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Reconstructing 2-D Basement Relief Using Gravity
Data by Deep Neuron Network:
An Application on Poyang Basin

Rui Wang , Zhengwei Xu , Changjie Lai, Xuben Wang, Michael S. Zhdanov , Member, IEEE, Guowei Li,
Zhiyao Cheng, Jun Li, Guangdong Zhao , Shengxian Liang , Hua Li, and Yuxin Zhang

Abstract— The stark contrast in density between geological lay-
ers is a fundamental aspect in the examination of basic geological
structures. The delineation between the crystalline basement and
sedimentary layers, moreover, is pivotal in the pursuit of strategic
energy resources, such as petroleum and natural gas. Traditional
full space density inversion, however, is beleaguered by issues of
stability and resolution, impeding the accurate characterization
of the sharp density interface. To rectify these shortcomings,
we introduce an innovative methodology for estimating 2-D
depth-to-basement and overlying density distribution, employing
a deep neural network with a leaky rectified linear unit as
an activation function. Evaluation of the proposed method on
simulated sedimentary basin models underscores its superior
ability to discern complex geometries of basin boundaries and
overlying density, despite the presence of various degrees of
Gaussian noise. In practical application to the Poyang basin,
the relief of the Cretaceous basement is proficiently recovered
through vertical gravity field data, with validation provided by
corresponding seismic sections and well-established stratigraphic
markers.

Index Terms— Basement relief, deep neuron network, inver-
sion, vertical gravity data.

I. INTRODUCTION

THE configuration of a sedimentary basin serves as
a potential record of its tectonic lineage, influenc-

ing the genesis, transit, and accumulation of hydrocarbons.
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As such, the elucidation of depth variation and undula-
tion within the underlying basement constitutes an integral
facet of regional tectonic investigation and hydrocarbon
prospecting. Recognizably, vertical gravity anomalies, when
measured, are frequently employed to discern the correspond-
ing basement relief, assuming a significant density differential
between the foundational strata and overlying sedimentary
deposits.

Transposing low-dimensional anomalous gravity data into
high-dimensional realistic density models frequently yields
insights into the bottom relief of the basin. During the pre-
liminary stages of exploration, 1-D or 2-D Bouguer gravity
anomaly data are commonly employed as an initial method
for scrutinizing the rudimentary geological structure. Never-
theless, this approach necessitates supplementary information
concerning the depth of the sediment-basement interface [1].
A widely adopted human-assisted technique, trial-and-error,
is utilized extensively to illustrate 2-D basement relief and
density distribution by reconciling observed and predicted
1-D Bouguer gravity data [2], [3]. Despite its ubiquity, the
method’s demand for human interaction at each iteration phase
makes it considerably time-intensive. Furthermore, its ability
to concurrently manage thousands of grids to uphold the
genuine geological structure is constrained.

As the field gravitates away from labor-intensive and often
iterative methodologies, the endeavor to estimate subsurface
density distribution has increasingly embraced machine-
oriented gravity inversion techniques, such as gradient-type
[4], [5], [6] and Monte Carlo type [7], [8]. Pallero et al.
[9] performed a model evaluation of basement relief via
a 2-D gravity inversion using particle swarm optimizers.
Subsequently, Ekinci et al. [10] leveraged a differential evo-
lution algorithm to invert the sedimentary basement through
global optimization, thereby augmenting the efficiency of the
algorithm. In pursuit of capturing the quintessential blocky
geological structures found in nature, geophysical scholars
have proposed numerous techniques under determinacy to
augment the detectability of “smooth” borders. For instance,
some inversion frameworks consider portraying basin struc-
tures based on a singular type of physical property, including
total variation [11], [12], minimum gradient support [13], and
multinary inversion [14]. The development of multiproperty-
based inversion has paved the way for discerning basement
structures with sharper boundaries, such as cross-gradients
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[15] and Gramian constraints [16]. Moreover, hybrid imaging
approaches have been the subject of considerable focus in
geophysical research to enhance the resolution of imaging
basement relief [17], [18], [19].

Despite the prevalent deployment of sophisticated grav-
ity inversion techniques to elucidate basin structures within
geophysical exploration, it is evident that the mechanisms
for identifying model perturbations rely heavily on both the
theoretical gravity forward operator and the inversion algo-
rithms previously mentioned [20]. For example, in cases where
millions of subdivided grids are in play, complexities arise per-
taining to the computation and storage of extensive matrices,
thereby exacerbating the underdetermination and introducing
instability.

Numerous methodologies have been conceptualized and
executed to foster precision and stability in the realm of
gravity-based basin relief interpretation. For instance, Elkins
[21] delivered a compelling discourse, delineating both theo-
retical considerations and pragmatic applications of the second
derivative methodology in gravitational interpretation, partially
drawing upon antecedent work by Peters [22]. Therewith,
employing the principle of successive approximation for
eliminating residuals via a connected series of polygonal
straight lines, Bott [23] offered a framework for determin-
ing 2-D shapes of sedimentary basins directly from gravity
anomaly profiles. Nevertheless, the procedure exhibits opti-
mal performance when the depths to the perturbing mass
are insignificant relative to the distances separating observed
anomalies. Oldenburg [24] initially introduced an iterative
inversion methodology, which is grounded in a reinterpretation
of Parker’s formula [25] designed for swift computation of the
gravitational anomaly attributable to an uneven layer. However,
he posited that the method’s convergence is achieved exclu-
sively in particular instances where the gravitational anomaly
can be ascribed to a layer with adequately minimal relief. Fedi
and Rapolla [26] proposed a noniterative and nonlinear method
for estimating basement morphology, which intriguingly per-
mits the estimation of a constant density contrast through the
juxtaposition of observed data with model-derived predictions.
Yet, it is contingent on the knowledge or presumption of the
basement’s minimum and maximum depths. Florio [27] intro-
duced a novel method for estimating basement morphology
predicated on a straightforward relationship between basement
depth and gravity or pseudo-gravity fields, with the precision
of the method hinging on the accuracy of depth constraints.

