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SUMMARY

Inversion of MT data is an inherently nonunique and unstable prob-
lem due to the ill-posedness of the electromagnetic inverse problem.
A variety of models may fit the data very well. To overcome this ill-
posed nature of the inverse problem, we use Tikhonov’s regularization
in which the ill-posed problem is replaced by a family of well-posed
problems. We also analyze the behavior of the Tikhonov regulariza-
tion parameter to find out its optimal value for a typical model of a
hydrocarbon reservoir in a marine environment. We have compared
two regularization techniques: rigorous and adaptive regularizations.
The results of this numerical study demonstrate that adaptive regu-
larization provides practically the same inverse image as the rigorous
regularization, while reducing the computational time dramatically.

INTRODUCTION

Controlled-source electromagnetic (CSEM) and magnetotelluric (MT)
techniques have been used as complementary tools in oil and gas ex-
ploration in the deep sea environment, to overcome the ambiguity
of the seismic reflection method resulting from low impedance con-
trasts between a hydrocarbon-bearing formation and its host sediments
(Hoversten et al., 1998). Seismic methods provide the geometry and
layer structure of a formation. Marine CSEM and marine MT help
determine whether the fluids imaged in the seismic sections are hydro-
carbons or water (Eidesmo et al., 2002).

In this paper we introduce a method of 3-D inversion of MT data,
based on the integral equation (IE) method. We use the regularized
conjugate gradient method (RRCG) for the nonlinear MT inversion.
The main distinguishing feature of our algorithm is application of the
effective form of the Frechet derivative calculation based on the inte-
gral formulas.

We also carry out a model study using synthetic marine MT data to
test the significance of our selection of an optimal Tikhonov regular-
ization parameter (α). We consider a geological model comprising a
sea-bottom gas hydrate layer underlain by a petroleum reservoir, both
embedded in sea sediments. The synthetic data were generated by the
integral equation (IE) modeling code INTEM3D, based on the Con-
traction Integral Equation (CIE) method (Hursan and Zhdanov, 2002).

TIKHONOV REGULARIZATION IN THE SOLUTION OF MT
INVERSE PROBLEMS

The interpretation of magnetotelluric data is based on the calculation
of the transfer functions between the horizontal components of the
electric and magnetic fields, using the magnetotelluric impedance ma-
trix:

Z =
[

Zxx Zxy
Zyx Zyy

]
, (1)

We can describe the forward MT problem by an operator equation:

d = A(m), (2)

where d stands for a data vector formed by the components of the
MT impedance, A is the nonlinear forward operator symbolizing the
governing equations of the MT modeling problem, and m = ∆σ is the

anomalous conductivity within the targeted domain.. We call equa-
tion (2) an impedance equation. The impedance equation is ill-posed,
i.e., the solution can be nonunique and unstable. The conventional
way of solving ill-posed inverse problems, according to the regular-
ization theory (Tikhonov and Arsenin, 1977, Zhdanov, 2002), is based
on minimization of the Tikhonov parametric functional:

P(m) = ϕ(m)+αS(m) = min, (3)

where ϕ(m) = ||A(m)−d||2 is the misfit functional between the pre-
dicted data A(m) and the observed data d, S (m) is a stabilizing func-
tional, and α is a regularization parameter. The optimal value of αopt
is determined from the misfit condition,

ϕ
(
mαopt

)
= δ

2, (4)

where δ is the noise level of the data.

A REGULARIZED CONJUGATE GRADIENT METHOD BASED
ON THE INTEGRAL EQUATION FORMULATION OF THE
FRECHET DERIVATIVE COMPUTATION

The minimization problem (3) can be solved using any gradient type
technique. We use the regularized conjugate gradient (RCG) method.
Implementation details of this algorithm are specified in Zhdanov and
Hursán (2000) and Zhdanov (2002). The key element of the RCG
algorithm is the computation of the gradient direction, ln for every
iteration n:

ln = F∗
nRn,

where Rn = A(mn)−d is a residual vector at the current iteration, and
F∗

n is the adjoint matrix for the Frechet derivative.

The corresponding expression for the adjoint Fréchet derivative oper-
ator of the residual fields is given by the following integral formulas
(Zhdanov, 2002):

F∗
nRn = Re

[
E∗

n(r) ·
∫ ∫

S
ĜT∗

En (r′|r) ·Rn(r′) ds′
]
, (5)

where ĜEn (r′|r) is the electric Green’s tensor computed at the nth it-
eration for the conductivity distribution, σn(r) = σb(r)+∆σn(r).

