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SUMMARY
In this paper, I introduce a new mathematical model of the IP effect
based on the effective-medium theory, which provides a unified math-
ematical method to study heterogeneity, multi-phase structure, and po-
larizability of rocks. The geoelectrical parameters of a new composite
conductivity model are determined by the intrinsic petrophysical and
geometrical characteristics of composite media: mineralization and/or
fluid content of rocks, matrix composition, porosity, anisotropy, and
polarizability of formations. The new model of multi-phase conduc-
tive media can provide a quantitative tool for evaluation of the type
of mineralization, the volume content of different minerals, and/or hy-
drocarbon saturation, using electromagnetic data.

INTRODUCTION

The electromagnetic data observed in geophysical experiments, in gen-
eral, reflect two phenomena: 1) electromagnetic induction (EMI) in the
earth, and 2) induced polarization (IP) effect related to the relaxation
of polarized charges in rock formations. The induced polarization (IP)
effect is caused by the complex electrochemical reactions that accom-
pany current flow in the earth. These reactions take place in a het-
erogeneous medium representing the rock formations in the areas of
mineralization.

It is well known that the effective conductivity of rocks is not neces-
sarily a constant and real number but may vary with frequency and
be complex. There are several explanations for these properties of
effective conductivity. Most often they are explained by the physical-
chemical polarization effects of mineralized particles of the rock ma-
terial, and/or by the electrokinetic effects in the poroses of reservoirs
(Wait, 1959; Marshall and Madden, 1959; Luo and Zhang, 1998). This
phenomenon is usually explained as a surface polarization of the min-
eralized particles and the surface of the moisture-porous space, which
occurs under the influence of the external electromagnetic field. It is
manifested by accumulating electric charges on the surface of different
grains forming the rock.

In this paper, I introduce a new composite geoelectrical model of rock
formations based on the effective-medium approach, which generates
a conductivity model with parameters directly related by analytical ex-
pressions to the physical characteristics of the microstructure of rocks
and minerals (micro geometry and conductivity parameters). A new
composite geoelectrical model provides more realistic representation
of the complex rock formations than conventional unimodal conduc-
tivity models. It allows us to model the relationships between the phys-
ical characteristics of different types of rocks and minerals (e.g. con-
ductivities, grain sizes, porosity, anisotropy, and polarizability) and the
parameters of the relaxation model.

Effective medium approximation for composite media has been dis-
cussed in many publications (e. g. Norris et al., 1985; Kolundzija and
Djordjevic, 2002). However, the existing form of EMT does not allow
including the IP effect in the general model of the heterogeneous rocks,
In this paper I demonstrate that the EMT formalism can be used in the
theory of induced polarization (IP) effect as well. This new theory al-
lows us to develop a unified physical - mathematical model which can
be used for examining the EM effects in the complex rock formations
with different mineral structures and electrical properties. It takes into
account the mineralization and/or fluid content of the rocks, the matrix
composition, porosity, anisotropy, and polarizability of the formations.

PRINCIPLES OF THE EFFECTIVE-MEDIUM APPROACH

We represent a complex heterogeneous rock formation as a composite
model formed by a homogeneous host medium of a volume V with a
(complex) conductivity tensor σ̂0 (r) (where r is an observation point)
filled with grains of arbitrary shape and conductivity. A typical exam-
ple of a multi-phase model of the rock is shown in Figure 1.

Figure 1: A typical example of a multi-phase model of the rock com-
posed of a set of different types of randomly oriented grains.