The conceptual foundation of a backpropagation (BP) neural
network, framed as a multilayer feed-forward neural network,
was initially laid down by Hinton and McClelland [28]. This
process entails two stages: forward propagation and error BP.
The BP neural network aims to reconstruct subsurface geolog-
ical anomalies by learning the inherent mapping associations
between input data and the output model, thereby swiftly
transforming observed geophysical data into an appropriately
calibrated geological model [29]. A plethora of weight thresh-
old optimization techniques have been proposed to predict
basement relief using the BP neural network by employing
genetic algorithms [30], [31]. A fusion of traditional inversion
and pseudo-BP neural network computation was employed to

discern the Tertiary basement and the Moho interface in the
southern Okinawa trough basin [32]. However, this method
necessitates an initial model incorporating prior geological
information. While these two sophisticated optimization tech-
niques are more aptly suited to local contexts as opposed to
global ones, it is worth noting that the effective reconstruction
of basement relief from gravity data via deep learning remains
a relatively unexplored frontier in geophysical research.

This article endeavors to deploy a robust deep neural
network (DNN) technique for the extraction of basement relief
information from vertical gravity data. We put forward an
efficient model generation approach, simulating two prototyp-
ical bottom relief training model sets that serve as reliable
labels for the establishment of the deep learning network.
By sectioning the sedimentary into a series of vertically
adjacent prisms, we utilize a rapid modeling algorithm to
generate credible training gravity datasets for the input end.
Moreover, we introduce varying degrees of Gaussian noise to
test the network’s resilience to noise. The proposed imaging
strategy is then applied to recover the relief of the Cretaceous
basement using vertical gravity field data collected from the
Poyang basin in China.

II. METHODOLOGY

A. 2-D Forward Modeling

Fig. 1 shows a schematic of a 2-D sedimentary basin model.
For better simulation of theoretical geophysical response,
the basin model is vertically divided into a set of M 2-D
juxtaposed prims adjacent to each other, where the top surface
coincides with the upper interface of the sedimentary layer,
and the lower interface represents the basement relief. The
gravity anomalies simulated at each observation point are con-
tributed by all 2-D vertically juxtaposed prims, representing
the effective response of density distribution and basement
relief undulation. The vertical gravity, gz , can be expressed
as follows:

gi
z =

M∑
j=1

fi
(
ρ j

)
, i = 1, 2, . . . , N (1)

where i represents the i th observation point, j stands for the
j th 2-D prim, and fi is defined as the forward function [33]
as

fi
(
ρ j

)
= 2G

∫ b j2

b j1

∫ a j2

a j1

1ρ(z)×
a − zi

(b − xi )
2
+ (a − zi )

2 dadb

(2)

where a j1 and a j2 are defined as the horizontal boundaries
along the x-axis. Similarly, b j1 and b j2 can be set up as the
vertical boundaries along the z-direction [Fig. 2(b)]; G is the
gravitational constant (G = 6.67384 × 10−11m3/kg × s2);
and 1ρ(z) represents the anomalous density. After integrating
over b, the vertical gravity response can be acquired by
combining with (1) and (2).

B. Generation of Sediment-Basement-Interface Training Sets

The purpose of constructing reasonable training sets is
to enable the DNN to extract detailed features from low-
dimensional input gravity data to establish an implicit
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Fig. 1. Schematic of a 2-D sedimentary basin model.

Fig. 2. Two types of basin models for the training: (a) terrain of rift
sedimentary basin and (b) grab-horned sedimentary basin.

relationship with high-dimensional output-labeled basement
models (e.g., relief and density). The random terrain of sedi-
mentary rift basins [see Fig. 2(a)] and grab-horned basins [see
Fig. 2(b)], as two kinds of typical basins, is designed under
the guidance of empirical geological scenarios. The horizontal
range along the x-axis is 0–100 000 m, and the depth range
along the z-axis is 0–10 000 m. The number of slabs in each
model is randomly selected from 1 to 5. The observation
points are spaced at 1000-m intervals along the x-axis. The
anomalous density filling within each prim varying with depth
follows hyperbolic function [34] as given in the following:

1ρ(z) =
1ρ0 × β2

(z + β)2
(3)

where 1ρ0 is the density contrast at the surface; z is the depth
of layers with anomalous density 1ρ; and β is the empirical
constant with length units. In this article, to make sure the
trained basin models are according to common knowledge
of geology, we set up the variation of width and depth ratio
10 ≤ W/H ≤ 15 as an additional constraint [35], where the
relative error between geophysical responses from layered and
compelling density models is about 2.5%.

