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Summary 

 

We introduce 3D Cauchy-type integrals that extend the 

classic theory of Cauchy integrals to 3D potential fields.  In 

particular, we show how we are able to evaluate the gravity 

and gravity gradiometry responses of 3D bodies as surface 

integrals over arbitrary volumes that may have spatially 

variable densities.  This entirely new method of 3D spatial-

domain modeling is particularly suited to the terrain 

correction of airborne gravity gradiometry (AGG) data.  

The surface integrals are evaluated numerically on a 

topographically conforming grid with a resolution equal to 

the digital elevation model (DEM). Thus, our method 

directly avoids issues related to prismatic discretization of 

the digital elevation model, and their associated volume 

integration. We demonstrate this with a model study for 

AGG data simulated for a 1 Eö/√Hz system over the 

Kauring test site in Western Australia. 

 

Introduction 

 

Zhdanov (1984, 1988) introduced the theory of Cauchy-

type integrals for 3D potential fields. Unfortunately, this 

interesting and fundamental area of potential field theory 

has since been dormant.  In this paper, we revive the study 

of 3D Cauchy-type integrals for potential fields.  In 

particular, we have developed an entirely new method for 

the 3D modeling of gravity fields and their gradients as 

surface integrals over arbitrary volumes that may have 

spatially variable densities.  An obvious application of this 

modeling is for improved terrain correction of airborne 

gravity gradiometry (AGG) data, which is a means of 

reducing the dynamic range of AGG data so as to reveal the 

more subtle geological responses present. A number of 

factors  influences the validity of terrain corrections, and 

these include the accuracy of the aircraft position, 

resolution of the DEM, the way the terrain is approximated, 

and the methods used to filter the predicted responses to 

match the AGG’s acquisition system and post-acquisition 

processing (e.g., Kass and Li, 2008; Dransfield and Zeng, 

2009; Davis et al., 2011). These factors are particularly 

important for terrain corrections to sub-Eö levels, 

particularly as the next generation of 1 Eö/√Hz AGG 

systems are now being developed and tested.  By using 3D 

Cauchy-type integrals, we can evaluate the terrain response 

as a surface integral over the DEM. This surface integration 

ensures accurate representation of the terrain response. 

Moreover, the method directly avoids issues related to 

prismatic discretization of the digital elevation model, and 

their associated volume integration problems. 

 

 
 

Figure 1. Schematic of the 3D terrain model, D, contained 

within a surface, Γ, described by any arbitrary function 

h(x,y), and a lower plane P. The density distribution within 

the terrain may be spatially variable. 

 

3D Cauchy-type integrals and their properties 

 

The concept of a 3D Cauchy-type integral for potential 

fields was introduced by Zhdanov (1984, 1988), and is 

represented by the following expression: 
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where S is come closed surface,    ( ) is some vector 

function specified on S and continuous on S, and   is a unit 

vector of the normal to S directed outside the domain D, 

bounded by the surface S.  Function   is called a vector 

density of the Cauchy-type integral   (   ).  It has been 

shown that everywhere outside S, the vector function    

satisfies to the following equations: 
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where prime denotes a differentiation over vector variable 

  . Therefore, vector field   (   ) is Laplacian and its 

scalar components are harmonic functions everywhere 

outside the surface S. In the special case where  ( ) 
represents the boundary values on S of the gradient of a 

function harmonic inside domain D, we have the following 

Cauchy integral formula:  
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where CD is an infinite domain complementing the closed 

domain,  ̅     , with respect to the whole space.  The 

remarkable property of the 3D Cauchy-type integral is that 

in the 2D case, equation (1) is reduced to the classical 

Cauchy integral of the theory of the functions of complex 

variable.  One important formula from the classical theory 

of the functions of complex variables is the Pompei 

formula, which solves the boundary value problem for 

arbitrary function of the complex variable. Following 

Zhdanov (1984, 1988) and Davies et al. (1989), one can 

formulate a 3D analog of Pompei formula for a potential 

field, F, defined within a domain,  : 
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where the vector field satisfies the equations:       
   .  The derivation of the Pompei formula (4) is based 

on the Gauss theorem, and provides a solution of the 

boundary-value problem for an arbitrary potential field.   