In the present problem, the rock is composed of a set of N different
types of grains, the lth grain type having (complex) tensor conduc-
tivity σ̂l . The grains of the lth type have a volume fraction fl in the
medium and a particular shape and orientation. Therefore, the total
conductivity tensor of the model, σ̂ (r) , has the following distribu-
tion for volume fraction fl and volume fraction f0 =

(
1−∑N

l=1 fl
)
,

respectively:

σ̂ (r) =





σ̂0 for volume fraction f0 =
(
1−∑N

l=1 fl
)

σ̂l for volume fraction fl .
(1)

The polarizability effect is usually associated with surface polarization
of the coatings of the grains. The surface polarization is manifested by
accumulating electric charges on the surface of the grain. A double
layer of charges is created on the grain’s surface, which results in the
voltage drop at this surface (Wait, 1982). It has been shown experi-
mentally that for relatively small external electric fields used in elec-
trical exploration, the voltage drop, ∆u, is linear proportional to the
normal current flow at the surface of the particle, jn = (n · j). That is,
at the surface of the grain we have

∆u = k (n · j) , (2)

where n is a unit vector of the outer normal to the grain’s surface,
and k is a surface polarizability factor, which, in general, is a com-
plex frequency dependent function. This function is usually treated as
the interface impedance which characterizes the boundary between the
corresponding grain and surrounding host medium and describes the
interfacial or membrane polarization.

Following the standard logic of the EMT, we substitute a homogeneous
effective medium with the conductivity tensor σ̂e for the original het-
erogeneous composite model and subject it to a constant electric field,
Eb, equal to the average electric field in the original model:

Eb = 〈E〉= V−1
∫∫∫

V
E(r)dv. (3)

The effective conductivity is defined from the condition that the cur-
rent density distribution je in an effective medium is equal to the aver-
age current density distribution in the original model:

je = σ̂e ·Eb = σ̂e · 〈E〉= 〈σ̂ ·E〉 . (4)
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In order to find the effective conductivity tensor σ̂e, we represent the
given inhomogeneous composite model as a superposition of a homo-
geneous infinite background medium with the conductivity tensor σ̂b
and the anomalous conductivity ∆σ̂ (r) :

σ̂ (r) = σ̂b +∆σ̂ (r) . (5)

From (5) and (4), we have:

σ̂e ·Eb = σ̂b ·Eb + 〈∆σ̂ ·E〉 . (6)

Thus, we can see that the effective conductivity tensor, σ̂e, can be
found from equation (6), if one determines the average excess electric
current 〈∆σ̂ ·E〉 . The last problem can be solved using the integral
form of Maxwell’s equations.

Following the ideas of the QL approximation (Zhdanov, 2002), we can
represent the electric field as follows:

m̂
(
r′

)
= ∆σ̂

(
r′

) ·
(

Î+ λ̂
(
r′

))
. (7)

where m̂(r′) is material property tensor.

Note that exact representation (??) always exists because the corre-
sponding material property tensor can always be found for any given
fields E(r′) and Eb (Zhdanov, 2002).

Let us substitute (??) into (4), taking into account (5):

je = σ̂e ·Eb = σ̂b ·Eb + 〈m̂〉 ·Eb.

From the last formula we see that:

σ̂e = σ̂b + 〈m̂〉 . (8)

Thus, in order to determine the effective conductivity of the composite
polarized medium, we have to find the average value of the material
property tensor, 〈m̂〉 .

INTEGRAL REPRESENTATIONS FOR THE EM FIELD IN HET-
EROGENOUS POLARIZABLE MEDIA

One can represent the electric field E(r) generated in a homogeneous
anisotropic background medium by the currents induced within the
anomalous conductivity ∆σ̂ (r) using integral form of the Maxwell’s
equations:

E(r) = Eb +
∫∫∫

V
Ĝb

(
r | r′

) · [∆σ̂
(
r′

) ·E(
r′

)]
dv′, (9)

where V is the volume occupied by all inhomogeneities, and Ĝb (r | r′)
is a Green’s tensor for the homogeneous anisotropic full space.

We assume, however, that in addition to electrical heterogeneity, the
medium is characterized by polarizability effects which are manifested
by the surface polarization of the grains. Mathematically, the surface
polarization effect can be included in the general system of Maxwell’s
equations by adding the following boundary conditions on the surfaces
Sl of the grains (Luo and Zhang, 1998):

[
n×(

E+ (
r′

)−E−
(
r′

))]
Sl

=−[
n×∇′∆u

(
r′

)]
Sl

, (10)

where E+ designates the boundary value of electric field E(r) when
the observation point tends to the boundary Sl of the lth grain from the
inside of the grains, and E− if this point tends to the boundary from
the outside of the grains.

