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Summary 
 
Conventional 3D magnetic inversion methods are based on 
the assumption that there is no remanent magnetization, 
and the inversion is run for magnetic susceptibility only. 
However, this approach ignores the situation where the 
direction of magnetization of the rocks is different from the 
direction of the induced magnetic field. This situation 
happens in a case of remanent magnetization, typical for 
geological structures such as kimberlites, dykes, iron-rich 
ultramafic pegmatitoids (IRUP), platinum group element 
(PGE) reefs, and banded iron formations (BIF). This paper 
presents a novel method of inversion of magnetic data for 
the scalar components of the magnetization vector. The 
method is based on a new magnetic forward modeling 
algorithm, which uses triangular prisms of arbitrary shape 
in order to achieve a more accurate approximation of the 
topography and complex geological structures. The 
inversion also includes Gramian constraints in order to 
obtain a robust solution of otherwise ill-posed magnetic 
inverse problems. The method was successfully tested on a 
number of synthetic models of the magnetized bodies. The 
results of inversion of airborne TMI data demonstrate how 
inversion for the magnetization vector with Gramian 
constraints can improve the subsurface imaging of 
kimberlites. 
 
Introduction 
 
Most 3D inversion methods in use today have been 
developed for recovering a 3D magnetic susceptibility 
model from the magnetic vector field, 𝐇𝐇, or from the total 
magnetic intensity (TMI) data, 𝐓𝐓, assuming that there is no 
remanent magnetization, that self-demagnetization effects 
are negligible, and that the magnetic susceptibility is 
isotropic (e.g., Li and Oldenburg, 1996, 2003; Portniaguine 
and Zhdanov, 2002; Zhdanov et al., 2011; Čuma et al., 
2012). This implies that the magnetization is linearly 
proportional to the inducing magnetic field. 
We should note, however, that, conventional susceptibility 
inversion ignores the effects of self-demagnetization, 
anisotropy, and remanent magnetization. To include both 
induced and remanent magnetization, we need to model on 
the magnetization vector rather than the scalar 
susceptibility. A variation of this approach was used by 
Lelièvre and Oldenburg (2009) to invert TMI data. This 
enables explicit inversion of the magnetization direction 
and amplitude, rather than just the magnetization amplitude 
only (e.g., Li et al., 2010). Recently, Ellis et al., (2012) 
reported further progress in the solution of this problem; 
they introduced a technique for regularized inversion for 

the magnetization vector. From the magnetization vector, 
one can recover information about both the remanent and 
induced magnetization. However, the practical difficulties 
of this inversion are related to the fact that, in this case one 
has to determine three unknown components of the 
magnetization vector within each cell instead of one 
unknown value of susceptibility, which increases practical 
nonuniqueness associated with this inverse problem. 
In order to overcome these difficulties, we propose using a 
Gramian stabilizer in the framework of the regularized 
inversion for the magnetization vector, which was 
originally introduced by Zhdanov et al. (2012) for joint 
inversion of multimodal geophysical data. Another 
improvement in our forward modeling and inversion 
method is related to the use of an arbitrarily shaped 
triangular prism in order to gain a more accurate 
approximation of the topography and complex geological 
structures. 
We use regularized inversion with focusing stabilization, as 
this recovers models with sharper boundaries and higher 
contrasts than regularized inversion with smooth 
stabilization does. The method is illustrated by synthetic 
model study and inversion of the TMI data collected in the 
Northwest Territories of Canada for kimberlite exploration.  
 
Forward modeling of the magnetic fields using 
rectangular cells 
 
The anomalous magnetic field induced by the magnetic 
source distributed within volume 𝑉𝑉 with the magnetization 
vector 𝐈𝐈(𝐫𝐫), can be represented by the following integral 
formula: 

Δ𝐇𝐇(𝐫𝐫′) = ∇′� 𝐈𝐈(𝐫𝐫) �
1

|𝐫𝐫 − 𝐫𝐫′|�𝑑𝑑𝑑𝑑,
𝑉𝑉

          (1) 

where 𝐫𝐫 is the radius vector of a point within the volume V; 
and 𝐫𝐫′ is the vector of an observation point.  
In order to include both induced and remanent 
magnetization, we represent the magnetization vector  as 
follows: 

𝐈𝐈(𝐫𝐫) = 𝐻𝐻0𝐌𝐌(𝐫𝐫),                               (2) 
where 𝐌𝐌 has two parts: induced, 𝐌𝐌𝑖𝑖𝑖𝑖𝑖𝑖, and remnant, 𝐌𝐌𝑟𝑟𝑟𝑟𝑟𝑟, 
magnetizations, respectively: 

