 sets, where one set includes
one density model and a corresponding calculated gravity
anomaly. The single model represents a regular-shaped cube
with randomly obtained positions and sizes [see Fig. 2(a)
and (b)]. The combined models are composed of single mod-
els. There are two types of combined models. The first type
is called “separated combined models” [see Fig. 2(c)]. These
models consist of two single models generated independently.
The second type is called “contact assembly models.” It
is generated by combining multiple individual models in a
manner that imposes certain constraints on them. In contrast
to the separated models, the contact assembly models are
generated from the randomly selected single models under the
constraints derived from the initially selected set of models.

2) Training Gravity Anomaly Datasets: In order to simulate
the gravity anomaly datasets, gz , of the designed correspond-
ing subsurface geologic body models aforementioned above,
we give the gravity forward modeling formula [63] as

∂V
∂z

= gz = G
∫∫∫

v

ρ(ζ − z)dξdηdζ[
(ξ − x)2

+ (η − y)2
+ (ζ − z)2]3/2

(1)

Fig. 1. Workflow of the training set generation. (1) Initialize inversion
space with 4000 × 4000 × 4000 m is subdivided into 8000 rectangular
prisms. (2) A total of 1681 observed points are placed on a measurement
plane. (3) Three type of density models (single model, isolated models,
and contact assembly model) are randomly generated. (4) Generated density
models undergo a thorough legality check by verifying that the anomalies fall
within the boundaries of the inversion space and ensuring the model excludes
two cells at the edges of each grid line. (5) Gravitational anomaly values at
each observed point are calculated using the forward modeling formula.

Fig. 2. Visualization of 3-D density models for the purpose of training.
(a) and (b) Example of a single model. (c) Example of two isolated models.
(d) Example of a contact assembly model.

where (x , y, z) represents the corresponding coordinates of
a ground observation point, (ξ , η, ζ ) represents the spatial
coordinates of a small square along x , y, and z direction,
respectively, ρ represents the residual density of a small
square, and ∂V /∂z is the derivative of the gravity potential
on the z direction.

B. Structure of MS-UNet Network

In order to achieve the reconstruction of a 3-D density model
based on gravity data, we have designed a neural network
suitable for this purpose. Fig. 3 presents the overall network
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Fig. 3. Structure map of MS-UNet network. (1) (Left) Multiscale module
whose function is implemented via a spatial pyramid pool. (2) (Middle)
Fundamental structure of UNet network. (3) (Right) 3-D mapping layer whose
function is to visualize inverted density data.

architecture comprising a multiscale module, an encoder-
decoder network, and a 3-D mapping layer.

1) Structure of Multiscale Module: In this study, the multi-
scale feature shown in left part of the Fig. 3, is implemented
via a spatial pyramid pool (see Fig. 4). This process segments
the input feature map into three distinct categories: 1) one
complete feature map, 2) four subfeature maps, and 3) 16 indi-
vidual feature maps. Each segment undergoes independent
pooling to yield a 1 × n vector. The synthetic gravitational
stations, which were separated by 100 m, were arranged
along 21 survey lines with 100 m interline spacing, covering
4000 × 4000 m area. Finally, total 21 feature vectors are
collectively mapped to form a comprehensive 41 × 41 feature
map. The action of this module can be described as a standard
operation of the neural network. The output of each neuron is
given by the following equation:

Output = δ

(
Cin−1∑
k=0

(weight(k, Cout) × input(Ni )) + bias

)
(2)

where δ stands for the ReLU activation function, the input rep-
resents the input nodes from the previous layer, Cin represents
the number of input nodes from the previous layer, the weight
represents its corresponding connection weight, and the bias
refers to an additional parameter in the neuron of a network
that is used to adjust the output along with the weighted sum
of the inputs to the neuron. The multiscale module enables the
network to handle inputs of arbitrary size.

