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SUMMARY

Helicopter electromagnetic surveying is a standard reconnaissance
method in the mining industry. Typical surveys may cover tens to
hundreds of square kilometers with hundreds of thousands of multi-
frequency soundings. Interpreting this volume of data is problematic.
Yet each sounding location is sensitive to an area of less than 1 km2,
not the entire survey area. We suggest an inversion scheme, based on
the integral equation method, in which the entire survey is inverted si-
multaneously with each transmitter-receiver pair being sensitive only
to a relatively small area around each sounding location. We show
that this method is as accurate as standard integral equation inversion
methods, yet it inverts the data much faster. The technique is able to
invert entire HEM surveys with over 500,000 inversion cells and tens
of thousands of transmitter positions in less than one day on a single
PC.

INTRODUCTION

Helicopter electromagnetic (HEM) exploration is a very powerful tool
for surveying large areas rapidly and relatively inexpensively. Sur-
veys may cover hundreds of line-kilometers with multi-component and
multi-frequency soundings every few meters. This enables collecting
huge amounts of data about the electrical properties of the earth. How-
ever, interpreting the massive amounts of data gathered poses a signifi-
cant challenge. Any 3D inversion must contain hundreds of thousands
of cells to cover the entire domain. Computationally, the problem is
exacerbated by the fact that, for each sounding point, a new electric
field is introduced into the earth. This requires solving an enormous
number of equations simultaneously for a full rigorous 3D inversion.

It is widely known that airborne data include a relatively limited foot-
print area (Reid et al., 2006; Beamish, 2003; Liu and Becker, 1990).
These papers have been devoted to exploring these footprint sizes for
survey design, resolution, and applicability of 1D inversion algorithms.
We use a similar idea in the context of 3D inversion.

We extend two existing HEM inversion methods to include a moving
footprint, i.e., allowing sensitivity of model cells only within the air-
borne footprint of a transmitter-receiver pair. This effectively creates
sparse inverse and forward operators to enable practical inversion of
full frequency-domain surveys. The algorithms this technique is ap-
plied to are the localized quasi-linear inversion (LQL) (Zhdanov and
Tartaras, 2002) and a rigorous integral equation method (Cox and Zh-
danov, 2006).

METHODS

Integral equation

In the integral equation formulation, we separate the fields into a nor-
mal part, associated with a layered earth background, and an anoma-
lous part, which corresponds to some anomalous conductivity distri-
bution (∆σ) inside an anomalous domain:

H = Ha +Hb, (1)

E = Ea +Eb. (2)

For a known survey configuration and a known layered earth con-
ductivity, one can compute the normal fields analytically. In HEM,

equation (1) corresponds to a field equation, or the response of the re-
ceivers. Equation (2) is the electric field inside the anomalous domain.
The integral equations for the anomalous fields are a function of the
total field, the layered earth conductivity, and the anomalous conduc-
tivity, and are given by:

Ha =
∫ ∫ ∫

D
ĜH[∆σE]dV ≈GH [∆σE], (3)

Ea =
∫ ∫ ∫

D
ĜE[∆σE]dV ≈GE [∆σE]. (4)

where Ĝ(H|E) are the Green’s functions for the magnetic or electric
fields and G(H|E) are the corresponding Green’s tensors.

While it is well known how to solve this nonlinear equation, a rigor-
ous solution for the anomalous electric field is very time-consuming
to find. In the inverse problem, which we will solve here, this is
the computational bottleneck. Several approximations have been pro-
posed to speed this solution, including quasi-analytic (QA) (Zhdanov
and Hursan, 2000), localized non-linear (LN) (Habashy et al., 1993),
and quasi-linear (QL) (Zhdanov and Fang, 1996). In this paper, we fol-
low the localized quasi-linear (LQL) approximation (Zhdanov and Tar-
taras, 2002) for our approximate solution, and a full rigorous method
(Cox and Zhdanov, 2006)

Localized quasi-linear background

The LQL assumption states that the anomalous electric field at any
given location in the anomalous domain is linearly proportional to the
background field at that location through a reflectivity tensor, λ . This
reflectivity tensor is independent of the source location, so each loca-
tion has a unique reflectivity tensor even though the survey may con-
tains thousands of transmitter positions. The LQL approximation is
given by:

Ea
I ≈ λ̂Eb

I , (5)

where I is the transmitter index. This greatly simplifies and speeds
computation of the anomalous fields. The inversion formulation based
on this assumption is given as follows.