In this study, we created 10 000 sets of training models,
of which the depth information and empirical parameters β are
used as scalar-trained labels as O(ψ) = {zψ ,βψ }

N
ψ=1, N =

10 000. Subsequently, the corresponding gravity responses,
as {gψz }

N
ψ=1, N = 10 000, are simulated by the forward

modeling shown in (1) and (2), and the interior features are
extracted from them to establish the inherent relationship with
the labeled relief of the basement. We randomly choose 80%
of the datasets for the neural network, and the rest are carried
out for validation.

C. Deep Neuron Network

The DNN exhibits the proficiency to implicitly decipher
complex and nonlinear input–output mode mappings by
adjusting the thresholds and weights linked to neighboring
network layers via the gradient descent method, without neces-
sitating the explicit elucidation of the physical mathematical
equations that depict the relationship. The regular diminution

Fig. 3. Comparison of different hidden layers and loss behaviors.

of dimensions at the terminal of the network model invariably
results in the loss of feature information. Simultaneously, given
that the data structure accommodated by the basement reliefs
and overburden density constitutes an integrated 1-D matrix in
this study, the quantities of neurons and hidden layers become
pivotal elements in defining the architecture of the network.

Perceptrons, which are neural networks devoid of hidden
layers, have demonstrated utility in addressing elementary
geophysical classification challenges [36], [37], [38], yet their
inherent limitations render them unsuitable for tackling more
intricate geophysical problems. Although a neural network
with a solitary hidden layer is theoretically capable of approx-
imating any continuous function mapping one finite space
to another [39], [40], this configuration may inadequately
capture the complex nature of underlying physical processes
and is susceptible to overfitting or underfitting the data. Con-
sequently, incorporating additional hidden layers into a neural
network bolsters its ability to represent complex input–output
relationships, mitigate overfitting by learning generalized rep-
resentations, potentially alleviate manual feature engineering
in geophysical inversion challenges, and augment effectiveness
in managing large, intricate datasets characterized by high-
dimensional inputs and multivariate, correlated outputs. Hence,
the prediction of basin depth (z) and empirical constant with
length units (β) constitutes a quintessential nonlinear problem,
prompting the establishment of a hidden layer count exceeding
two.

In this assessment, the adopted DNN structure adheres to
conventional deep network architecture, whereby the determi-
nation of the number of hidden layers, the optimal neuron
count in each layer, and the confirmation of deep learning
network hyperparameters via various activation functions are
fine-tuned through an empirical evaluation approach, contin-
gent upon the loss observed in the testing sets. The comparison
is shown in Fig. 3.

One can see that the optimal neural network configuration
for the given problem, considering the loss behavior of testing
sets, consists of four hidden layers (Fig. 4) with 3072 neurons
(Table I), employing the leaky rectified linear unit (ReLU)
activation function. This configuration provides the lowest
loss value (8.53) and demonstrates better performance and
generalization ability compared to other configurations.

For nonlinear reconstruction of the depth-to-basement with
density variation, activation functions play a crucial role in
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TABLE I
NEURONS NUMBER IN HIDDEN LAYERS OF THE DEEP NEURON NETWORK

Fig. 4. Schematic of network structure.

training the artificial neural network to determine whether
the extracted features that a specific neuron receives are
helpful and whether they should be kept or discarded. Upon
examining the efficacy of the preferred configuration of neural
networks, it becomes evident that those employing ReLU and
leaky ReLU activation functions surpass their sigmoid function
counterparts. The sigmoid function can instigate the vanishing
gradient issue, potentially leading to protracted convergence
and diminished model accuracy. Conversely, ReLU and leaky
ReLU serve to alleviate the vanishing gradient conundrum,
fostering enhanced learning, and superior model performance.
Comparing ReLU and leaky ReLU, the latter yields a reduced
the lowest loss value, attributable to its introduction of a
modest negative slope for negative input values, which assists
in preserving gradients and diminishes the probability of
encountering “dead neurons”—neurons producing zero output
for all inputs, thereby rendering no contribution to the model’s
learning process. To conclude, the configuration demonstrates
superior performance and generalization aptitude in compari-
son to alternate configurations sharing the same quantity of
hidden layers and neurons. Therefore, the leaky ReLU is
chosen as the activation function in this article rather than
the ReLU because of the low sensitivity and scarcity of the
vertical gravity training datasets.

In Fig. 4, the input layer for the ψ th training set corresponds
to 461 observation Bouguer gravity anomalies data points
(e.g., gψz = [gψz1, gψz2, gψz3, . . . , gψz461]

T) ranging from 0 to
100 km along the x-axis with a spacing of approximately
0.21 km. The input gravity information is received by neu-
rons in the first layer, which then transmits it to neurons
in the hidden layers. The output layer stands for depth-to-
basement bottoms selected as the first output vector as z =

[zbtm
1 , zbtm

2 , . . . , zbtm
100]

T, and the empirical parameters β shown
in (3) as the second output vector as β = [β1, β2, . . . , β100]

T.
The loss function plays a significant role in acquiring the

perturbation of the weights and thresholds inside the deep
learning network. The loss function of the ψ th training sets is

defined as E(ψ)

E(ψ) =
1
2

n∑
k=1

(T k(ψ)− Ok(ψ))
2 (4)

where T k(ψ) is a scalar vector containing the true values of
depth and β of the kth-dimension of the ψ th trained labels.
Ok(ψ) is the scalar vector presenting the predicted values of
depth and β information based on the kth-dimension of the
ψ th trained model set. For any specific training sample gψzm ,
we typically employ the strategy of layer-by-layer derivation
from the output layer to the input layer to obtain the perturba-
tion values of the weights in each layer. The detailed derivation
is given in the Appendix.