The primary objective of using pyramid pooling in this
article is to obtain coarse-grained global information and
fine-grained feature information during the training process,
as well as to extract features from different perspectives and
then aggregate them, which serves to enhance the robustness of
the network [64], [65]. Gravity data usually contain large-scale
trends important for understanding the overall structure and
small-scale details critical for local accuracy. The multiscale
module can extract the necessary features more efficiently by
intelligently dividing the data into different scales. This means
it can achieve the same or better results with less computa-
tional effort. This is crucial for large-scale data processing,
model training, or deployment scenarios where resources are
limited. The process of dividing data into different scales
and efficiently extracting features is optimized to use fewer
computational resources (e.g., CPU or GPU, RAM storage,

Fig. 4. Structure map of the multiscale module, dividing the input feature
gravity field into three separate groups: (a) entire feature map, (b) four
subfeature maps, and (c) 16 distinct feature maps. Each group is independently
pooled to produce a 1 × n eigenvector. Ultimately, these 21 feature vectors
are combined to create an extensive 41 × 41 feature map.

and network bandwidth) than a naive approach. In summary,
for different gravity observation maps, the multiscale module
(see Fig. 4) divides data of different scales and extracts features
attributed to local and regional scales while reducing resource
consumption.

The different scale data are merged after being mapped
to the same size by an input encoder through a fea-
ture projection layer of a fully connected network. It does
not mean that the gravity data are merged but that the
features extracted at different scales have been fused.
This stems from the inherent requirement of CNNs for a
fixed dimensionality of the input dataset. The term mul-
tiscale is employed to denote the integration of features
recovered at varying resolutions into cohesive structures.
Subsequently, these synthesized structures propagate through
successive neural network layers for further processing and
refinement.

2) Structure of Encoder-Decoder Module: The encoder (see
Fig. 5) comprises four groups of encoding blocks, each per-
forming two operations, taking as its input the comprehensive
feature vector output from the multiscale module. Each encod-
ing block contains a convolutional layer, a batch normalization
layer, and a Leaky ReLU activation function. After passing
through two encoding blocks (marked as ×2 in Fig. 5), the
output is merged into a S-E block and downsampled while
undergoing featured sampling through S-P module (detail in
Section II-B4) and a connection operation. This network then
processes the input to produce an output of 8000 × 1 density
data.

3) Structure of S-E Module: The S-E module (see Fig. 6)
is pivotal for intelligently recalibrating channel-wise features
in processing gravity data. It accentuates crucial features
by allocating higher weights to informative channels while
concurrently mitigating noise and irrelevant elements by atten-
uating their corresponding channels. This selective emphasis
and suppression streamline the network’s operations, enhanc-
ing its ability to discern intricate patterns in gravity data,
which are essential for geophysical analysis. The S-E operation
compresses the input U ∈ RH×W×C into a vector Fsq(uc)
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Fig. 5. Encoder-decoder network consisting of four encoding and decoding
block groups. Each group processes the extensive feature vector output from
the multiscale module through two primary operations. Within each block,
the sequence includes a convolutional layer, batch normalization, and leaky
ReLU activation.

Fig. 6. Structure map of S-E module. Module operation: (1) feature map
(H × W × C) transforms to 1 × 1 × C vector via squeeze’s global pooling.
(2) Linear layer of excitation phase assesses channel importance. (3) Channel
weights, calculated in the scale phase, are multiplied with their respective 2-D
matrices in the original feature map.

through global pooling, as shown in the following equation:

Fsq(uc) =
1

H × W

H∑
i=1

W∑
j=1

uc(i, j) (3)

where uc(i, j) represents the cth element in the input U ∈

RH×W×C . H and W represent the numbers of the row and
column of the extracted gravity input data by convolution
operation throughout the designed number of channels (C),
respectively. The operations within the module are detailed as
follows: initially, the feature map of dimensions H × W × C
undergoes transformation into a 1 × 1 × C vector through
global pooling in the squeeze phase. Subsequently, the excita-
tion phase involves a linear layer predicting the significance of
each channel. The final step involves multiplying the weights
of each channel, determined in the scale part, with the 2-D
matrix corresponding to each channel in the original feature
map. Essentially, the SE module functions as an attention
mechanism, adeptly learning the weights of each channel. This
feature proves particularly effective in processing gravity data.