According to (2), we assume that the voltage drop at the surface of the
grain is proportional to the normal current:

∆u = k
(
n

(
r′

) · j(r′
))

= k
(
n

(
r′

) · σ̂ (
r′

) ·E(
r′

))
, (11)

where current j(r′) is taken for the internal side of the grain’s surface.

Therefore, electric field due to the surface polarization effect Ep (r)
can be represented as an electric field of a specified discontinuity (10)
(Zhdanov, 1988):

Ep (r) =
∫∫

S
Ĝb

(
r | r′

) ·n(
r′

)
kσb

(
n

(
r′

) · σ̂ (
r′

) ·E(
r′

))
ds′. (12)

where S stands for the superposition of all surfaces Sl of the entire

ensemble of grains, S = l = 1
N∪Sl , and vector n(r′) is directed outside

the grains.

Substituting expression (??) into formula (??), we can find the total
electric field caused by the effects of both the electromagnetic induc-
tion and induced polarization:

E(r) = Eb +
∫∫∫

V
Ĝb

(
r | r′

) ·
[
m̂

(
r′

) ·Eb
]

dv′+

∫∫

S
Ĝb

(
r | r′

) ·n(
r′

)(
n

(
r′

) · ξ̂ (
r′

) ·
[
m̂

(
r′

) ·Eb
])

ds′, (13)

where ξ̂ (r′) is equal to:

ξ̂
(
r′

)
= kσbσ̂

(
r′

) · (∆σ̂
(
r′

))−1
. (14)

As usual, we restrict our discussion to the low frequency approxima-
tion (quasi-static model of the field), where al/wl << 1; al is a char-
acteristic size of a grain of the lth type, and wl is a wavelength in that
grain. In this case, we can use a QL approximation for the integrals
over Vl and Sl and assume that the material property tensor is constant
in the grain with the volume Vl :

m̂
(
r′

)
= m̂l , , r′ ∈Vl . (15)

Note, however, that in the case of spherical or elliptical grains the ma-
terial property tensor is always constant within the spherical and/or
elliptical inclusions.

After some algebra, expression (13) can be written in the form:

E(r) = Eb +
∫∫∫

V
Ĝb

(
r | r′

) · q̂(
r′

)
dv′ ·Eb. (16)

In the last formula we use the following notations:

q̂
(
r′

)
=

[
Î+ p̂

(
r′

)] · m̂(
r′

)
, q̂l = q̂

(
r′

)
, r′ ∈Vl , (17)

p̂
(
r′

)
= Γ̂

−1
l · Λ̂l · ξ̂

(
r′

)
, p̂l = p̂

(
r′

)
, r′ ∈Vl , (18)

where q̂ and p̂ are volume and surface polarizability tensors, respec-
tively, and Γ̂l and Λ̂l are volume and surface depolarization tensors:

Γ̂l =
∫∫∫

Vl

Ĝb
(
r | r′

)
dv′, (19)

Λ̂l =
∫∫

Sl

Ĝb
(
r | r′

) ·n(
r′

)
n

(
r′

)
ds′. (20)

Equation (16) shows that the surface polarization effect introduced by
formula (12) can be represented by the equivalent volume polarization
effect and combined with the electromagnetic induction phenomenon
in one integral expression.
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EFFECTIVE CONDUCTIVITY OF THE HETEROGENEOUS
POLARIZABLE MEDIUM

In this section we will derive a constructive approach for determining
the effective conductivity of the heterogeneous polarizable medium.
We have established above that, in order to solve this problem, we
have to find the average value of the material property tensor, 〈m̂〉 .
According to equation (17) this tensor is related to the volume polar-
izability tensor q̂ by the following formula:

m̂ =
[
Î+ p̂

]−1
q̂. (21)

Therefore, in order to find m̂, we need to determine tensor q̂ first. We
introduce a “polarized” anomalous conductivity ∆σ̂ p (r) as:

∆σ̂ p (r) =
[
Î+ p̂(r)

]
·∆σ̂ (r) . (22)