To alleviate the computational load associated with gradient
calculations across an extensive dataset, especially for more
sizable collections of data, the batch size is optimally defined,
signifying a data subset that approximates the accurate gra-
dient. Guided by various factors, including specific problem
characteristics, the architecture of the model, the scale of the
dataset, and the computational resources at disposal, the batch
size in this study is selected from an ensemble comprising 16,
32, 64, 128, and 256. This choice, adhering to exponential
powers of 2, capitalizes on the superior performance of the
GPU relative to multiples of 10 or 100, given the GPU’s
constrained computational capacity during training. Empirical
observations validate quick and steady convergence when a
batch size of 256 is implemented.

The performance of underfitting and overfitting the model is
the most logical way to evaluate the generalization capacity of
the trained network structure. In general, underfitting can be
reduced by modifying the training procedure or grid structure
of the DNN, whose expressive ability is strong enough to make
parameters surpass the minimal generalization misfit critical
point of the training curves. The most popular regularization
method for deep learning model training is dropout [41]. The
determination of an optimal dropout rate is often empirically
driven, necessitating a trial-and-error approach. This study
adopted an initial low dropout rate of 0.1, progressively
increasing it should overfitting persist. Nonetheless, caution
is required to avoid excessive regularization leading to under-
fitting, which may occur with overly high dropout rates. The
final dropout rate, offering an optimal balance, was found to
be 0.2.

In striking an optimal balance between underfitting and
overfitting, the number of epochs in training a model holds
significant importance. Underfitting, a scenario where the
model is inadequately trained and thus underperforms, may
arise when the number of epochs is insufficient. Conversely,
overfitting may ensue from excessive epochs, as the model
becomes overly familiarized with the training data, including
its noise and outliers, which degrades its performance on
novel data. The optimum epoch count is typically derived
empirically. A prevalent method involves tracking the model’s
performance on a validation set after each epoch. The practice
of “early stopping” halts training when the validation set
performance plateaus or begins to deteriorate. In this study,
dynamic observation of the model’s loss in the training and
validation sets after each epoch revealed an increase in the
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validation set loss upon exceeding 4000 epochs during train-
ing. Consequently, training was ceased to circumvent model
overfitting.

The comprehensive misfit levels for labels (misfitML1 and
misfitML2) and gravity data (misfitDI) are common ways to
determine when to terminate BP and thus obtain the optimal
solution, respectively. The misfit functions are defined as

misfitDI
=

∥∥gpred
z − gobs

z

∥∥2
DI∥∥gobs

z

∥∥2
DI

(5)

misfitML1 =

∥∥zpred
− zlabel

∥∥2
ML∥∥zlabel

∥∥2
ML

(6)

misfitML2 =

∥∥βpred
− β label

∥∥2
ML∥∥β label

∥∥2
ML

(7)

where DI denotes the data space at the end of the input; ML1
and ML2 are denoted as two model labels at the end of the
output, respectively; gpred

z and gobs
z stand for simulated and

observed vertical gravity response, respectively; zpred and zlabel

are defined as the first output type as basin interface depth
and trained one, respectively; and βpred and β label are denoted
as the second output type as the empirical parameters and
corresponding trained one.

III. SYNTHETIC MODEL STUDIES

Fig. 5 presents the relief results of three validated sedimen-
tary basin models, arbitrarily selected from the 2000 validation
datasets. It is observable that the interfaces of the graben-
horned sedimentary basin, as reconstructed by the optimally-
tuned weights and thresholds trained within the network,
align effectively with the accurate models (signified by the
black solid lines), as indicated by the overlaid black dashed
lines. Additionally, the derived empirical parameter β [see (3)]
employed for determining the density of each prim exhibits
proximity to the actual value of the model. Concurrently, for
each validated model, the vertical gravity responses generated
by the reconstructed models (indicated by the red solid line)
are superimposed with the observed responses (blue solid
line). This visualization illustrates that the predicted gravity
responses derived from the corresponding models faithfully
adhere to the observed data.

Similarly, Fig. 6 represents the predicted interfaces of the
rift sedimentary basin. The DNN can successfully recover all
the sediment relief features and the corresponding empirical
parameters β for each prim. We also discover that the fitting
of the gravity curves is pretty good.

In order to evaluate the resilience of the trained network,
zero-mean Gaussian noise, with a standard deviation calibrated
to 5%, 10%, and 15% of the magnitude at each point,
is incorporated into the observed gravity responses produced
by the graben-horned and rift sedimentary basin models. Sub-
sequently, the trained network is employed to reconstruct the
relief and the parameter β from these noise-perturbed gravity
responses. Figs. 7 and 8 showcase the congruity of observed
and predicted gravity responses, as well as the inversion results
under the influence of three distinct noise levels.

Fig. 5. (Top row) Comparison of predicted and observed vertical gravity
gz of three different graben-horned sedimentary basin models randomly
selected from validation datasets. (Bottom row) Prediction, actual reliefs, and
density transferred by the recovered empirical parameters β for the three
corresponding graben-horned sedimentary basin models.