In order to capture channel-level dependencies, which refer
to the assignment of larger weights to key feature maps
within a feature channel to stimulate important features and
suppress unimportant ones during feature extraction, the exci-
tation operation generates a weight value for each feature
channel. It implements two fully connected layers. The output
is obtained by multiplying each channel with its corresponding
channel weight. The mapping output formula is represented in
the following equation:

s = Fex(z, W ) = σ(W2δ(W1z)) (4)

where z represents a single 2-D tensor as an element of
X ∈ RH×W of the input U ∈ RH×W×C and σ represents
the sigmoid function. The weight matrices are denoted as
W1 ∈ R(C/r)×c and W2 ∈ R(C/r)×c, where the hyperparameter
r determines the compression ratio of parameters in the first
fully connected layer. The S-E block accurately learns channel
correlations to enhance sensitivity to important channels and
suppress redundant or irrelevant features, which may even
act as noise, potentially hampering the performance of the
prediction [66], [67], [68].

Removing the S-E module from the MS-UNet network will
likely diminish its ability to emphasize important features and
suppress less relevant ones, potentially leading to decreased
accuracy and generalization capability. While this simplifies
the network’s architecture, it may also make the network more
sensitive to variations and noise in the input data, affecting its
overall performance.

4) Structure of S-P Module: Traditional pooling operations
in CNNs, such as max pooling and average pooling, have
been widely used to reduce the spatial dimension of fea-
ture maps, thereby allowing the model to learn higher-level
abstract features. However, these operations often lead to a
loss of spatial resolution and fine-grained details, which can be
particularly problematic when attempting to capture thin, strip-
like structures often encountered in geophysical data (e.g., thin
geological layers, faults, and fractures).

The S-P module (see Fig. 7) is designed to overcome
this limitation by maintaining high-resolution information.
It introduces an extra pooling branch that maintains the
same resolution as the original input, allowing the model to
capture global and local information [69]. By leveraging the
S-P module, the network is able to better retain and learn
from the fine-grained, strip-like structures in the data, thereby
potentially improving the accuracy of geophysical inversion.
It takes the average of a row or column of values in the 2-D
tensor using (H , 1) and (1, W ) S-P operations, respectively.
This is because traditional pooling techniques only focus on
the correlation between convolutional kernel senses and are not
sensitive to long-distance correlations. Consequently, employ-
ing S-P operations emerges as a viable strategy to adeptly
extract features characterized by heterogeneous orientations,
scales, and separations, thus capturing the multidimensional
intricacies of the data. Therefore, the output of the S-P module,
yh

∈ RH and yw
∈ RW , can be represented by the following
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Fig. 7. Structure map of S-P module. (1) Horizontal average pooling: take
out each row of data in the feature map (n × n) for average operation (e.g.,
Avg(1, 4, 7) = (1 + 4 + 7)/3 = 4). Vertical average pooling: take out each
column of data in the feature map for average operation (e.g., Avg(3, 5, 7) =

(3 + 5 + 7)/3 = 5). (2) By averaging pooling horizontally and vertically, n × 1
and 1 × n feature vectors are obtained. The feature vectors are expanded to
the original size of the feature map through expansion, where n × 1 copies n
columns to n × n and 1 × n copies n rows to n × n. (3) Add the corresponding
positions of the two n × n feature maps that have been expanded.

equations:

yh
i =

1
W

∑
0≤ j<W

xi, j (5)

yw
j =

1
H

∑
0≤i<H

xi, j (6)

where j ∈ [H , 1] and i ∈ [1, W ] are the row and column
indices, respectively.

The process unfolds in the following manner: initially, the
S-P module averages across the horizontal and vertical dimen-
sions of space. Next, the resulting H × 1 and 1 × W vectors
are expanded and then concatenated to form a single vector.
The final step involves multiplying the obtained H × W
feature map with the original feature map, postconvolution,
and sigmoid operation. Unlike maximum and average pooling,
the S-P module focuses on a longer, narrower range, enabling
the network to efficiently simulate long-distance dependencies.

Subsequently, the decoder is composed of four groups of
decoding blocks. During decoding, in contrast to traditional
concatenation methods, we utilize a two-stage concatenation
scheme, first concatenating with the feature map extracted by
the S-P module and then concatenating with the upsampled
feature map. Then, after convolution, normalization and ReLU
activation functions are applied. The output image from the
decoder passes through a fully connected feedforward 3-D
mapping layer. This mapping process might involve various
assumptions about the underlying geology and the relation-
ship between gravity measurements and density variations.
The neural network is essentially learning these relation-
ships during training through the use of supervised learning
labels, which represent the density distribution in the inversion
domain. Finally, the network applies its learned knowledge to
form the predicted density model.