The last expression can be written using the EM migration theory as
(Zhdanov, 2002; ):

F∗
nrn = Re [E∗

n(r) ·Em∗
n (r)] = Re [En(r) ·Em

n (r)] , (6)

where Em
n is the migration electric field:

Em
n (r) =

∫ ∫
S

ĜEn (r|r
′) ·R∗

n(r
′) ds′. (7)

Once the forward operator with the corresponding Fréchet matrices
and the minimization scheme are implemented, an inversion can be
successfully performed.
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SELECTION OF THE OPTIMAL REGULARIZATION PARAM-
ETER

The regularization parameter α describes the trade-off between the
best-fitting and most reasonable stabilization.The critical question in
the regularized solution of the inverse problem is the selection of the
optimal regularization parameter α . The solution of this problem can
be based on the following consideration.

Let us assume that data dδ are observed with some noise, dδ = dt +
δd, where dt is the true solution of the problem and the level of the
errors in the observed data is equal to δ :

‖dδ −dt‖ ≤ δ . (8)

For any number αk we can find an element mak,minimizing Pαk(m), calculate
the misfit ‖A(mαk0)−d‖2 . According to the regularization theory, the
optimal value of the parameter α is the number αopt , for which we
have (Zhdanov, 2002):

ϕ
(
mαopt

)
=

∥∥A(mαopt )−d
∥∥2 = δ

2. (9)

A numerical method for determining the parameter αopt can be de-
scribed as follows. Let us consider the progression of numbers:

αk = α1qk−1, k = 1,2, ...,n; 0 < q < 1. (10)

It is proven in the regularization theory that the misfit functional ϕ
(
mαk

)
,

is a monotonically decreasing function of αk. We solve the problem of
the parametric functional minimization (3) several times for different
values of the regularization parameter αk , selected according to the
rule (10), until the misfit condition (9) is met. This approach is based
on rigorous application of the principles of the regularization theory.
However, it requires multiple regularized solutions of the inverse prob-
lem for the different values of the regularization parameter α.

In practice, another approach is widely used. It is based on application
of the iterative algorithms of the parametric functional minimization.
For example, in this paper we use the re-weighted regularized conju-
gate gradient (RRCG) method, referenced above. In the framework
of the iterative approach, for any subsequent iteration we update the
value of the regularization parameter αk according to the progression
(10). The iterative inversion is terminated when the misfit condition is
reached:

ϕ
(
mαk0

)
=

∥∥A(mαk0 )−d
∥∥2 = δ

2. (11)

This approach is called the adaptive regularization. It requires just one
inversion run but with variable values of α.

In the model study presented in the next section, we will compare the
method of rigorous regularization with the adaptive regularization as
applied to the MT inverse problem solution.

SYNTHETIC MARINE MAGNETOTELLURIC DATA

We consider the scenario of a sea-bottom gas hydrate-bearing layer un-
derlain by a petroleum reservoir. As part of the numerical experiment,
we conduct a synthetic MT survey in deep seawater. The set-up con-
sists of receivers located five meters above the sea floor with a receiver
separation of 500 m. The background geoelectrical model consists of
a seawater layer with a thickness of 2000 m and a resistivity of 0.3
Ohm-m, underlain by a homogeneous sediment layer with a thickness
of 5000 m and a resistivity of 1 Ohm-m (Figure 1). The gas hydrate
layer is underlain by a petroleum reservoir with 100 Ohm-m resistivity

and dimensions of 5,000 m x 10,000 m x 100 m, embedded at a depth
1000 m below the sea floor. Figures 1 and 2 show a vertical cross-
section of Model 1 and a 3-D image of the true model respectively.

Figure 1: Vertical section of a model showing a rectangular gas hydrate
reservoir underlain by a petroleum reservoir located in sea bottom sed-
iments. The gas hydrate layer is located at a depth of 200 m below the
sea bottom, has a resistivity of 3 Ohm-m, a thickness 100 m, and a hor-
izontal extent of 2000 m x 2000 m. The petroleum reservoir is located
at a depth of 1000 m below the sea bottom and has a resistivity of 100
Ohm-m, a thickness of 100 m, and a horizontal extent of 5,000 m x
10,000 m. The resistivities of the seawater, the sea sediments, and the
homogeneous basement are 0.3 Ohm-m, 1.0 Ohm-m, and 30 Ohm-m
respectively.

The synthetic MT data were generated using the INTEM3D integral
forward modeling code (Hursan and Zhdanov, 2002) for seven differ-
ent frequencies : 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 Hz.The synthetic data
were contaminated by 1% random noise.

Following the traditional approach used in a practical MT survey, we
have calculated the synthetic observed apparent resistivities and phases
based on two off-diagonal elements of the magnetotelluric tensor, Zyx and
Zxy, at each observation point.

