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SUMMARY
We introduce a new approach to 3-D electromagnetic (EM) modeling
for models with large conductivity contrast. It is based on the equa-
tions for integral current within the cells of the discretization grid, in-
stead of the electric field or electric current themselves, which are used
in the conventional integral equation (IE) method. We obtain these in-
tegral currents by integrating the current density over each cell. The
integral currents can be found accurately for the bodies with any con-
ductivity. As a result, the method can be applied, in principle, for the
models with high conductivity contrast. At the same time, knowing the
integral currents inside the anomalous domain allows us to compute
the EM field components in the receivers using the standard integral
representations of the Maxwell’s equations. We call this technique an
integral electric current (IEC) method. The method is carefully tested
by comparison with an analytical solution for a model of a sphere with
large conductivity embedded in the homogenous whole space.

INTRODUCTION

One of the difficult problems in electromagnetic (EM) modeling is ac-
curate numerical solution for models with large conductivity contrast.
This problem appears, for example, in modeling EM data for mineral
exploration when we have a conductive target embedded in relatively
resistive host rocks. The study of the topography effect on EM data
requires the solution of a similar problem, because the contrast in con-
ductivity between the conductive earth and nonconductive air can be
as large as 108− 1010 times. Well-logging is another area where one
should take into account a strong contrast between the cased borehole,
for example, and surrounding rock formations.

In this paper, we introduce a new approach to the solution of this prob-
lem based on the integral equation (IE) method. The conventional IE
algorithms are usually written for the electric field or electric current
components within the domain with anomalous conductivity. This do-
main is divided in the number of cells, which are selected to be so
small that the field components vary slowly within the cell. If the con-
ductivity of the body and/or frequency are high, it is difficult to satisfy
this condition. The EM field varies extremely fast within a good con-
ductor, which may result in errors of numerical modeling. In order to
overcome this difficulty, Newman and Hohmann (1988) used a special
grouping of the boxcar basis functions to form current loops within the
conductor. Farquharson and Oldenburg (2002) implemented the more
sophisticated edge element basis functions to avoid the inaccuracy of
the conventional boxcar basis function approach.

In this paper we consider a novel approach for solving this problem.
We develop a new form of the IE method, which is based on the equa-
tions for integral current within the cells, instead of the electric field
or electric current themselves. We obtain these integral currents by in-
tegrating the current density over each cell. The integral currents can
be found accurately for a body with any conductivity. We do not use
anymore the requirements that the field varies slowly inside the cell,
because we deal with the integral of this field. As a result, the method
can be applied, in principle, for models with arbitrary conductivity
contrast. At the same time, knowing the integral currents inside the
anomalous domain allows us to compute the EM field components in
the receivers using the standard integral representations of Maxwell’s
equations. We call this technique an integral electric current (IEC)
method.

FORMULATION OF THE IEC METHOD

The conventional IE method is based on the following equation for the
total electric E fields:
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where ĜE
(
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)
is the electric Green’s tensor defined for an un-

bounded conductive medium with the complex background conduc-
tivity σ̃b = σ − iωε; Eb is the background electric field; domain D
corresponds to the volume with the anomalous conductivity distribu-
tion σ̃ (r) = σ̃b +∆σ̃ (r) , r ∈ D.

The conventional approach to discretization of the integral equation
(1) is based on dividing domain D into N elementary cells, Dn, formed

by some rectangular grid in the domain D =
N∪

n=1 Dn, and assuming that
∆σ̃ (r) has the constant value ∆σ̃n within the cell.

We also assume that each cell Dn is so small that the electric field is
approximately constant within the cell, E(r) ≈ E(rn) , where rn is a
center point of rectangular cell Dn. Under this condition the discrete
analog of equation (1) can be written as (Zhdanov, 2002):

eD = ĜDσ̂eD+eb
D, (2)

where σ̂ is a (3N×3N) diagonal matrix of anomalous conductivities,
eD and eb

D are the vectors of the total and background electric fields
formed by the x, y and z components of these fields at the centers of
the cells Dn of the anomalous domain D. The 3N × 3N matrix ĜD
is formed by the volume integrals over the elementary cells Dn of the
components of the corresponding electric Green’s tensor ĜE , acting
inside domain D.

Note that equation (1), or equivalent matrix equation (2) provides an
adequate approximation of the original integral equation, if the follow-
ing conditions hold: 1) the linear size h of elementary cell Dn is much
smaller than the wave length λb of the EM field in the background
medium,

h << λb, (3)

and 2) h is much smaller than the wave length λa of the EM field in a
medium with anomalous conductivity:

h << λa. (4)

The first condition (3) usually holds for typical geophysical EM mod-
eling problems. The second condition (4) may fail in the case of high
anomalous conductivity, which is the subject of this paper.