Fig. 8. Example of contact density model for the purpose of training. (a) 3-D
view model, (b) X–Z view model, (c) Y –Z view model, and (d) X–Y view
model.

5) Termination of the Training: To verify the stability of
various UNet-based networks, this article employs normalized
misfit to illustrate the gravity observation loss during the
training. The specific formula for the normalized misfit is as
follows:

misfit =

∥∥gTrue
− gPred

∥∥2∥∥gTrue
∥∥2 (7)

where ∥· · ·∥ stand for norm operator, gTrue denotes the theoreti-
cal observed gravity data, gPred represents the predicted gravity
data, and misfit stands for the normalized error of gravity
anomalies. During the process of the training, it tabulates the
accuracy of gravity anomalies at all observation points.

III. SYNTHETIC MODEL STUDIES

A. Synthetic Model Study

To assess the recognition accuracy of the network,
we designed relatively simple simulation models. Fig. 8 shows
the location and details of a randomly selected contact assem-
bly model, which consists of a rectangle and a trapezoid. The
upper and lower bodies have a density of 1.0 g/cm3. The
observation area extends from 0 to 4000 m in the x-direction
and from 0 to 4000 m in the y-direction, with a 100-m interval
between data points, resulting in 1681 data points for each
component of the gravity gradiometry tensor. The 3-D volume
of the inversion domain was divided into 8000 cubic cells
(20 × 20 × 20) with a side length of 200 m. For clarity, all
3-D views in the subsequent experiments display only parts
with a density value greater than 0.5 g/cm3.

To ensure consistent results across various network con-
figurations, we standardized the hyperparameters for each
network variant. Table I outlines these hyperparameters, which
encompass the learning rate (LR), LR schedule, batch size,
epoch count, optimizer type, and the GPU model used for
training. For example, all network variations, including UNet,
UNet + S-E, UNet + S-P, and MS-UNet, were uniformly
trained with a LR of 0.001, employing cosine annealing for
LR adjustment, a batch size of 24, across 100 epochs, using
the Adam optimizer on an RTX3080 GPU. This detailed
description of our training approach offers a comprehensive
view of the operational settings for each network, enhancing
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TABLE I
HYPERPARAMETER SETTINGS BASED ON FOUR NETWORKS

the clarity and comparability of our training and evaluation
process.

Fig. 9(a) presents 3-D views of the model. Fig. 9(b) shows
the results recovered by the UNet network. One can see
that the predicted model is consistent with the actual model.
However, the cubic body prediction could be better. There are
also slight differences in residual density at the edge of the
high-level step of the trapezoid, and there are also differences
between the top and bottom of the cube. By adding the S-E
module [see Fig. 9(c)], the overall shape information becomes
more consistent with the actual model. Compared to UNet
networks, the outline boundaries are more clear, especially the
prediction of residual density at the top of the cube, which is
more in line with the actual model. In Fig. 9(d), the predicted
density information for U-Net networks with S-P module is
more accurate, and the density is closer to the theoretical
value from the X–Y and Y –Z views. From the x–z view,
it can be seen that the missing edge cells that UNet cannot
predict are shown to some extent. However, there is a similar
problem with the redundant density units at the bottom, as in
the cube model of UNet prediction. The MS-UNet network
performs the best in inversion modeling [see Fig. 9(e)], with
the density value almost identical to the actual model, resulting
in excellent inversion results.

Fig. 10 shows the corresponding normalized misfit behavior
of the predicted gravity anomaly against the actual gravity data
by (7). For traditional UNet, the normalized misfit of gravity
anomalies is above 20% [see Fig. 10(a)]. This significant
discrepancy is largely attributed to the erroneous inversion of
an anomalous body that does not actually exist. Additionally,
this anomaly is not intersected by the vertical section at
Y = 1800 m, as depicted in Fig. 9. After adding the S-E
module, the normalized misfit of residual density units is
significantly improved [see Fig. 10(b)], indicating that adding
the S-E module in downsampling preserves more important
original information. The fitting increased after adding the S-P
module [see Fig. 10(c)] indicating that the two concatenation
operations allowed for more fusion of high and low features.
The MS-UNet network demonstrates a highly accurate fit with
minimal error. However, there was still room for improvement
in improving misfit, indicating that there was still some
information loss during downsampling.