Fig. 6. (Top row) Comparison of predicted and observed vertical gravity
gz value for three different rift sedimentary basin models randomly selected
from validation datasets. (Bottom row) Empirical parameters β of the three
corresponding rift sedimentary basin models recovered from prediction and
actual reliefs.

TABLE II
MISFIT ERRORS AND TRAINING TIME OF THE GRAVITY RESPONSES (gz),

DEPTH-TO-BASEMENT BOTTOMS (z), AND EMPIRICAL PARAMETERS
(β) FOR THE RIFT AND GRABEN-HORNED SEDIMENTARY MODELS

WITH DIFFERENT NOISE LEVELS

As can be seen, the trained network is stable for noisy data
and the proposed trained deep neuron network is still able
to recover the model from the noise-contaminated data. The
corresponding misfit fitting behaviors and training time of the
gz , z, and β with different noise levels are shown in Table II.

As depicted in Table II, the amplitude of average normalized
misfit values for gravity responses (5), depth (6), and β (7)
remain minor and consistent, even after introducing noise into
the test data. For instance, a marginal increase in misfit values
occurs in response to an increase in noise intensity, thereby
indicating the commendable stability and noise resistance of
the well-trained deep neuron network. Moreover, the training
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Fig. 7. Fitting behaviors and inversion results recovered by the proposed
trained deep neuron network using three different noise levels for the three
different graben-horned sedimentary basin models shown in Fig. 4. Compar-
ison of: (a-1) observed and predicted gravity responses and (a-2) predicted
reliefs and densities transferred by the recovered empirical parameters (β)
against 5% Gaussian noise. Comparison of: (b-1) observed and predicted
gravity responses and (b-2) predicted reliefs and density transferred by β

against 10% Gaussian noise. Comparison of: (c-1) observed and predicted
gravity responses and (c-2) predicted reliefs and density transferred by β

against 15% Gaussian noise.

TABLE III
HYPERPARAMETERS SETTING OF DEEP LEARNING NETWORKS

computation times for the grab-horned sedimentary basin are
recorded as 3.97, 3.88, and 3.64 min, respectively. In parallel,
the training durations for the rift sedimentary basin amount to
3.37, 3.30, and 3.24 min, respectively. Interestingly, the data
training duration decreases as the noise intensity escalates.
The primary reason for this inverse relationship is that the
widespread variation in the training data may expedite the
convergence of the loss function (4), thereby negating the need
for the network to update weighting and threshold parameters

Fig. 8. Fitting behaviors and inversion results recovered by the proposed
trained deep neuron network using three different noise levels for the three
different rift sedimentary basin models shown in Fig. 5. Comparison of:
(a-1) observed and predicted gravity responses and (a-2) predicted reliefs
and density transferred by the recovered empirical parameters (β) against
5% Gaussian noise. Comparison of: (b-1) observed and predicted gravity
responses and (b-2) predicted reliefs and density transferred by β against
10% Gaussian noise. Comparison of: (c-1) observed and predicted gravity
responses and (c-2) predicted reliefs and density transferred by β against
15% Gaussian noise.

for further minimization of the loss function. The detailed
hyperparameter settings are shown in Table III.

In contemplation of potential deviations between input data
utilized in the training phase and actual case data, we gen-
erate an additional four models for each sedimentary type,
presenting varied profile lengths (i.e., 40 and 80 km) along
the x-axis. Given the fixed number of outputs, the width of
the prisms in each model inevitably varies. The corresponding
inversion outcomes are displayed in Fig. 9. These results
indicate that the well-tuned DNN maintains commendable
generality, effectively recovering both the interface and the
density—as determined by the predicted empirical parameter
β—even when faced with diverse prismatic sources.

IV. CASE STUDY

A. Geological Setting

The Poyang Basin, found in northern Jiangxi Province,
China, in the vicinity of 115◦30′–117◦00′ E and
28◦20′–29◦30′ N (refer to the left panel in Fig. 10),
is a fault-depression basin superimposed on Paleozoic strata,

Authorized licensed use limited to: The University of Utah. Downloaded on November 04,2024 at 17:43:16 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: RECONSTRUCTING 2-D BASEMENT RELIEF USING GRAVITY DATA BY DEEP NEURON NETWORK 4500911

Fig. 9. (Top row) Comparison of predicted and observed vertical gravity gz
of three different graben-horned sedimentary basin models with total profile
lengths as 100, 80, and 40 km. (Bottom row) Prediction and actual reliefs
and density transferred by the recovered empirical parameters β for the three
corresponding graben-horned sedimentary basin models.

Fig. 10. (Left) Location of the case study is in the Poyang Basin. (Right)
2-D vertical gravity and seismic data acquired along red survey line B–B′

throughout two validation well-logging C and D.

thought to have taken shape during the Mesozoic and
Cenozoic periods. Spanning an irregularly distributed area of
approximately 11 230 km2 in a northerly to east-northeasterly
direction, the basin hosts five major river systems, culminating
in the creation of Poyang Lake in the eastern portion of the
basin, which covers a sizable area of 3050 km2.