Using equation (5), we can see that the total electric field is given by:

EI = Eb
I + λ̂Eb

I = (̂I+ λ̂ )Eb
I . (6)

Following Zhdanov and Tartaras (2002), we introduce a new tensor
function:

m̂(r) = ∆σLQL (r)
(

Î+ λ̂ (r)
)

, (7)

which we call a modified material property tensor.

Substituting equation (6) into equation (3), and using (7), we can write:

Ha
I
(
r j
)

= GH

[
m̂(r) ·Eb

I (r)
]
. (8)

We can solve the linear equation (8) with respect to m̂(r) , which is
source independent.

The reflectivity tensor, λ̂ (r), is determined based on condition (9),which
constitutes an important step of the LQL inversion:∥∥∥λ̂ (r)−GE [m̂(r)]

∥∥∥
L2(D)

= min . (9)
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Knowing λ̂ (r) and m̂(r) , we can find ∆σ (r) from equation (7) by
using the least-squares method (Zhdanov and Tartaras, 2002).

We can rewrite equation (8) using matrix notations:

d = Gm. (10)

Here m is the vector-column of the modified material property tensor
m̂, d is the vector-column of the field data, and G is the matrix of the
linear operator defined by equation (8).

Rigorous inversion background

The rigorous inversion method (Cox and Zhdanov, 2006) begins with
the results of the LQL method to obtain a starting conductivity distri-
bution and electric field. The initial electric field is found from:

E(0)
I = GE

[
m̂ ·Eb

I

]
+Eb

I . (11)

Equation (3) is then inverted for a new conductivity distribution.

Ha
I = GH [∆σ

(1) ·E(0)
I ] (12)

This process of updating the electric field (equation [13]) and inverting
for a new conductivity distribution (equation [14]) continues until the
desired misfit is reached:

E(n)
I = GE

[
∆σ

(n) ·E(n−1)
I

]
+Eb

I (13)

Ha
I = GH

[
∆σ

(n+1) ·E(n)
I

]
. (14)

Equation (14) can be reduced to the notation of equation (10), where
Ha

I is equivalent to d, G is GH ·E(n)
I , and ∆σ (n+1) are the model pa-

rameters.

We use the re-weighted regularized conjugate gradient method to solve
the system of the linear equations (10), which is based on the Tikhonov
regularization technique (Zhdanov, 2002).

Modified forward and inverse operator

Consider the inversion domain shown in Figure 1. In the original for-
mulation, every sounding location would be sensitive to every cell in
the inversion domain.

If one examines the original forward operator (equation [10]), it can
be expressed in indicial notation as:

di =
Nc

∑
j=1

Gi jm j. (15)

where Nc is the total number of cells in the domain. This summation
includes all the cells, (j), in the inversion domain for each transmitter
position, (i). But most of these cells do not contribute to the measured
response and we do not need to include them in the summation. Re-
ferring to Figure 1, we now include only the cells in the shaded region
for each transmitter. To accomplish this, equation (15) is modified to
be, for our example:

di = ∑Gi jm j (16)

where:

Figure 1: Example inversion domain. The cells are numbered for clar-
ity and correspond to the text. The domain for the original inverse op-
erator for each transmitter-receiver pairs is the entire domain shown.
The windowed domain includes only the shaded regions for each of
the two stations shown. There is a transmitter-receiver pair located
above cell 15 and another above cell 23. These are called 1 and 2,
respectively.

j =
{

8,9,10,14,15,16,20,21,22 if i = 1;
16,17,18,22,23,24,28,29,30 if i = 2

with the numbers given for j corresponding to the cells shown in Fig-
ure 1.

