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Summary 

 

The geological interpretation of gravity and gravity 

gradiometry data is a very challenging problem. 3D 

inversion represents the only practical tool for the 

quantitative interpretation of gravity gradiometry data. 

However, 3D inversion is a complicated and time-

consuming procedure that is very dependent on the a priori 

model and constraints used. 3D migration gives a rapid 

imaging of a geological target that can be used for 

interpretation or as an a priori model for subsequent 3D 

regularized inversion. This method is based on a direct 

integral transformation of the observed gravity gradients into 

a subsurface density distribution. Moreover, migration can 

be applied iteratively to get more accurate subsurface density 

distribution, and the results are comparable to those obtained 

from regularized inversion. We present a model study and a 

case study for the 3D iterative imaging of FTG gravity 

gradiometry data from Nordkapp Basin, Barents Sea. 

 

Introduction 

 

Density distribution provides important information about 

subsurface geological formations. Generating 3D density 

distribution from gravity and/or gravity gradiometry data is a 

challenging problem. Rigorous 3D inversion of gravity 

gradiometry data to 3D density models is usually considered 

as the only practical tool for quantitative interpretation. A 

number of publications have discussed 3D inversion with 

smooth (e.g., Li, 2001), and focusing (e.g., Zhdanov et al., 

2004) regularization. However, the interpretation workflow 

for 3D inversion can be complicated and time consuming 

because it is dependent on a priori models and other 

geological constraints. 

 

In this paper, we present an alternative approach, one which 

is based on and extends the idea of potential field migration 

as originally introduced by Zhdanov (2002). Mathematically, 

migration is described by an action of the adjoint operator on 

the observed data. This concept has long been developed for 

seismic wave fields (e.g., Schneider, 1978; Berkhout, 1980; 

Claerbout, 1985), and has also been developed for 

electromagnetic fields (e.g., Wan and Zhdanov, 2005; 

Zhdanov, 1988, 2002, 2009a, b), where the adjoint operators 

manifest themselves as the (backward) propagation of 

seismic or electromagnetic fields in reverse time. When 

applied to potential fields, migration manifests itself as a 

special form of downward continuation of the potential field 

and/or its gradients (Zhdanov et al., 2010, 2011). A 

downward continuation is applied to the migration field, 

which is obtained by relocating the sources of the observed 

field into the upper half-space as mirror images of the true 

sources. Contrary to conventional downward continuation of 

the potential field, downward continuation of the migration 

field is away from the mirror images of the sources. 

Therefore, migration is a stable transform, similar to upward 

continuation. At the same time, the migration field does 

contain remnant information about the original source 

distribution, which is why it can be used for subsurface 

imaging. Furthermore, the adjoint operators may be applied 

iteratively in such a manner that iterative potential field 

migration is equivalent to regularized inversion. In this paper 

we develop the principles of the iterative migration. We 

present a model study and a case study for the 3D iterative 

imaging of FTG gravity gradiometry data from Nordkapp 

Basin, Barents Sea. 

 

Gravity gradiometry data 
 

The gravity field, g, is given by the following well known 

integral formula: ���� = �∭ ���′� �
��|�
��| ��′�  ,                      (1) 

where � is the universal gravitational constant, and � is the 

anomalous density distribution within a domain D. 

 

The second spatial derivatives of the gravity potential ����, ��� = ����������	,				�, � = �, �, �,                   (2) 

form a symmetric gravity tensor: 

�� = ��  � ! � "�! �!! �""�" �"! �""# .                                 (3) 

The expressions for the gravity tensor components can be 

calculated as follows: ���$�∭ ���′� �
��|�
��|%����& − ����′�  ,        (4) 

where the kernels, %��, are equal to 
 

%����& − �� = (3 ����&�����&�|�
��|� 	,				� ≠ �
3 ����&��|�
��|� − 1					,			� = �           (5) 

 

Adjoint operators for gravity gradiometry inversion 
 

Let us consider a problem of the inversion of gravity 

gradiometry data using gradient-type methods. Assume that 

we have observed some gravity field ���,-.��� on the 

observational surface S, and the domain D is located in the 

lower half-space. The problem is to determine the density 

distribution, ���′�. For simplicity, we first ignore the ill-

posedness of gravity inversion and reduce the inversion 

problem to a minimization of the misfit functional between 

the observed and predicted data: /��� = 0��� − ���,-.01 = 234 .                (6) 
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Iterative migration of gravity and gravity gradiometry data 

To solve the minimization problem (6), we can find the 

direction of steepest ascent at the point � of the model space 

M: 5��� = 6∗86��9 ��� − ���,-.: = 6∗8��� − ���,-.: ,           (7) 

where the star * denotes the adjoint operator. 