The structural configuration of the upper Paleozoic is
largely determined by the NW-SE compression stress field
from the Indosinian-Early Yanshanian era. Situated south of
the Nanchang-Boyang line, the southern Poyang depression
overlays the Pingxiang-Leping depression, a product of the
upper Paleozoic–Triassic marine–terrestrial interactions and
associated deposits. Prominent thrusts and folds are observable
in the upper Paleozoic strata, while the rifts mainly manifest as
NEE and NE reverse faults, complemented by NNE and NW
left-lateral strike-slip faults. Key reverse faults that emerged
in the early Mesozoic architecture, influenced by the late Yan-
shanian extension, were reversed into tensional normal faults
and directed the deposition of Cretaceous sediments in the
depression. Consequently, the Mesozoic structural scheme, to a
degree, continues the early architectural framework, barring
the rifts which predominantly appear as NEE and NE normal
faults.

Fig. 11. Comparison of the observed and predicted vertical gravity responses
from the traditional smooth inversion and deep neutron network.

The South Poyang depression comprises two main sectors:
the western and eastern zones. Proceeding from NW to SE,
the eastern zone consists of several minor structural entities,
including the Nanjing depression, the Ruihong uplift, and
the Erjiacun depression. The focus of this investigation is
an NE-oriented, 1120-km2 section of the Erjiacun depression,
delineated by the boundary fault and the southern edge of
the Ruihong metamorphic rock exposure, which is where the
gravity data for this study was gathered. The predominant
Mesozoic formations are the late Cretaceous Ganzhou Group
and Guifeng Group. The depression encompasses three Meso-
zoic graben-style subsags, interspersed with uplifts. Presently,
the main fault exerts a significant influence on the tectonic
formation. This formation exhibits a thickness of approxi-
mately 1000 m, with the deep sags exceeding 3000 m at
their maximum points. The middle–upper Paleozoic strata,
with a residual thickness surpassing 1000 m, constitute a
considerable fraction of this depression and represent the
largest upper Paleozoic residual zone in the eastern segment
of the South Poyang depression. During the Indosinian-Early
Yanshan period, sections of the upper Paleozoic strata were
folded and overturned, thereby persisting in an elevated posi-
tion over an extended timeframe and undergoing sustained
erosion. Seismic interpretation reveals substantial denudation
of numerous upper Paleozoic locations. An examination of the
geological outcrop characteristics in this area indicates that
the upper Triassic and lower Jurassic are confined to a limited
region within the remnant structural syncline.

B. Results and Interpretation

Employing vertical gravity field data distributed along an
aggregate length of 17 km, with an approximate spacing of
0.5 km, we leverage the proposed DNN to reconstruct the
basement relief. Our 2-D sedimentary model is partitioned
into 100 discrete 2-D vertical rectangles, each with a width of
180 m. To illustrate the efficacy of the proposed methodology,
a comparison is executed using traditional smooth inversion as
a benchmark. The matching behaviors are exhibited in Fig. 11.
The visualization clearly indicates that the predicted vertical
gravity responses from both methods align favorably with the
observed data.

Fig. 12 illustrates a comparative vertical cross section,
juxtaposing the results derived from conventional inversion
and the trained DNN. This comparison is superimposed onto
the cross section of the seismic image drawn along line B–B′,
passing through wells C and D, respectively. The interface
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Fig. 12. Comparison of prediction relief by: (a) 2-D smooth inversion;
(b) deep neutron network and actual results of rift sedimentary basin; and
(c) seismic imaging section along the line B–B′, overlapping with the two
curves of the recovered relief.

of the depression, as depicted on the left side of the seismic
imaging [Fig. 12(c)], corresponds well with the smooth relief
model reconstructed by the robustly trained DNN [Fig. 12(b)],
as indicated by the black solid line. A similar, though less pre-
cise, correspondence is evident with the relief model recovered
via the conventional inversion method [Fig. 12(a)], delineated
by the black dashed line.

When evaluated in terms of density, a conspicuous peak
in visual intensity manifests within the anomalous density
recovered by conventional inversion, positioned between the
green and yellow bands in the standard jet color bar, corre-
sponding to a density contrast value of 0.075 g/cm3. However,
an examination of the maximum anomalous density recovered
by the robustly trained DNN in the vicinity of the depression
interface reveals a value of approximately −0.006 g/cm3.
This exhibits a noticeable deviation from the density derived
through traditional inversion. The principal cause of this
disparity in density can be traced to the divergent density
recovery strategies employed by the two methods. Conven-
tional inversion endeavors to recover the density across the
entire space, whereas the robustly trained DNN focuses solely
on recovering the density above the interface, operating under
the assumption that the background density is 0 g/cm3.

However, it appears that the traditional smooth inversion
cannot detect the subsag on the right side, which is note-
worthy given the outcomes the trained DNN has foreseen.
To better validate the effectiveness of the algorithm, we over-
lap the wells C and D with the strata marker for K2z_b
(interface of the Cretaceous basement) on the cross sections
produced by the conventional and DNN, respectively [shown
in Fig. 12(a) and (b)]. Upon contrasting the relief profile
retrieved through conventional inversion methods with that
predicted by the DNN, it emerges that the DNN prediction
exhibits a more favorable correspondence with the strata
marker at well D. The DNN’s prediction for well C’s align-
ment with the base interface, while not demonstrating the
same degree of agreement as observed for well D, nonethe-
less surpasses the level of accuracy achieved by traditional

inversion methods. We would like to underline that the seismic
structure and well logging data are only used for validation
after inversions and are not used as a priori knowledge to
restrictions throughout the two inversion methods.