Our goal is to construct a discrete analogue of integral equation (1),
which would provide an accurate approximation only under condition
(3). In order to obtain a system of linear equations with respect to
integral currents, let us multiply both sides of equation (1) by ∆σ̃ (r′).
As a result we have:
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where:
jb (

r′
)
=∆σ̃

(
r′

)
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, r′ ∈ D,

is the induced current due to background field Eb.

Integrating both sides of equation (5) over elementary cell Dp and
assuming that anomalous conductivity is constant within the cell Dp,
∆σ̃ = ∆σ̃p, we find

Ip = ∆σ̃p
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where Ib
p is the integral current in the cell Dp due to background field

Eb :
Ib

p =
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dv′.

The last equation can be written using matrix notation:

ID = σ̂ ˜̂GDID+Ib
D, (7)

where σ̂ is a (3N×3N) diagonal matrix of anomalous conductivities,
ID and Ib

D are the vectors of the total and background electric field
intensities formed by the x, y and z components of these fields at the

centers of the cells Dn of the anomalous domain D. Matrix ˜̂GD is a
transposed matrix of the original linear system (2), ĜD, for the vector

of electric current eD (which justifies the notation we use for ˜̂GD).

Thus, forward electromagnetic modeling based on the IE method is re-
duced to the solution of the matrix equation (7) for the unknown vector
ID of integral electric current components inside domain D. We use
contraction integral equation (CIE) method of Hursán and Zhdanov
(2002) to solve this equation.

NUMERICAL ANALYSIS OF THE ELECTRIC CURRENT DIS-
TRIBUTION INSIDE THE CONDUCTIVE BODY

Consider a model of a prismatic conductive body with a resistivity of
0.1 Ohm-m embedded in a two-layered background (Figure 1). The
resistivity contrast between the second layer and the prism is 104. The
incident field is a vertically propagated plane EM wave at the 25 Hz
frequency, containing both the TM and TE modes. We investigated the
effect of different vertical discretizations of the prismatic body on the
electric current calculations. Three different discretizations were used
in the vertical direction: 5, 15, and 25 cells. The discretizations in the x
and y directions remained the same: 10 and 20 cells, respectively. The
horizontal components of the TE mode electric and magnetic fields
obtained using all three discretizations are shown in the left panels of
Figures 2 and 3, respectively. The right panels in these figures present
the relative errors, εEy and εHx , in the real (top) and imaginary (bottom)
parts of the corresponding components computed as the difference be-
tween the field for the finest discretization (25) and the field, obtained
for the coarsest discretization (5), normalized by the field at the finest
discretization (25):

εEy =
E(25)

y −E(5)
y

E(25)
y

, εHx =
H(25)

x −H(5)
x

H(25)
x

.

One can see that these errors do not exceed 1.5%.

Figure 1, panel b, presents the vertical distribution of the electric field
within the conductive prism computed using different vertical disretiza-
tions. To produce these plots, we selected a central vertical column of
the cells within the prism for each discretization. The electric field,

E(rn) , was calculated in the center of each elementary cell from this
column according to the following formula:

E(rn) = In /(∆σ̃nDn) , (8)

using the integral electric current, In, computed for this cell with the
IEC method (where Dn and ∆σ̃n are the volume and the anomalous
conductivity of the corresponding elementary cell, respectively). Fig-
ure 1, panel b, shows that the electric field computed for the finest dis-
cretization (25 cells in the vertical direction) describes well the skin
effect within the conductive body, while the field on the coursed dis-
cretization of 5 vertical cells is practically insensitive to the skin ef-
fect. At the same time, the difference between the observed EM field
components at the surface is within just 1.5% (Figures 2 and 3). This
remarkable property of the IEC solution is related to the main principle
of the IEC method, which is based on computing the integral electric
current, In, within every cell. In this case the electric field computed
according to formula (8) should also describe the averaged electric
field within the cell, which corresponds well to the plots shown in Fig-
ure 1, panel b. One can see that the plots of the horizontal electric field
components for the coarser discretization describe the average values
of the same plot for the finer discretization. The plots of the vertical
component of the electric field behaves a little bit differently, because
the vertical field is 103 times smaller than the horizontal fields. Nev-
ertheless, the plots for 15-cell and 25-cell discretizations practically
coincide, which is a clear manifestation that we reached the optimal
level of discretization at 25 cells in the vertical direction. The solution
will not change if we will use the finer discretization. Thus, another
important property of the new IEC method is that it does not require a
very fine discretization to produce an accurate result, because it does
not operate with the discretized electric field but with the integral cur-
rents, instead.