 

The adjoint operator A* for the gravity gradient problem is 

equal to (Zhdanov et al., 2011): 6��∗ �;� = �∬ =���|�
��|%����& − ���>?  .           (8) 

Therefore, according to equation (7), the direction of 

steepest ascent is equal to: 5��� = �∬ 9@A����9@ABCD���|�
��| %����& − ���>?  ,    (9) 

where ������ is the predicted gravity gradient  field on the 

observation surface. 

 

Migration of gravity and gravity tensor fields and 3D 

density imaging 

 
Following Zhdanov (2002) and Zhdanov et al. (2011), the 

migration gravity field, ��E���, is introduced as a result of 

application of the adjoint gravity operator, 6�∗ , to the 

observed component of the gravity field: ��E��� = 6�∗ �� ,                                       (10) 

 

In a similar way, we can introduce a migration gravity 

tensor field ���E ��� and use the following notations for the 

components of this tensor field: ���E ��� = 6��∗ ���                                    (11) 

where the adjoint operators, 6��∗  applied to some function ;���, are given by equations (8). 

 

We should note, however, that the direct migration of the 

observed gravity and/or gravity tensor fields does not 

produce an adequate image of the subsurface density 

distribution because the migration fields rapidly attenuate 

with the depth. In order to image the sources of the gravity 

fields at their correct locations, one should apply an 

appropriate spatial weighting operator to the migration 

fields. This weighting operator is constructed based on the 

integrated sensitivity of the data to the density. 
 ��E��� = F��GE∗GE��H6�∗ �� = F�I��1�����E��� ,   (12) 
 

where unknown coefficient F� can be determined by a linear 

line search and the linear weighting operator GE is equal to 

the square root of the integrated sensitivity of the gravity 

field (Zhdanov, et al, 2011). 

 

In a similar way, we can introduce a migration density based 

on the gravity tensor migration: 
 ���E ��� = F���GE∗GE��H6��∗ ��� = F��I���1������E ���	  (13) 
 

where F�� can be determined by a linear line search and the 

linear weighting operator GE is equal to the square root of 

the integrated sensitivity of the gravity field (Zhdanov, et al, 

2011). 

 

Equation (12) is called a migration density, ��E��� and 

expression (13) is called a tensor field migration density. It 

is proportional to the magnitude of the weighted migration 

field, ��E��� or tensor migration field ���E ���. Thus, 

migration transformation provides a stable algorithm for 

calculating migration density.  

 

Iterative migration 

 
Equations (12) and (13) produce a migration image of the 

density distribution in the lower half-space. However, a 

better quality migration image can be produced by repeating 

the migration process iteratively. We begin with the 

migration of the observed gravity and/or gravity tensor field 

data and obtaining the density distribution by migration 

imaging. In order to evaluate the accuracy of our migration 

imaging, we apply a forward modeling operator and 

compute a residual between the observed and predicted data 

for the given density model. If the residual is smaller than 

the prescribed accuracy level, we use the migration image as 

a final density model. In the case where the residual is not 

small enough, we apply the migration to the residual field 

and produce the density variation, J�H , to the original 

density model using the same transformation, as we have 

applied to the original migration field: �1 = �H + J�H = �H − FH�GE∗GE��H5H ,       (14) 

where 5H stands for the migration image obtained by residual 

field migration, equation (7). 

 

A general scheme of the iterative migration can be described 

by the following formula: �LMH = �L + J�L = �L − FL�GE∗GE��H5L ,      (15) 

The iterative migration is terminated when the residual field 

becomes smaller than the required accuracy level of the data 

fitting. 

 

Similar to iterative inversion, iterative migration can be 

implemented with regularization (Zhdanov, 2002). This also 

allows us to apply both the smooth and focusing stabilizers. 

In this case, equation (15) can be re-written as follows: �LMH = �L + J�L = �L − FL�GE∗GE��H5LN ,      (16) 5LN = 5L + O8�L − �PQR: , 
where O is the regularization parameter; 5L is a gradient 

direction on the n-th iteration, computed using formulas (9), 

and 5LN is the regularized gradient direction on the n-th 

iteration. 

 

Model study 

 
We have examined the effectiveness of the iterative 

migration using synthetic gravity and gravity gradiometry 

data computed for a simple model, shown in Figure 1. For 

testing the algorithm, the "observed data" generated for this 
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Iterative migration of gravity and gravity gradiometry data 

model were contaminated by 5% random noise. The model 

consists of two rectangular bodies with sides of 450m, 

550m, and 450m in the �, �	and � directions, respectively. 

The top surface of one body is at a depth of 150 m, while the 

top surface of another body is at a depth of 250 m below the 

ground surface. Both bodies have a density of 1 g/cm3. 

Figure 1 shows the plane view and a vertical section across 

the bodies. The observation surface is 30 m above the 

ground. The area of observation extends from -1150 m to 

1150 m in the � direction and from -750 m to 750 m along 

the � direction, with a 25 m interval between the data points. 

There are 93 x 61 = 5673 data points for each component of 

the gravity field and gravity gradiometry tensor. 