To summarize, the DNN approach substantiates its merit
through a number of salient advantages in the real case. This
encompasses a refined precision, courtesy of the method’s
unique focus on recovering density above the interface, offer-
ing an elevated granularity in pertinent regions. Its inherent
resistance to Gaussian noise enhances the robustness, bolster-
ing the reliability of results even in the presence of real-world
noise contamination. A paramount strength of the DNN
method lies in its capacity to anticipate nuanced geological
features, as exemplified by the identification of the subsag in
this study, highlighting its potential to discern details that tra-
ditional inversion methods may not capture. Its commendable
alignment with the strata marker for the K2z b interface further
endorses its proficiency in accurately delineating geological
structures. Collectively, these distinguishing strengths elevate
our DNN method as a potent instrument for intricate and
precise geological analysis.

V. CONCLUSION

Exhibiting profound capabilities in implicitly learning intri-
cate and nonlinear input–output model mappings, the DNN
adjusts the thresholds and weights associated with adjoining
layers through the gradient descent method. This is accom-
plished without the necessity of revealing the mathematical
equations that physically articulate the relationship. The DNN
proposed herein holds considerable potential for application
in forecasting the bottom relief of sedimentary basement
boundaries.

In the synthetic study, we enhance the assessment of the
trained network’s robustness by introducing zero-mean Gaus-
sian noise of 5%, 10%, and 15%, respectively, to the synthetic
input training datasets. It becomes apparent that the normalized
misfit labels of the DNN remain consistent, irrespective of the
imposed noise levels. The derived empirical parameters β can
be nearly entirely reconstructed and subsequently translated
into density. On a separate note, the discrepancies between
the predicted and actual reliefs in the simulation datasets
maintain a scale within the order of tens of meters. This
discrepancy is virtually negligible when compared to the depth
of a sedimentary basin, which spans several thousands of
meters.

In the context of practical field application, the suggested
DNN demonstrates robust efficiency in the prediction of both
density and reliefs of the primary depression and subsag within
the Poyang basin. This is particularly significant where tradi-
tional inversion falls short in capturing the intricacies of relief
undulation, notably for the subsag. It bears highlighting that
the inversion result from the DNN is further validated by the
finite well-based stratigraphic information and corresponding
seismic structure, exhibiting a notable fit.

Through a process markedly divergent from conventional
inversion methods, which lean heavily on explicit a priori
knowledge or assumptions, the DNN has the capacity to
amplify the precision of geophysical imaging by deciphering
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inherent patterns and complexities ingrained within the dataset.
Crucially, despite the foundational role of prior knowledge
in forming the training data, it is essential to recognize that
the operational functioning of the DNN is not dictated or
restrained by explicit assumptions or models. Rather, the
DNN acquires the capacity to generate predictions based on
patterns discerned within the training data, thereby potentially
uncovering intricate features or associations unaddressed by
traditional inversion methodologies. Furthermore, the caliber
and heterogeneity of the input training data can substan-
tially impact the precision of the resultant output. Hence,
notwithstanding the significant advantages offered by the DNN
approach, it concurrently presents unique complexities and
considerations.

APPENDIX

According to the forward propagation, as the input of the
i th neuron in layer l, net(l)i can be expressed as

net(l)i (ψ) =

sl−1∑
j=1

W (l)
j i h(l−1)

j + b(l)i (A-1)

where W (l)
j i is the weight connecting the j th neuron in the

layer l − 1 and the i th neuron in layer l, where b(l)i is defined
as the bias; and h(l−1right)

j is the output of the j th neuron in
layer l − 1 as

h(l−1)
j = f

(
net(l−1)

j (ψ)

)
(A-2)

where f (· · · ) is defined as activation function. Referring with
(A-1), net(l−1)

i (ψ) is the input of the j th neuron in the layer
l − 1.

The partial derivative of the weights W (L)
j i linking the j th

neuron in the layer L −1 and the i th neuron in the last output
layer L is expressed as

∂E(ψ)

∂W (L)
j i

=
∂E(ψ)
∂Ok(ψ)

∂Ok(ψ)

∂net(L)i (ψ)

∂net(L)i (ψ)

∂W (L)
j i

= −(Tk(ψ)− Ok(ψ))
∂zk(ψ)

∂net(L)i (ψ)
h(L−1)

j . (A-3)

It is worth noting that the output of the L layer (e.g., h(L)j )

is the predicted value of depth information defined as Ok(ψ)

as

Ok(ψ) = h(L)j = f
(

net(L)j (ψ)

)
. (A-4)

Hence, (A-3) can be rewritten as follows:

∂E(ψ)

∂W (L)
j i

=
∂E(ψ)
∂zk(ψ)

∂Ok(ψ)

∂net(L)i (ψ)

∂net(L)i (ψ)

∂W (L)
j i

= −(Tk(ψ)− Ok(ψ)) f ′

(
net(L)j (ψ)

)
h(L−1)

j (A-5)

set

η
(L)
k =

∂E(ψ)
∂Ok(ψ)

∂Ok(ψ)

∂net(L)i (ψ)

= −(Tk(ψ)− Ok(ψ)) f ′

(
net(L)j (ψ)

)
. (A-6)

Hence, the partial derivative of the weights W (L)
j i with

respect to the cost function E(ψ) can be rewritten as

∂E(ψ)