Multiplying both sides of (16) by ∆σ̂ p (r) , we arrive at equation for
q̂ :

q̂(r) = ∆σ̂ p (r)+∆σ̂ p (r) ·
∫∫∫

V
Ĝb

(
r | r′

) · q̂(
r′

)
dv′. (23)

Solving equation (23), we determine the volume polarizability tensor,
q̂l , for every grain:

q̂l =
[
Î−∆σ̂ p

l · Γ̂l

]−1
·∆σ̂ p

l ·
[
Î− Γ̂l · 〈q̂〉

]
. (24)

Taking an average value of both sides of (24), and solving the resulting
equation for 〈q̂〉 , we finally find:

〈q̂〉=
〈[

Î−∆σ̂ p · Γ̂
]−1

〉−1 〈[
Î−∆σ̂ p · Γ̂

]−1
·∆σ̂ p

〉
. (25)

According to equation (17), the average value of the material property
tensor is:

〈m̂〉=
〈[

Î+ p̂
]−1

q̂
〉

. (26)

Substituting (26) into (8), we finally have:

σ̂e = σ̂b +
〈[

Î+ p̂
]−1

q̂
〉

=

σ̂b +
[
Î+ p̂0

]−1
q̂0 f0 +

N

∑
l=1

[
Î+ p̂l

]−1
q̂l fl . (27)

Formula (8) allows us to calculate the effective conductivity for any
multi-phase polarized composite medium. This formula can be treated
as an IP analog of the “average-t-matrix approximation” (ATA) of the
theory of electronic propagation in disordered binary alloys (Soven,
1967).

EFFECTIVE RESISTIVITY OF THE ISOTROPIC MEDIUM FILLED
WITH ISOTROPIC GRAINS OF ARBITRARY SHAPE: ANISOTROPY
EFFECT

We consider first a composite model with isotropic grains of arbitrary
shape. In this case all conductivities become scalar functions:

σ̂0 = Îσ0, ∆σ̂l = Î∆σl , ∆σ̂ p
l =

(
Î+ p̂l

)
∆σl

and, according to formula (18):

p̂l = ξl Γ̂
−1
l · Λ̂l , (28)

where ξl is equal to:

ξl = klσ0σl (∆σl)
−1 . (29)

Therefore, we can write:

σ̂e = σ̂b +
〈[

Î+ p̂
]−1

q̂
〉

=

σ̂e = Îσ0 +
N

∑
l=1

[
Î+ p̂l

]−1 [
Î−

(
Î+ p̂l

)
∆σl Γ̂l

]−1 [
Î+ p̂l

]
∆σl fl .

(30)

It can be demonstrated that if the grains have nonisometric shape (e.g.,
ellipsoidal shape) but random orientation (see Figure 1, averaging of
the tensor terms in expression (30) will result in scalarization.. There-
fore, the effective medium conductivity will become a scalar func-
tion. However, if all the grains are oriented in one specific direction
as shown in Figure 2, the effective conductivity of this medium will
become anisotropic. Thus, the effective conductivity may be a tensor
in spite of the fact that the background medium and all the grains are
electrically isotropic.

Figure 2: An example of electrically anisotropic media: a multi-phase
model of the rock is composed of a set of ellipsoidal grains oriented in
one direction.

FUNDAMENTAL GEMTIP MODEL: EFFECTIVE RESISTIV-
ITY OF THE ISOTROPIC MULTI-PHASE HETEROGENEOUS
MEDIUM FILLED WITH SPHERICAL INCLUSIONS

It was demonstrated in the pioneer work of Pelton (1977), that the
Cole-Cole relaxation model (Cole and Cole, 1941) can represent well
the typical complex conductivity of polarized rock formations. In the
framework of this model, the complex resistivity, ρ (ω) , is described
by the following well known expression:

ρ(ω) = ρ
(

1−η
(

1− 1
1+(iωτ)C

))
, (31)

where ρ is the DC resistivity [Ohm-m]; ω is the angular frequency
[rad/sec]; τ is the time parameter; η is the intrinsic chargeability; and
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C is the relaxation parameter. The dimensionless intrinsic chargeabil-
ity, η , characterizes the intensity of the IP effect.

