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SUMMARY

There is growing interest in developing a three-dimensional (3-D) in-
version and imaging technique from a single borehole. This prob-
lem can be solved by using tensor (multi-component) induction well-
logging – TIWL. This method was originally introduced to resolve
formation anisotropy. However, it was demonstrated in several publi-
cations that the TIWL instrument has sensitivity to 3-D conductivity
distribution in the borehole vicinity. In previous works we introduced
a method of fast 3-D imaging from a single borehole based on the
localized quasi-linear (LQL) approximation. In the current paper we
introduce a combined method of iterative LQL inversion of the TIWL
data and rigorous integral equation (IE)-based inversion. Addition of
the rigorous inversion stage improves the LQL inversion result signif-
icantly, and provides more accurate inversion error estimation. A new
algorithm of 3-D TIWL data interpretation is tested for several models
of typical 3-D structures located in the vicinity of the borehole.

INTRODUCTION

There is growing interest in developing an inversion and imaging tech-
nique from a single borehole. Technically, this problem can be solved
by using tensor (multi-component) induction well-logging – TIWL
(Kriegshauser et al., 2000; 2001). It was demonstrated in several pub-
lications that the TIWL instrument can be used both for studying the
resistivity anisotropy and for imaging 3-D structures in the borehole
vicinity (Zhdanov et al., 2001; 2004; Wang et al., 2003; Abubakar et
al., 2006 ).

In the current paper we are focusing on the problem of 3-D inversion
of the array TIWL data. It was shown by Portniaguine and Zhdanov
(1999), Alumbaugh and Wilt (2001), Cheryauka et al. (2001), and
in several other publications that the TIWL data can be used to study
the 3-D conductivity structure in the borehole vicinity. A method of
fast 3-D imaging from a single borehole based on the localized quasi-
linear (LQL) approximation was presented by Zhdanov et al. (2004).
We now consider a combined method of iterative LQL inversion of the
TIWL data and rigorous integral equation (IE)-based inversion.

A new algorithm of 3-D TIWL data interpretation is tested for several
models of typical 3-D structures located in the vicinity of the borehole.
One of the synthetic models considered in this paper is similar to the
oil-water contact model presented by Abubakar and Habashi (2006).

ITERATIVE INVERSION

The main difficulties in the modeling and interpretation of induction
logging data in 3-D inhomogeneous formations are related to the fact
that, for any new observation point, one has to solve the forward prob-
lem anew for the corresponding position of the moving transmitter.
In this situation, even forward modeling of the well-logging data over
inhomogeneous structures requires an enormous number of compu-
tations. The inversion of the logging data becomes even more time
consuming because it requires repeated forward modeling with the
updated model parameters. This situation is very similar to the one
we are dealing with in the case of airborne data interpretation with the
moving transmitter-receiver pairs located on the helicopter or airplane.

In order to overcome this difficulty, we apply to the inversion of the
induction well-logging data a method based on the iterative LQL in-

version (Zhdanov and Tartaras, 2002; Zhdanov, 2002), followed by
rigorous inversion. The LQL approximation is a powerful instrument
for fast 3-D modeling and inversion of multi-source electromagnetic
(EM) geophysical data. It has been successfully applied to the mod-
eling and inversion of borehole EM data (Zhdanov et al., 2004). This
approach can be used in borehole geophysics where fast 3-D imaging
is required. In the current paper we extend this approach by applying
the rigorous step of the iterative inversion.

We consider a 3-D geoelectrical model of rock formations with back-
ground conductivity σb and local inhomogeneity D with arbitrary spa-
tial variations of conductivity σ = σb + ∆σ . The background con-
ductivity is formed by a layered formation which may consist of an
arbitrary number of homogeneous layers with different conductivities
and thicknesses.

A tensor induction logging instrument detects three components of the
total magnetic field due to each of three transmitters (Zhdanov et al.,
2001). Our goal is to find the anomalous conductivity from the given
measurements of the anomalous magnetic field by the moving tri-axial
induction instrument.