 

Representing the gravity field and its gradients in terms 

of 3D Cauchy-type integrals 

 

The gravity field satisfies the following equations:  

 

                           ,   (5) 

 

where   is the universal gravitational constant, and    is a 

constant density of a 3D volume of masses within some 

domain,  . We assume that the vector field,  , has the 

form: 
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Substituting equations (6) into the 3D Pompei formula (4): 
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The volume integral in the left-hand part of equation (7) is 

(with the negative sign) the gravity field of a domain,  : 
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expressed in the well-known form of a volume integral. At 

the same time, it is useful to express the same gravity field 

in terms of a surface integral over the domain,  .  

Thus, we arrive at a representation of the gravity field in 

terms of a 3D Cauchy-type integral: 
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In a case where      , we have: 
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Similar expressions can be derived for the tensor of gravity 

gradient,   . 
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where gradient of vector                     dyadic 

product of the del  operator and the corresponding vector.  

In the above, we have assumed that the density inside the 

domain   is constant. However, as discussed by Zhdanov 

(1988), the density of the domain can be any arbitrary 

continuous function,  ( ). This means we are able to 

modify the above (and following) equations to incorporate 

any of the analytic density-depth functions in use for 

describing sedimentary basins, such as linear, quadratic, 

parabolic, exponential, hyperbolic and polynomial 

functions.  

 

Cauchy-type representation of gravity gradients for 

terrain with uniform density 

 

As illustrated in Figure 1, we can consider a model of a 

domain D that is infinitely extended in the horizontal 

directions, and bound by an upper surface  that describes 

the DEM as    (   )    , and bound by a horizontal 

plane     , where     (   )    and:  

 

 (   )           √            (12) 

 

where    is a constant.  The gravity field, g, of the model 

can be represented by the Cauchy-type integral:  
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Similar expressions can be derived for the tensor of gravity 

gradient: 
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We can discretize the Cauchy-type integrals for the gravity 

field and its gradients by dividing the integration plane into 

a rectangular mesh , where each cell is divided into two 

triangles which form the elementary cells (Figure 2).   

© 2012 SEG DOI  http://dx.doi.org/10.1190/segam2012-0744.1
SEG Las Vegas 2012 Annual Meeting Page 2



3D Cauchy-type integrals 

 

The significance of this method is that we can model the 

gravity and gravity gradient responses of any 3D domain 

with the geometric resolution and accuracy of its DEM. 

Moreover, the 3D modeling of the domain is expressed as a 

surface integral which may be rapidly and accurately 

evaluated. It is important to emphasize that, the prisms with 

triangulated tops (Figure 2) provides much more accurate 

representation of the shape of the terrain surface than a 

combination of the rectangular prisms used by the 

conventional terrain correction methods. Note also that, the 

standard practice of increasing discretization as a function 

of distance from the observation point can be easily 

incorporated into the surface integration.  

 

 
 

Figure 2. Triangular discretization of the density contrast 

surface: (a) schematic view of triangular mesh grid; (b) 

each rectangular cell of the mesh  is divided into two 

triangles, which form the elementary cells     (left 

triangular) and     (right triangular); (c) 3D view of two 

neighbored prisms with triangulated tops,     and    . 

 

Case study – Kauring 

 

With funding from the Western Australian government’s 

2009 Exploration Initiative Scheme and a matching 

contribution from Rio Tinto Exploration (RTX), the 

Geological Survey of Western Australia (GSWA) and 

Geoscience Australia (GA) have established the Kauring 

test site for testing and calibrating airborne gravity and 

gravity gradiometry systems (Howard et al., 2010).  The 

site is approximately 100 km east of Perth in Western 

Australia, is free of low level flight restrictions, has 

minimal human infrastructure, and hosts gentle rolling 

topography of granitic terrain. The test site allows 

interested individuals or organizations to compare airborne 

data to detailed ground gravity data, or products derived 

from these data.  It will also allow for the direct comparison 

of different airborne gravity and gravity gradiometry 

systems over the same gravity features where all other 

variables, besides the measuring system are defined and 

constant. Digital elevation models have been released for 

10 m LiDAR, and 80 m SRTM.   