B. Multiscale Study

To simulate real-world conditions in our study, we intro-
duced independent 5% Gaussian noise into the synthetic

Fig. 9. Comparison of prediction results of different networks under different
sections [(First column) Horizontal section at Z =1800 m. (Second column)
Vertical section at Y = 1800 m. (Third column) Vertical section at X =

2800 m]. (a) 3-D views of the model, (b) model recovered by UNet network,
(c) model recovered by UNet + S-E network, (d) model recovered by UNet +

S-P network, and (e) model recovered by MS-UNet network.

Fig. 10. Comparison normalized misfit of gravity field forwarded by density
model predicted by four different network models using (a) UNet network,
(b) UNet + S-E network, (c) UNet + S-P network, and (d) MS-UNet network.

observed data, as shown in Fig. 11. This modified data
was then processed using the MS-UNet network to invert
the synthetic density model. Our analysis, highlighted in
Fig. 12(a) and (b), reveals a striking similarity in the residual
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Fig. 11. Gravity anomaly map with 5% independent Gaussian noise.

Fig. 12. Noise robustness analysis using the MS-UNet network based on
independent Gaussian noise, accounting for 5% of observed data contamina-
tion. (a) Random distribution of the noise and its amplitude. (b) Number of
observations and the size of the noise conform to the normal distribution.

distribution between the gravity data predicted by the
MS-UNet network and the original noisy data, demonstrating
the network’s robustness to noise.

In conventional UNet architectures, the precise alignment of
data dimensions during the concatenation process is crucial.
It is often necessary for the test data to have the same
dimension size as the training set to ensure the network’s
proper functioning and accuracy. During the downsampling
process, convolution and pooling operations are employed.
If the input field graph is not evenly divisible, these opera-
tions will round down, leading to some feature loss during
both the downsampling and upsampling stages. Consequently,
a reshape operation is typically implemented before the mul-
tiscale field graph is inputted into the UNet model. This
ensures compatibility with the network’s requirements and
mitigates potential feature loss. However, in practice, obtaining
a complete gravitational field that fulfills the aforementioned
conditions can often prove challenging, since the observed
gravity data are often unevenly distributed, with some areas
having no data.

The traditional UNet model processes data from the entire
space directly, and any missing data can significantly impact
the network’s accuracy. To address this issue, we designed
the multiscale module. We tested the inversion ability of
this module on simulated geology with some areas blocked
by the river (e.g., channel obstruction) and on a complex
observation map with randomly missing data points to evaluate
its performance. Fig. 13 shows the gravity anomaly map for
the two different scenarios marked by white areas.

Fig. 14 displays the multiscale inversion results obtained for
various geological conditions simulated in this study involving
the two different scenarios shown in Fig. 13. Notably, the
network achieves a certain degree of accuracy in inverting
data for different scenarios and successfully identifies the
position and density of anomalous bodies that generally match

Fig. 13. Gravity data with independent 5% Gaussian noise in two different
acquisition scenarios. (a) Gravity anomaly data based on channel obstruction.
(b) Gravity anomaly data based on random missing observation points.

Fig. 14. Comparison of inversion results recovered by MS-UNet network
along different cutting sections by (first column) Z = 1800 m, (second
column) Y = 3000 m, and (third column) X = 1800 m with (a) 3-D true model
view, (b) simulated channel obstruction, and (c) random missing observation
points.

the true models. Therefore, in the case involving randomly
missing measurement points, the predicted residual density
of the gravity anomaly volume model and its corresponding
theoretical unit exhibits excellent robustness and precision of
around 90%.

However, numerous excess density units appear at the
model’s edge. The density distribution is relatively accurate,
with deviation units concentrated outside the edge contour.
Additionally, the fuzzy units at the edge have a density of
about 0.5 g/cm3, similar to the background density (below
0.5 g/cm3), resulting in a relatively low impact on accuracy.
The simulation results of river blockage suggest that, despite
the disrupted data, the MS-UNet network can accurately
predict the cube’s position. From the perspective of spatial
distribution, the inversion model aligns with the theoretical
model results. However, a more in-depth examination reveals
an apparent blurring of the edge contour, with significant
differences in the results of residual density inversion at the
edge.