Using the same logic, the inversion scheme may also be modified. In
this manner, we do not take into account cells outside the footprint by
simply excluding them from the summation. Thus, there is no need to
calculate the Green’s body-to-receiver tensors and background fields
for these cells, and we avoid much of the computation in both forward
modeling and inversion. Note that in this example domain, there would
not be adequate coverage to find conductivity values for every cell.
In a true survey, each cell would be within the footprint of multiple
sounding locations.

In addition, one of the most time-consuming and memory-expensive
parts of the inversion is the pre-computation of the body-to-body Green’s
tensors. Since the background model is horizontally layered, the body-
to-body Green’s tensors are horizontally invariant. Hence, these Green’s
tensors are identical for each sounding location, and only one set needs
to be computed for a single transmitter position within a single foot-
print. These are then translated over the entire domain, vastly speeding
up the computation and increasing the memory efficiency.

RESULTS

Synthetic example

Two conductive and two resistive bodies of varying size and depth
have been placed in a homogenous half-space to test the moving foot-
print inversion algorithm. Flight lines were synthesized at an elevation
of 30 meters with sounding locations every 50 m. The 16 flight lines
were spaced 100 m apart. The synthetic model is shown in Figure 2.
The survey is shown overlaid on the domain. Four frequencies were
used: 900 and 7200 Hz Coplanar and 1000 and 5500 Hz Coaxial. Each
channel contained 632 sounding locations, giving 2528 total stations.
No noise was added to the data.
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The inversion domain contained 70,000 total cells, each a cube 25 m
on a side. In this example we used a 500 m x 500 m footprint for every
transmitter position.

The rigorous inversion results using the moving footprint method are
shown in Figure 3; note that it was not possible to invert the domain us-
ing the rigorous inversion without using a moving footprint. In this in-
version the depth of the bodies are well constrained and the conductiv-
ities are close to the true values. Both a windowed and non-windowed
LQL inversion were also performed on this synthetic model. The win-
dowing did not affect the inversion results, but the windowed inversion
was 10 times faster than than the standard method.

Figure 2: Locations of synthetic anomalies with flight lines overlaid.

We show that there is a large time and memory savings from “win-
dowing” the inversion, even in this relatively small inversion area of 3
km2.

Field Example

Survey and geologic background

The field data set is an AeroDat survey flown with five frequencies:
865, 4175, and 33000 Hz Coplanar and 935 and 4600 Hz Coaxial. This
survey originally contained approximately 44,000 sounding locations
per channel, for an approximate spacing of 3 m along line and 200 m
line spacing. For this test, we have taken every 10th data point. The
survey was taken over a high sulfidation gold system in Mexico. Due
to the highly silicified alteration areas surrounding the economic gold,
the targets in this area are resistive.

Inversion results

We start with an isolated area to test the mechanics of the inversion
algorithm. This area is shown in the box in Figure 4. The goal is to
show that we can get accurate inversion results for this known geo-
logic structure, then extend the inversion domain to the entire survey
and show the inversion result in the isolated area does not change when
using a moving footprint inversion. The inversion was run using ap-
proximately 100 sounding locations per channel, for a total of 500
soundings. The inversion domain was 2.8 km2 with a depth range of
0 to 150 m. The inversion cells were 25 m cubes creating a total of

Figure 3: Rigorous inversion result. Notice the depths to the bodies
are well resolved, as is the conductivity. This moving footprint rigor-
ous inversion took the same time as the standard LQL inversion.

Figure 4: Field data from the 865 Hz inphase coplanar channel. The
white dots are sounding locations. Every 10t h location has been taken
for a total of about 4,400 soundings per channel. The black box indi-
cates an isolated area with known geology.
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30,000 cells. The known target is a resistive target between 0.2 and
0.5 mS/m embedded in a conductive background of around 10 mS/m.
The target outcrops and extends to a depth of 80-100 m (A. Foley, per-
sonal communication, 2006). Figure 5 shows this structure to be in the
correct position.

Figure 5: Results of standard LQL inversion over a known structure.
This target is known to outcrop and extend to a depth of 80-100m.