INVERSION OF SYNTHETIC MARINE MAGNETOTELLURIC
DATA

We have conducted a numerical study of two regularized inversion
techniques for this model. In order to speed up the computations, the
MT data were inverted using the fast version of IE inversion code
based on the quasi-analytical (QA) approximation (Zhdanov et al.,
2000b; Zhdanov and Hursán, G., 2000)

Rigorous regularization

We begin with the rigorous regularization. The inversion was carried
out at several values of the regularization parameter α varying from
10−3 to 25. At a particular value of α,we computed the misfit, para-
metric, and stabilizer functionals. The optimal value of α is obtained
when the misfit reaches the level of error (misfit condition) in the data.
Figure 3 shows the behavior of the misfit, parametric, and stabilizing
functionals corresponding to a particular value of α, and 0.02 is the
optimal value of α selected as per the condition of misfit. The total
computational time required for each inversion at a particular value of
α was about 17 to 20 minutes on a 3.40 GHz PC.
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Figure 2: 3-D image of the true model of a gas hydrate reservoir un-
derlain by a petroleum reservoir located in sea-bottom sediments.

Figure 3: The plot illustrating the principles of optimal regularization
parameter selection.

In order to better understand the behavior of the Tikhonov regulariza-
tion parameter α, we conducted an L-curve analysis (Hansen, 1998). It
is based on plotting for all possible α the curve of the misfit functional,
ϕ(mα ), versus the stabilizing functional, S(mα ). The L-curve shown
in Figure 4 illustrates the trade-off between the best fit (minimizing a
misfit) and most reasonable stabilization (minimizing a stabilizer).

Figure 4: Model 1. L-curve plot for selection of the quasi-optimal
regularization parameter α. The red star dot shows the point where the
curvature of the curve is greatest, corresponding to the quasi-optimal
value of the regularization parameter α.

Figures 5 and 6 show a horizontal cross-section at a depth of 2275 m
and 3075 m for a 3-D smooth inversion result at four different values
of α . One can see in these figures that the image of the gas hydrate
layer and petroleum reservoir is more diffused at α values of 0.001,
0.05, and 1. In the horizontal cross-section, at an optimal value of α =
0.02, the image is very clear and recoverable. Therefore, the Tikhonov
regularization parameter balances a trade-off between the misfit and
the stabilization and provides a stable solution in any situation. The
corresponding final volume image of Model 1 obtained by inversion
at α value of 0.02 is shown in 7. One can see from the figures that
the complete image of the model is not recovered at α values that are
too small and too large. The inverse resistivity image which is closest
to the true model was obtained for optimal α = 0.02. This synthetic
model study, therefore, shows the importance of the selection of regu-
larization parameter in the inversion.

Adaptive regularization

In the second numerical experiment, we have carried out the inver-
sion of the same model by a adaptive regularization scheme in which
α values are updated in the process of the iterative inversion. We run
only 70 iterations to produce a smooth image of the inverse model. The
iterative process is terminated when the relative norm of the difference
between the observed and predicted data reaches the noise level in the
observed data. Figure 8 represents the 3-D volume inverse image of
Model 1. The inverse image provides a 3-D model which is very close
to the true conductivity model. The computational time for this inver-
sion was about 18 to 20 minutes on a single PC with 3.40 GHz CPU.

CONCLUSIONS

In this paper, we have analyzed the importance of the optimal selection
of the Tikhonov regularization parameter to get an accurate and stable
solution of the inverse problem in any situation. The synthetic study
provides a stable inversion result for a gas hydrate and petroleum reser-
voir at an optimal value of the regularization parameter. We have com-
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Figure 5: Model 1. A horizontal cross-section of the 3-D smooth in-
version result at a depth of 2275 m for different values of the α .

Figure 6: Model 1. A horizontal cross-section of the 3-D smooth in-
version result at a depth of 3075 m for different values of the α .

Figure 7: Model 1. A 3-D volume image of the QA inversion result at
α . = 0.02

Figure 8: Model 1. 3-D volume image obtained by a QA adaptive
regularization inversion method

pared two regularization techniques: 1) rigorous regularization based
on multiple inversions of the observed data with the different regular-
ization parameter α, and

2) adaptive regularization with updating of the regularization parame-
ter in the process of the iterative inversion.

The results of this numerical study demonstrate that adaptive regu-
larization provides practically the same inverse image as the rigorous
regularization, while reducing the computational time dramatically.

In summary, the results of our research demonstrate that the sea-bottom
MT survey can be a powerful tool for offshore petroleum exploration.
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