One of the reasons for electrical conductivity relaxation in rocks is the
heterogeneity of formations containing microscopic inclusions of dif-
ferent minerals. In the pioneered work by Wait (1982, p.77), a simpli-
fied model of the composite medium as a loading of spherical conduct-
ing particles in a resistive background was introduced. The effective
conductivity for this model was determined based on the equations of
the static electric field. This model provided a foundation for the phe-
nomenological theory of induced electrical polarization.

In this section we will show that Wait’s model appears as a special
case of a GEMT model, developed in this paper. We consider, as an
example, an isotropic multi-phase composite model, with all model
parameters described by the scalar functions. A composite model is
formed by a homogeneous host medium of a volume V with a con-
ductivity σ0 filled with grains of spherical shape. We assume also that
we have a set of N different types of grains, the lth grain type having
radius al , conductivity σl , and surface polarizability kl . In this model,
both the volume and the surface depolarization tensors are constant
scalar tensors equal to:

Γ̂l = Γl Î =−Î
1

3σb
Î, Λ̂l = Λl Î =− 2

3σbal
Î. (32)

The corresponding tensor formulas for conductivities, tensors m̂ and
q̂, can be substituted by the scalar equations. For example, assum-
ing σb = σ0 and, therefore, ∆σ0 = 0, we obtain the following scalar
formula for the effective conductivity of the polarized inhomogeneous
medium:

σe = σ0 +
N

∑
l=1

[1− (1+ pl)∆σlΓl ]
−1 ∆σl fl . (33)

Substituting expression (32) for volume depolarization tensor, we fi-
nally find an expression for the effective resistivity of the composite
polarized medium:

ρe = ρ0

{
1+3

N

∑
l=1

[
fl

ρ0−ρl

2ρl +ρ0 +2kla−1
l

]}−1

, (34)

where ρ0 = 1/σ0, ρl = 1/σl .

It is well-known from the experimental data that the surface polariz-
ability factor is a complex function of frequency. Let us represent the
surface polarizability of the lth grain as:

kl = bl (iωτl)
−Cl , (35)

where:
bl = al (2ρl +ρ0)/2.

Thus, after some algebra, we have:

ρe = ρ0

{
1+

N

∑
l=1

[
flMl

[
1− 1

1+(iωτl)
Cl

]]}−1

, (36)

where
Ml = 3

ρ0−ρl

2ρl +ρ0
. (37)

In the case of a two-phase composite model, we have a homogeneous
host medium of a volume V with a (complex) resistivity ρ0 and spher-
ical inclusions with the resistivity ρ1. Formula (34) is simplified:

ρe = ρ0

{
1+ f1M1

[
1− 1

1+(iωτ1)
C1

]}−1

. (38)

The last formula is equivalent to the conventional Cole-Cole formula
(31) with the following parameters:

η =
3 f1 (ρ0−ρ1)

2ρ1 +ρ0 +3 f1 (ρ0−ρ1)
, (39)

and

τ =
[

a1

2α1
(2ρ1 +ρ0 +3 f1 (ρ0−ρ1))

]1/C

. (40)

CONCLUSIONS

We have developed a rigorous mathematical model of heterogeneous
conductive media based on the effective-medium approach. The new
generalized effective-medium theory provides a unified mathematical
model of heterogeneity, multi-phase structure, and polarizability of
rocks. The geoelectrical parameters of this model are determined by
the intrinsic petrophysical and geometrical characteristics of the com-
posite medium: the mineralization and/or fluid content of the rocks,
the matrix composition, porosity, anisotropy, and polarizability of the
formations. Therefore, in principle, the effective complex conductiv-
ity of this new model may serve as a basis for determining the intrin-
sic characteristic of the polarizable rock formation from the observed
electrical data, such as the volume content of the different minerals
and/or hydrocarbon saturation. As a result, the parameters of the new
conductivity model can be used for mineral discrimination and/or hy-
drocarbon saturation evaluation and monitoring using EM methods,
which is an important goal in mineral exploration (Zhdanov, 2005).
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