The inversion domain is now extended to include the entire survey area
(approximately 36 km2). The inversion included about 20,000 sound-
ings and over 500,000 inversion cells, each a cube 25 m on a side. The
results of this inversion are presented in Figure 6, and one can still see
the known structure we presented earlier, centered about x=4500 and
y=4500 in this inversion. The inversion took approximately 10 hours
on a 2.2 GHz AMD 64-bit processor with 4 GB of RAM.

Figure 6: The results of inverting the entire AeroDat survey area. The
known structure is still clearly resolved near x=4500, y=4500.

Figure 7 shows a detailed comparison of the inversion results. The
results of the two inversions are very similar. The differences arrive
from the fact that the second inversion incorporated vastly more data,
all of which was included in the global error. Since the inversions
were stopped when the global error level in the inversion was reached,
the fit of the data points over the known target differed between the
inversions.

Figure 7: Panel (a) shows the results of standard inversion at a 30 m
depth slice. Panel (b) shows a small part of the windowed inversion
that extended over the entire domain.

CONCLUSIONS

Windowing the HEM inversion to include only areas near each individ-
ual transmitter-receiver pair significantly speeds up inversion, while
retaining the accuracy of the original LQL inversion method. With
the synthetic model, we have shown this method may be applied to the
rigorous inversion method. We have applied this windowing technique
to both synthetic and field data: both show accurately recovered mod-
els. The field data covered an area in excess of 36 km2 and contained
over 500,000 cells. Over 20,000 stations were included, and the 3D
inversion of this data took less than 10 hours on a single PC. Three-
dimensional inversion of entire frequency domain helicopter EM data
sets is now possible with the techniques presented.

ACKNOWLEDGMENTS

The authors acknowledge the support of the University of Utah Con-
sortium for Electromagnetic Modeling and Inversion (CEMI), which
includes BAE Systems, Baker Atlas Logging Services, BGP China
National Petroleum Corporation, BHP BillitonWorld Exploration Inc.,
British Petroleum, Centre for Integrated Petroleum Research, EMGS,
ENI S.p.A., ExxonMobil Upstream Research Company, INCO Explo-
ration, Information Systems Laboratories, MTEM, Newmont Mining
Co., Norsk Hydro, OHM, Petrobras, Rio Tinto - Kennecott, Rock-
source, Russian Research Center Kurchatov Institute, Schlumberger,
Shell International Exploration and Production Inc., Statoil, Sumitomo
Metal Mining Co., and Zonge Engineering and Research Organization.

We are thankful to Newmont Mining Co. and Dr. Perry Eaton for pro-
viding the real geophysical data and for permission to publish the re-
sults.



Large Scale 3D inversion

REFERENCES

Beamish, D., 2003, Airborne EM footprints: Geophysical Prospecting,
51, 49–60.

Cox, L. H. and M. S. Zhdanov, 2006, Rapid and rigorous 3D inver-
sion of airborne electromagnetic data: SEG Technical Program Ex-
panded Abstracts, 25, 795–799.

Habashy, T. M., R. W. Groom, and B. R. Spies, 1993, Beyond the
Born and Rytov approximations - a nonlinear approach to electro-
magnetic scattering: JGR, 98, 1759–1775.

Liu, G. and A. Becker, 1990, Two-dimensional mapping of sea-ice
keels with airborne electromagnetics: Geophysics, 55, 239–248.

Reid, J. E., A. Pfaffling, and J. Vrbancich, 2006, Airborne elec-
tromagnetic footprints in 1D earths: Geophysics, 71, G63–G72.
10.1190/1.2187756.

Zhdanov, M. and G. Hursan, 2000, 3D electromagnetic inversion
based on quasi-analytical approximation: Inverse Problems, 16,
1297–1322.

Zhdanov, M. S., 2002, Geophysical inverse theory and regularization
problems, volume 36 of Methods in Geochemistry and Geophysics:
Elsevier.

Zhdanov, M. S. and S. Fang, 1996, Quasi-linear approximation in 3-D
EM modeling: Geophysics, 61, 646–665.

Zhdanov, M. S. and E. Tartaras, 2002, Three-dimensional inversion of
multitransmitter electromagnetic data based on the localized quasi-
linear approximation: Geophysics Journal International, 148, 506–
519.