Fig. 15 depicts the comparison of the normalized misfit
of the inversion results obtained under the two different
acquisition scenarios with various data dimensions. Despite the
random missing points, the average normalized misfit of the
gravity anomaly stands around 10% [see Fig. 15(b)]. In con-
trast, the average normalized misfit for the river obstruction
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Fig. 15. Comparison normalized misfit of gravity field forwarded by density
model predicted under the two different acquisition scenarios, as (a) simulated
river obstruction and (b) random missing observation points.

decreases around 5% [see Fig. 15(a)]. These results effectively
demonstrate that employing the MS-UNet network enhances
the model’s robustness and imparts a degree of tolerance for
missing data. In comparison with the traditional UNet model,
our proposed network demonstrates superior accuracy when
confronted with partial data loss. This advancement is notably
significant in addressing the issue of missing data in real-world
datasets.

IV. CASE STUDY

A. Geological Characteristics of the Area of a 3-D Marine
FTG Survey

The Nordkapp Basin, located in the Barents Sea, has
a complex geological history shaped by multiple tectonic,
sedimentary, and volcanic activities. Its stratigraphic record
spans from the late Paleozoic to the Cenozoic era, mark-
ing significant geological events such as the formation of
the supercontinent Pangea and its subsequent breakup. The
stratigraphy of the Nordkapp Basin is characterized by a series
of sedimentary layers, each representing different geologi-
cal periods. The lowermost layers are primarily composed
of late Paleozoic sediments, rich in carbonate and clastic
deposits [70], [71]. Above these are Mesozoic sediments,
which include a mix of shale, sandstone, and carbonate forma-
tions [72], [73]. The upper layers consist of Cenozoic deposits,
mainly dominated by glacial and postglacial sediments [74].

The F2 salt diapirs within the Nordkapp Basin are primarily
a result of the movement and deformation of Zechstein salt
layers, which date back to the late Permian period. These
salt layers, initially deposited in a relatively flat and uniform
manner, were later subjected to tectonic forces that led to their
mobilization and eventual formation of diapiric structures. The
tectonic evolution of the Nordkapp Basin, including episodes
of extension and compression, played a crucial role in the
formation of these salt structures. Salt migration and diapirism
were influenced by differential loading due to sedimenta-
tion, variations in subsurface temperatures, and tectonic stress
regimes [75].

The full-tensor gradient (FTG) survey was conducted in the
Nordkapp Basin, offshore Norway, in the Barents Sea [see
Fig. 16(a)]. The Nordkapp Basin can be partitioned into the
southwestern part (SWP) and the northeastern part (NEP).
The SWP subbasin, located at the Obelix survey site, is a
narrow geological structure that is 150 km long and 25–50 km
wide, with a trend toward the northeast. It is characterized by

Fig. 16. (a) Main structural elements in the Barents Sea area, location of
Nordkapp Basin, and 3-D FTG survey. Modified from Johansen et al. [76].
(b) Simplified structural map of the Nordkapp basin showing salt diapirs
and main fault zones. Black zones show subcrops of diapirs at or near the
Pliocene-Pleistocene unconformity. Modified from Zhdanov and Lin [77].

over 17 complex salt diapirs, representing the predominant
geological structures of the area [as shown in Fig. 16(b)].
On the other hand, the NEP subbasin spans approximately
200 km in length and 50–70 km in width and contains more
than 16 salt structures. Hydrocarbon exploration activities in
the Nordkapp basin were initiated in the 1980s. So far, three
wells have been drilled, all located on the flanks of the basin.
Recent geological and geophysical surveys and the discovery
of hydrocarbon deposits in wells outside the basin suggest that
the potential for identifying hydrocarbon reservoirs within the
Nordkapp basin exists.

The primary geological objectives are the F2 salt diapirs,
identifiable by the lack of well-defined seismic horizons (see
Fig. 17). With advancements in seismic methodology and
structural interpretation, the mapping of salt structures in the
Nordkapp Basin has become increasingly complex, with salt
stocks exhibiting vertical flanks replaced by shapes with broad
diapir overhangs atop narrow stems. Nonetheless, seismic
depth migration images are usually distorted (as shown in
Fig. 18) due to salt features and the underdetermined inversion
models of the salt isopach (which ultimately limits the capa-
bility to obtain a mapping of the salt base through seismic
tools). In this regard, the FTG survey offered supplemen-
tary information for evaluating these intricate salt overhang
structures. The FTG technique is an ideal approach to such
problems as it is susceptible to geological anomalies featuring
significant density contrasts. Statoil provides two types of salt
base interpretations: one that is derived from seismic data,
marked by a solid purple line, and another that is derived
from FTG data, marked by a red dashed line [78]. These two
salt base interpretations will be employed to recognize and
validate the inversion results.