∂W (L)
j i

= η
(L)
k h(L−1)

j . (A-7)

Similarity, the gradient of the bias can be expressed as

∂E(ψ)

∂b(L)i

=
∂E(ψ)
Ok(ψ)

Ok(ψ)

∂net(L)i (ψ)

∂net (L)i (ψ)

∂b(L)i

= η
(L)
k . (A-8)

According to the chain derivative method, for hidden layer
L − 1 layer

∂E(α)

∂W (L−1)
j i

=
∂E(ψ)
Ok(ψ)

Ok(ψ)

∂net(L)i (ψ)

∂net(L)i (ψ)

∂W (L−1)
j i

= η
(L)
k W (L)

j i

∂h(L−1)
j (ψ)

∂W (L−1)
j i

(A-9)

∂h(L−1)
j (ψ)

∂W (L−1)
j i

=
∂h(L−1)

j (ψ)

∂net(L−1)
i (ψ)

∂net(L−1)
i (ψ)

∂W (L−1)
j i

= f ′

(
net(L−1)

i (ψ)

)
h(L−2)

j (A-10)

∂E(ψ)

∂W (L−1)
j i

= η
(L)
k W (L)

j i f ′(net(L−1)
i (ψ))h(L−2)

j . (A-11)

Similarity, the gradient of the bias can be expressed as

∂E(ψ)

∂b(L−1)
i

=
∂E(ψ)
O(ψ)

Ok(ψ)

∂net(L)i (ψ)

∂net(L)i (ψ)

∂b(L−1)
i

= η
(L)
k W (L)

j i

∂h(L−1)
j (ψ)

∂b(L−1)
i

(A-12)

∂h(L−1)
j (ψ)

∂b(L−1)
i

=
∂h(L−1)

j (ψ)

∂net(L−1)
i (ψ)

∂net(L−1)
i (ψ)

∂b(L−1)
i

= f ′

(
net(L−1)

i (ψ)

)
(A-13)

∂E(ψ)

∂b(L−1)
i

= η
(L)
k W (L)

j i f ′(net(L−1)
i (ψ)). (A-14)

ACKNOWLEDGMENT

The authors thank the Changchun University of Science
and Technology, Changchun, China, and the Chengdu Univer-
sity of Technology, Chengdu, China. They acknowledge the
Engineering Geology Brigade of Jiangxi Bureau of Geology,
Nanchang, China, and the Jiangxi Institute of Shale Gas Inves-
tigation and Development Research, Nanchang, for providing
the gravity and related data.

REFERENCES

[1] T. P. Yegorova, R. A. Stephenson, V. G. Kozlenko, V. I. Starostenko, and
O. V. Legostaeva, “3-D gravity analysis of the Dniepr–Donets basin and
donbas foldbelt, Ukraine,” Tectonophysics, vol. 313, nos. 1–2, pp. 41–58,
Nov.10, 1999.

[2] L. Nielsen and B. H. Jacobsen, “Integrated gravity and wide-angle
seismic inversion fortwo-dimensional crustal modelling,” Geophys. J.
Int., vol. 140, no. 1, pp. 222–232, Jan. 2000.

[3] G. Y. Yang, J. H. Wang, and H. Z. Yan, “Application of modeling
inversion of Bouguer gravity anomalies to oil and gas exploration in the
Erlian basin,” Chin. J. Geophys.-Chin. Ed., vol. 62, no. 1, pp. 316–330,
Jan. 2019.

Authorized licensed use limited to: The University of Utah. Downloaded on November 04,2024 at 17:43:16 UTC from IEEE Xplore.  Restrictions apply. 



4500911 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

[4] L. Uieda and V. C. F. Barbosa, “Fast nonlinear gravity inversion in
spherical coordinates with application to the south American moho,”
Geophys. J. Int., vol. 208, no. 1, pp. 162–176, Jan. 2017.

[5] J. B. C. Silva, D. F. Santos, and K. P. Gomes, “Fast gravity inver-
sion of basement relief,” Geophysics, vol. 79, no. 5, pp. G79–G91,
Sep./Oct. 2014.

[6] X. Feng, W. Wang, and B. Yuan, “3D gravity inversion of basement relief
for a rift basin based on combined multinorm and normalized vertical
derivative of the total horizontal derivative techniques,” Geophysics,
vol. 83, no. 5, pp. G107–G118, Sep./Oct. 2018.

[7] M. S. Chauhan, M. Fedi, and M. K. Sen, “Gravity inversion by the multi-
homogeneity depth estimation method for investigating salt domes and
complex sources,” Geophys. Prospecting, vol. 66, no. S1, pp. 175–191,
Mar. 2018.

[8] M. An and M. Assumpção, “Crustal and upper mantle structure in the
intracratonic Paraná Basin, SE Brazil, from surface wave dispersion
using genetic algorithms,” J. South Amer. Earth Sci., vol. 21, no. 3,
pp. 173–184, Jul. 2006.

[9] J. L. G. Pallero, J. L. Fernández-Martínez, S. Bonvalot, and O. Fudym,
“Gravity inversion and uncertainty assessment of basement relief via
particle swarm optimization,” J. Appl. Geophys., vol. 116, pp. 180–191,
May 2015.

[10] Y. L. Ekinci, Ç. Balkaya, G. Göktürkler, and Ş. Özyalın, “Gravity data
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