COMPARISON BETWEEN THE IEC METHOD AND ANALYT-
ICAL SOLUTION FOR A CONDUCTIVE SPHERE

In order to check the accuracy of the new IEC method, we apply this
technique to model a response of the conductive sphere excited by the
vertically propagated plane EM wave. This problem represents one
of a few EM problems which allow for an analytical solution. The
mathematical solution of this problem has been described in several
publications (see, for example, March, 1953; Berdichevsky and Zh-
danov, 1984; Ward and Hohmann, 1987; Balanis, 1989). This problem
is usually solved by means of the Debye potentials. We compare this
analytical solution with numerical modeling using the IEC method.

Figure 4, a, shows a model of the conductive sphere with a radius of
50 m embedded in the homogeneous whole space with a background
(normal) resistivity of ρn = 1000 Ohm-m. In the model study we use
different resistivities of the sphere: ρd = 100, 10, 1, 0.1, and 0.01
Ohm-m. The incident field is an E-polarized (TE mode) vertically
propagated plane EM wave at a frequency of 25 Hz. The origin of the
Cartesian coordinate system is located in the center of the sphere. The
receiver profile runs from -410 to 410 m in the x direction at an eleva-
tion of 350 m above the center of the sphere. The receivers are located
every 20 m. To calculate the sphere response by the IEC method, we
approximated the sphere with a model formed by cells with a side of
6.25 m (see Figure 4, b).

Using both the analytical solution and the IEC method, we computed
an apparent magnetotelluric (MT) resistivity for a sphere model ac-
cording to the formula:

ρa =
1

ωµ0

(
Ey

Hx

)2

.

Note that, according to the method of Debye potentials (Berdichevsky
and Zhdanov, 1984), the EM field components are represented in the
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Figure 1: Panel a shows a model of a prismatic conductive body with
a resistivity of 0.1 Ohm-m embedded in the two-layered background.
Panel b presents the vertical distribution of the electric field within
a conductive prism computed using three different discretizations in
the vertical direction: 5 cells (stars), 15 cells (circles), and 25 cells
(crosses).

Figure 2: The y component of the electric field, Ey, obtained using
three discretizations in the vertical direction, 5, 15, and 25 cells, re-
spectively.

Figure 3: Two left panels show the real part (top) and imaginary part
(bottom) of the x component of the magnetic field, Hx, obtained using
three discretizations in the vertical direction, 5, 15, and 25 cells, re-
spectively. Two right panels show the relative errors in real (top) and
imaginary (bottom) parts of the component.

form of series. Therefore, the result may depend on the number of
the terms kept in these series in calculations. However, these series
converge extremely fast. Figure 5 represents the plot of the maximum
value of the apparent resistivity vs. the number of terms used in the
series in analytical calculations for the model with maximum conduc-
tivity contrast (1e+5). One can see that the result practically does not
change after adding the third term.

Figure 6 shows the plots of the real and imaginary parts of the ap-
parent resistivity, Reρa and Imρa, for the different resistivity contrasts
between the homogeneous background and the conductive sphere, c =
ρn/ρd , equal to 10, 102, 103 , 104, and 105, respectively. The solid
lines correspond to the analytical solution, while the dashed lines present
the numerical IEC results. One can see that the difference between the
analytical and the numerical IEC solutions does not exceed 0.15 % at
the extremum value of the apparent resistivity for the highest conduc-
tivity contrast of 105. This result demonstrates that the developed new
method of integral current equations produces an accurate result even
for the models with high conductivity contrast.

Figure 4: a) Model of a conductive sphere with a radius of 50 m em-
bedded in the homogeneous whole space with a background resistivity
of 1000 Ohm-m; b) approximation of the sphere with a model formed
by cubic cells with a side of 6.25 m.
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Figure 5: The plot of the maximum value of the apparent resistivity
vs. the number of terms used in the series in analytical calculations for
the model with maximum conductivity contrast (1e+5).

Figure 6: The plots of the real and imaginary parts of the apparent re-
sistivity, Reρa and Imρa, computed using the analytical solution and
the IEC method. The solid lines show the data obtained by the ana-
lytical solution, while the dashed lines present the results of numerical
modeling with the IEC method for the following resistivity contrasts,
c = ρn/ρd , between the homogeneous background and the conductive
sphere : a) c = 10, b) c = 102, c) c = 103, d) c = 104, and e) c = 105.

CONCLUSIONS

For a long time the main limitation of the integral equation method was
modeling the EM field for models with high conductivity contrast. In
this paper we have developed a new approach to the construction of
the IE method. It is based on using integral electric currents, calcu-
lated over the elementary cells of the discretization grid, instead of the
electric field itself within the cells, as is commonly used in the con-
ventional IE method. As a result the method is capable of modeling
the EM response in geoelectrical structures with high contrast of con-
ductivity.

The method was carefully tested. We compared the numerical mod-
eling results with the exact analytical solution for a model of a con-
ductive sphere. Future work will be directed to application of the new
method for examining the complex models of geological targets with
the large conductivity contrast, typical for mineral exploration.
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