Overcoming this challenge necessitates the application of
a meticulous 3-D inversion of the FTG data. Various pub-
lications have focused on the sharp boundary inversion of
the FTG data in the Nordkapp Basin utilizing focusing reg-
ularization [22], [23], [77], [78]. This article only uses the
vertical component of gravity field gz , instead of FTG data to
presents the initial findings of inversion utilizing MS-UNet,
which can establish a connection between labels, geological
models, trained data, and predicted data to resolve sharp
density contrasts between salt structures and the adjacent host
rock.
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Fig. 17. Obelix 3-D FTG Survey Grid with Seismic Horizons. The main
geological targets are the salt diapirs G2 and F2, which are manifested by the
absence of well-resolved seismic horizons. The area remarked by the solid
red line is the original FTG survey grid. The subset marked by a solid black
line of the original FTG data focuses on the F2 salt diapir areas. The seismic
line is represented S-S′ by the red dashed line.

Fig. 18. Seismic Trace (S-S′) depth migrated profile from 3-D survey showing
salt feature F2 and typical imaging ambiguity of high resolution seismic.
Modified from Xu et al. [78].

B. Results

Given that the primary geological target is the F2 salt diapir,
we selected a subset (i.e., the vertical component of gravity
field) from the initial FTG dataset to concentrate on the salt
dome areas highlighted by the F2 marker. This article presents
the inversion findings as a vertical cross-sectional overlay
comparison of the S-S seismic profile.

In this initial practical application of the MS-UNets Net-
work, we conducted the inversion using the vertical component
of the gravity field gz for simplicity as input data. For the
inversion domain, we opted for a 4 km (east-west, x-axis) ×

4 km (north-south, y-axis) area that continued to a depth of
4 km (z-axis). The inversion volume consisted of 8000 dis-
cretization cells with a size of 20 × 20 × 20 m. The training
lasted approximately 30 min, while the prediction time was
roughly 4 s.

Fig. 19(a) shows the area of the observed data used for
inversion. The multiscale module imposes no restrictions on
the size of the observation surface or the number of observa-
tion points. Fig. 19(b) presents the predicted observed gravity
data map reconstructed using the MS-UNet network, which
resembles the actual observed data.

To assess the accuracy of the results, we projected the
inversion density onto the corresponding S-S profile of the

Fig. 19. Comparison of (a) observed gravity data and (b) predicted gravity
data.

Fig. 20. Density profile generated by the MS-UNet reconstruction model
along the seismic line profile.

seismic trace and conducted overlay comparison (see Fig. 20).
One can see that the MS-UNet network reconstruction model
agrees with the seismic interpretation data well. The model
produced by the MS-UNet inversion describes a distinct salt
dome geometry.

V. CONCLUSION

The MS-UNet network has strong potential for practical
application in geophysical data analysis, structural reconstruc-
tion, and inversion, using its DL abilities. It operates without
applying the mathematical equations or physical laws that
describe the relationship between the models and observed
data. This article proposes the MS-UNet network, which
quickly establishes the relationship between labels, geological
models, trained data, and predicted data, resulting in improved
accuracy and speed of subsurface physical property imaging.

To validate the proposed MS-UNet inversion network,
we employed a composite model with uniform density con-
trast. The trained MS-UNet networks can effectively restore
the detailed structure of isolated density anomalies and recon-
struct the true density values of the models. Furthermore,
we demonstrated the robustness of the MS-UNet network to
multiscale data.

In practical applications, the MS-UNet network successfully
predicted the geometry and density of salt diapir in the
Nordkapp basin. Additionally, the model reconstructed from
the trained MS-UNet network showed that the boundaries
of salt diapir (F2) with relatively sharp density contrast
closely resembled the interpreted salt boundaries from seismic
data. These results demonstrate the potential of the MS-UNet
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network in geophysical data analysis, structural reconstruction,
and inversion.
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