The integral equation (IE) numerical modeling method allows us to
express the anomalous magnetic and electric fields, Ha and Ea, due
to a 3-D anomalous zone located outside a borehole in a layered back-
ground, as the integrals of a product of the anomalous conductivity and
the total electric field over the anomalous domain, D (Zhdanov, 2002):
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where GH and GE are the magnetic and electric Green’s linear oper-
ators for a background model. Note that the observed magnetic field
depends on the illuminating transmitter and the corresponding back-
ground field Eb

I (r), where I = 1,2, ...N is the index of the transmit-
ters. Equation (1), which connects the observed magnetic field at the
receivers with the electric field inside the anomalous domain, D, rep-
resents a field equation. Writing equation (2) for the points within the
anomalous domain, r j ∈ D, we arrive at a domain equation.

In the framework of the LQL approximation, we assume that the anom-
alous electric field inside the anomalous domain is linearly propor-
tional to the background electric field through an electrical reflectivity
tensor λ̂ :

Ea
I (r) = λ̂ (r) ·Eb

I (r) , I = 1,2, ...N, (3)

which is assumed to be source independent. Using the LQL approxi-
mation, we can obtain one linear inverse problem for the entire obser-
vation array. Further details of solving the inverse problem and finding
the anomalous conductivity can be found in Zhdanov (2002) and Zh-
danov et al. (2004).

We will denote the anomalous conductivity obtained by the LQL in-
version as ∆σLQL. We have demonstrated in the previous publications
(Zhdanov et al., 2004) that in many practical situations this conduc-
tivity delivers a correct image of the true geoelectrical structures sur-
rounding the borehole. However, one can treat the LQL-generated
conductivity as an initial model of the appropriate iterative inversion.
In the current paper we have extended this method to solve the field
equations within the modeling domain rigorously.
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After LQL inversion, we formulate IE for the electric field within the
modeling domain using the anomalous conductivity ∆σLQL found dur-

ing LQL inversion. Let Hpr(0)
I

(
r j

)
denote the predicted anomalous

magnetic fields in the receivers computed for the conductivity model
∆σLQL using IE formulas. We can estimate now how accurate our LQL
inversion is by computing the normalized error of the LQL approxima-
tion, εLQL:
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is a corresponding observed anomalous magnetic field.

We finish the inverse process if the error of the LQL inversion εLQL
is less than the given accuracy level ε . Otherwise, we can apply the
inversion iteratively.

The rigorous stage of the inversion algorithm is based on the iterative
solution of the field and domain equations (1) and (2). Determining
accurate predicted data once the electric field is known is a straightfor-
ward process requiring only matrix multiplication. Rapidly calculating
the true domain electric field is more challenging. We use the updated
field E(0)

I (r) to find an updated conductivity ∆σ (1) (r) from the field
equation (1), relating the anomalous conductivity and the observed
magnetic data:
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Note that inverse problem (5) is an ill-posed problem. The solution
of this problem requires application of the corresponding regulariza-
tion methods (Tikhonov and Arsenin, 1977, Zhdanov, 2002). The tra-
ditional inversion algorithms are based on the smooth regularization,
which has difficulties, however, in describing the sharp geoelectrical
boundaries between different geological formations, e.g., in inversion
for a local resistive or conductive target with sharp boundaries between
the resistor/conductor and the host rocks. In our rigorous inversion al-
gorithm we use focusing regularization based on a special type of fo-
cusing stabilizing functionals, the so-called minimum support or min-
imum gradient support functionals (Portniaguine and Zhdanov, 1999,
Zhdanov, 2002). We solve inverse problem (5) using the re-weighted
regularized conjugate gradient (RRCG) minimization in logarithmic
model parameter space, which can incorporate both the smooth regu-
larized inversion, generating a smooth image of the inverted resistivity,
and a focusing regularized inversion, producing a sharp focused image
of the geoelectrical target.