 

 
Figure 1   A model of two rectangular bodies with a density of 1 

g/cm3. Panel (a): a plane view of the model; panel (b): a vertical 

cross section of the model. 

 

Figure 2 shows a comparison of the observed and predicted 

data for �"" component at profile � = 0 m computed based 

on the migration images of the density distribution. The solid 

blue line shows the observed field; the dashed red line 

presents the field computed from the density model obtained 

by migration only; the dotted green line and the dotted 

purple line show the fields computed from the density model 

obtained by iterative migration with smooth and focusing 

stabilizers, respectively. One can see that even for the noisy 

observed data, results obtained with both smooth and 

focusing stabilizers produce the predicted data that fit the 

observed data well. 
 

 
Figure 2     Comparison of the observed and predicted data for the gUU component at profile y = 0 m computed based on the 

migration images of the density distribution.  

 
Figure 3    Vertical sections of the density models obtained by 

migration only (panel a); by iterative migration with smooth 

stabilizer (panel b) and by iterative migration with focusing 

stabilizer (panel c) of gUU component. 

 

Figure 3 presents vertical sections of the density models 

obtained by migration only (panel a); by iterative migration 

with the smooth stabilizer (panel b) and by iterative 

migration with the focusing stabilizer (panel c) of �"" 

component. All data fitting is within 5%, which is the noise 

level. The solid white line shows the true model location. 

One can see that the iterative migration shows a better image 

of the true model than one time migration, and the iterative 

migration with the focusing stabilizer produces the best 

image. 

 

Case study: Migration of FTG data at the Nordkapp 

Basin 

 

The Nordkapp basin is a deep, narrow salt basin in the 

southern Barents Sea. The southwestern part of the 

Nordkapp Basin (Obelix survey location) is a narrow, 

northeast-trending sub-basin 150 km long and 25-50 km 

wide. It contains some 17 salt diapirs located along the 

basin's axis (Figure 4). The northeastern part is a wider East-

trending sub-basin about 200 km long and 50-70 km wide. 

More than 16 salt diapirs occur west of the 32° E meridian. 

The goal of the FTG survey was to provide additional 

information for evaluation of these complex salt overhang 

geometries. The targets of this study were the salt diapirs G2 

and F2 (see Figure 5).  A typical density of the base tertiary 

rocks in the area of investigation is within 2.30-2.38 g/cm3. 
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Iterative migration of gravity and gravity gradiometry data 

Salt diapirs are characterized usually by negative density 

anomalies. 

 

The maps of the �"" component of the full tensor 

gradiometry (FTG) data are given in Figure 5.  

 

 
Figure 4   Simplified structural map of the Nordkapp Basin showing 

salt diapirs and main fault zones. Black = sub-crop of diapirs at or 

near Pliocene-Pleistocene unconformity. 

 

 
Figure 5   Maps of the gUU component of the full tensor gradiometry 

(FTG). The white line shows the location of the A-A' profiles. 

 

We ran the migration for the �"" component of the gravity 

tensor. We have selected a modeling domain 28 km (east-

west) x 17 km (north-south) and extended at a depth of 6 

km. This volume of migration was discretized in 281 x 171 x 

59=2,835,009 cells; the cell size is 100 m x 100 m x 100 m. 

Thus, the selected modeling domain may represent a salt 

base or a deeper source down to approximately 6 km for salt 

structures G2 and F2. All iterative migrations were run until 

the misfit between the predicted and observed data reached 

5%.  

 
Figure 6 shows a vertical section of the iterative migration 

result along the profile A-A'. The upper panel in Figure 6 

shows the observed data (solid blue line) vs predicted data 

(dashed red line), while the lower panel shows the density 

image along the A-A' profile, obtained by iterative 

migration. For comparison, we present in Figures 7 the 3D 

inversion results for the same data from Wan and Zhdanov, 

2008. One can see that the migration and inversion results 

are almost the same. One can clearly see the salt diapir G2 in 

these images. 

 
Figure 6   Top panel: observed and predicted data for the migration 

result. Bottom panel: a vertical section of 3D iterative migration 

result for the gUU component along the A-A' profile. 

 

 
Figure 7    A vertical section of the 3D inversion result for the gUU 

component along the A-A' profile. 

 

Conclusion 

 

Potential field migration is a direct integral transformation of 

the gravity field and /or gradients into 3D density 

distributions. Iterative migration is practically equivalent to 

the basic inversion algorithm with one very important 

difference: the density perturbation at each iteration is 

determined by migration transformation of the 

corresponding gravity or gravity gradient residual field data, 

which is similar to upward continuation. This is significant 

because the last transformation is very well developed in the 

theory of the potential field interpretation. In other words, 

the iterative migration makes it possible to use the powerful 

and stable technique of upward continuation for the solution 

of the inverse problem. 

 

As demonstrated with our Nordkapp Basin FTG case 

studies, the results of 3D potential field iterative migration 

are similar to those obtained from 3D regularized inversion. 
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