 

To facilitate a comparison of 3D inversion methods during 

2011, RTX developed a synthetic airborne gravity 

gradiometry dataset of 4687 stations (Grujic, 2012). The 

3D density model contained a variety of relevant geological 

targets representative of discrete tunnels, nickel sulfide 

deposits, intrusive dikes, and kimberlites, embedded in a 

uniform 2.67 g/cm3 terrain so that the wavelength, 

magnitude and symmetry of the data were varied. The data 

were simulated along a realistic drape with a mean terrain 

clearance of 80 m over the Kauring test site.  Noise 

representative of a 1 Eö/√Hz (at 1 Hz) instrument was then 

added to the simulated free-air gravity gradiometry data.  

The data for the bodies were simulated by RTX using the 

commercial software package, ModelVision. Terrain 

response was simulated by RTX using concentric square 

zones around each observation.  The cell size of the terrain 

information quadrupled for each consecutive zone, starting 

with a square of 800 m side length and 10 m cell size in the 

innermost zone.  The size of the zones doubled for each 

consecutive zone. For example, the second zone around 

each station was a 1600 m wide square with a 40 m cell 

size. Six zones that follow this pattern were created around 

each observation. The grids were used to triangularly facet 

the terrain into vertical prisms with a uniform density of 

2.67 g/cm3 that extend to a zero level datum. Outside the 

available terrain information, an infinite slab with a height 

equal to the mean terrain elevation was modeled and added 

to the responses of the prisms. 

 

In the limited space of this expanded abstract, we only 

show the Gzz responses. Figure 3 shows the simulated free-

air Gzz response due to the bodies contaminated with 1 

Eö/√Hz (at 1 Hz) noise. We terrain corrected the free-air 

Gzz data for a 2.67 g/cm3 terrain density using a 10 m cell 

discretization of the merged LiDAR and SRTM digital 

elevation models to a square of 10 km side length centered 

about each station (Figure 4). This resulted in the DEM 

being approximated by approximately two million 

topographically conforming triangular cells. Figure 5 

shows the noise-free Gzz response due to the bodies (as 

calculated with ModelVision) with no terrain effects.  

Differences between our terrain corrections and the true 

responses of the prisms can be attributed to noise and 

prism-based by which the terrain response was calculated 

(Figure 6). We observed averaged differences of 0.34 Eo, 

0.28 Eo, and 0.32 Eo for the Gzz, Gxx, and Gyy responses, 

respectively. In our current implementation of the software, 

each of the above terrain corrections for all 4,687 stations 

and approximately two million triangular cells required 7 

hours on a desktop PC running Windows 7 with a single 
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2.8 GHz processor with 8 GB RAM. This may be further 

optimized by increasing the discretization as a function of 

distance per standard practice with volume integral 

methods. We also note that the 3D Cauchy-type integrals 

are linear, and thus lend themselves to large-scale 

parallelization. This is the subject of our ongoing software 

development.  

 

Conclusions 

 

We have introduced the theory of Cauchy integral analogs 

that extend the principles of classic Cauchy integral theory 

to 3D potential fields.  In particular, we have demonstrated 

how we are able to calculate the gravity and gravity 

gradiometry responses as surface integrals over arbitrary 

volumes that may have spatially variable densities.  This is 

particularly suited to the terrain correction of AGG data 

that have a very large number of observation stations, have 

variable altitudes, and have DEMs produced from merged 

LiDAR and SRTM data. This method avoids prismatic 

discretization of the DEMs and computations associated 

with their volume integration as per standard practice. We 

have demonstrated this with a model study for a 1 Eö/√Hz 

AGG system from the Kauring test site in Western 

Australia.  We note that, our ongoing research relates to 

implementing 3D Cauchy-type integrals for the 

geologically constrained 3D joint inversion of gravity and 

magnetic data for applications such as depth to basement 

and base of salt. 
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Figure 3. Synthetic free-air Gzz data for the Kauring test 

site.  

 
Figure 4. Terrain corrected Gzz data for the Kauring test 

site.    

 
Figure 5. Noise free terrain corrected Gzz data for the 

Kauring test site.  

 
Figure 6. The average difference between the terrain 

correction (Figure 4) and true model (Figure 5) is 0.34 Eö. 
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