In the next step, we can employ the updated conductivity ∆σ (1) for up-
dating electric field E(1) (r) , using the corresponding domain equation
(2) for the electric field:
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Again, we rigorously solve equations (6) for E(1)
I (r) using the contrac-

tion operator method (Hursán and Zhdanov, 2002). For the model with
the conductivity ∆σ (1) (r) , we can calculate the predicted anomalous
magnetic field Hpr(1)
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based on the equation:
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In step (k), we find an updated conductivity ∆σ (k) (r) and updated field
Hpr(k)

I . The accuracy of this solution is estimated by an error:
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The iterative inversion process continues until we reach the required
level of the misfit.

NUMERICAL EXAMPLE: AN OIL-WATER CONTACT MODEL

As a modeling example we present the model similar to the oil-water
contact model considered by Abubakar and Habashy (2006). We use a
homogeneous half-space with 0.05 S/m conductivity as a background
for this model. The formation consists of a deviated water layer with
conductivity of 0.1 S/m and a water-oil contact region. The conduc-
tivity of the oil is 0.01 S/m and of the water it is 0.1 S/m. Figure 1
represents a vertical section through the anomalous conductivity dis-
tribution in the true the oil-water contact model, and Figure 2 is a 3-D
view of the same model.

Figure 1: A vertical section through the anomalous conductivity dis-
tribution of the oil-water contact model.

Figure 2: 3-D view of the anomalous conductivity distribution of the
true oil-water contact model.

The TIWL data are collected along a vertical borehole. The transmitter
locations are shown in Figures 1 and 2 by stars. The TIWL instrument
is formed by a set of three mutually orthogonal receivers and six sets of
three receivers located at 38, 53, 68, 100, 137, and 183 cm away from
the transmitter. The operating frequency is 20 kHz. The synthetic ob-
served data are computed by the IE method with MGQL approxima-
tion (Ueda and Zhdanov, 2006). The observed data are contaminated
by 5% random noise. An example of the observed and predicted data
plots is shown in Figure 3 for component Hz

x .

We used a 4×4×10m3 inversion domain surrounding the borehole. It
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Figure 3: The real and imaginary parts of the Hz
x component recorded

by the TIWL instrument for the oil-water contact model.

was discretized into 10,240 cubic cells with a side of 0.25 m. First we
ran 10 iterations of the LQL inversion, and then the rigorous stage of
the iterative inversion. The iterative inversion with a rigorous update
consists of three electric field updates with 10 inversion iterations after
each update. The convergence plot is shown in Figure 4. One can see
that, after updating the electric field the LQL inversion error reaches
almost 70%. The vertical cross-section of the anomalous conductiv-
ity distribution obtained by the LQL inversion is shown in Figure 5.
Figure 6 represents a vertical cross-section of the final model obtained
after the rigorous stage of the inversion. A 3-D view of the same rig-
orous inversion result can be found in Figure 7. One can see that these
images represent well the original model, and using the rigorous stage
of inversion improves the result compared to the LQL inversion. The
inversion took approximately four hours on a dual-core dual Opteron
2.0 GHz (4 CPUs total) Linux PC.

Figure 4: Plot of the normalized errors versus iteration number for the
the oil-water contact model inversion.

CONCLUSION

In this paper we developed a new technique for rigorous 3-D inversion
of TIWL data from a single borehole. We have extended the origi-
nal LQL method for the solution of a full 3-D inverse problem. Our
extension is based on adding a rigorous stage of inversion with the ap-
propriate accuracy control of the inversion results. The new volumetric

Figure 5: A vertical section of the anomalous conductivity distribution
for the oil-water contact model obtained by LQL inversion.

Figure 6: A vertical section of the anomalous conductivity distribu-
tion for the oil-water contact model obtained after rigorous iterative
inversion.

Figure 7: A 3-D view of the anomalous conductivity distribution for
the oil-water contact model obtained after rigorous inversion.
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nonparametric inversion method was carefully tested on a set of real-
istic 3-D geoelectrical models, typical for an HC reservoir study. The
numerical modeling and inversion results have shown that the itera-
tive regularized inversion can be effectively used for 3-D EM imaging
from a single borehole.
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