𝐌𝐌(𝐫𝐫) = 𝐌𝐌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐌𝐌𝑟𝑟𝑟𝑟𝑟𝑟.                           (3) 
For modeling the magnetic data, we discretize the 3D earth 
model into a grid of 𝑁𝑁𝑟𝑟  cells, each of constant 
magnetization vector.  
One can compute the volume integral in equation (1) in 
closed form, as it was done in Bhattacharyya (1980) for 
magnetic susceptibility. We can also evaluate the volume 
integral numerically with sufficient accuracy using single 
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point Gaussian integration with pulse basis functions 
provided the depth to the center of the cell exceeds twice 
the dimension of the cell. In airborne magnetic surveys, the 
total magnetic intensity field is measured, which can be 
computed approximately using single point Gaussian 
integration as follows (Zhdanov, 2002): 

Δ𝑇𝑇𝑘𝑘(𝐫𝐫′) = � 𝑓𝑓(𝐫𝐫 − 𝐫𝐫′,𝐌𝐌𝑘𝑘)𝑑𝑑𝑑𝑑
𝑉𝑉𝑘𝑘

, 

where 
𝑓𝑓(𝐫𝐫 − 𝐫𝐫′,𝐌𝐌𝑘𝑘) = 

−𝐻𝐻0𝐥𝐥(𝐫𝐫) ⋅
1

|𝐫𝐫 − 𝐫𝐫′|3 �𝐌𝐌𝑘𝑘 −
3�𝐌𝐌𝑘𝑘 ⋅ (𝐫𝐫 − 𝐫𝐫′)�(𝐫𝐫 − 𝐫𝐫′)

|𝐫𝐫 − 𝐫𝐫′|2 � , (4) 

and 𝐌𝐌𝑘𝑘 = �𝑀𝑀𝑥𝑥𝑘𝑘,𝑀𝑀𝑦𝑦𝑘𝑘 ,𝑀𝑀𝑧𝑧𝑘𝑘� is the magnetization vector of 
the 𝑘𝑘𝑡𝑡ℎ cell 
 
Forward modeling of the magnetic fields using 
triangular cells 
 
The earth's surface is usually not flat and may have a 
variable topography. In order to accurately represent the 
surface undulation, one needs to use the cells with 
complicated shapes. To this end, we first split the 𝑘𝑘𝑡𝑡ℎ 
rectangular prism into four triangular prisms, 

Δ𝑇𝑇𝑘𝑘(𝐫𝐫′) = �� 𝑓𝑓(𝐫𝐫 − 𝐫𝐫′,𝐌𝐌𝑘𝑘)𝑑𝑑𝑑𝑑
𝑉𝑉𝑘𝑘

(𝑗𝑗)

4

𝑗𝑗=1

.        (5) 

Using the concept of isoparametric elements developed in 
the theory of finite element methods (Jin, 2002), the 
volume integration in equation (5) can be accomplished by 
transforming an arbitrarily shaped triangular prism in the 
𝑥𝑥𝑥𝑥𝑥𝑥 -space into a regularly shaped element with straight 
sides and flat surfaces in the 𝜉𝜉𝜉𝜉𝜉𝜉 -space (Figure 1). This 
transformation can be expressed as follows: 
 

 
Figure 1: An arbitrarily shaped triangular prism in the 
𝑥𝑥𝑥𝑥𝑥𝑥-space (left) and regularly shaped element with straight 
sides and flat surfaces in the 𝜉𝜉𝜉𝜉𝜉𝜉-space (right). 
 

𝑥𝑥 = �𝑁𝑁𝑖𝑖𝑟𝑟(𝜉𝜉, 𝜉𝜉, 𝜉𝜉)𝑥𝑥𝑖𝑖

𝑖𝑖𝑒𝑒

𝑖𝑖=1

,                         (6) 

𝑥𝑥 = �𝑁𝑁𝑖𝑖𝑟𝑟(𝜉𝜉, 𝜉𝜉, 𝜉𝜉)𝑥𝑥𝑖𝑖

𝑖𝑖𝑒𝑒

𝑖𝑖=1

,                         (7) 

𝑥𝑥 = �𝑁𝑁𝑖𝑖𝑟𝑟(𝜉𝜉, 𝜉𝜉, 𝜉𝜉)𝑥𝑥𝑖𝑖

𝑖𝑖𝑒𝑒

𝑖𝑖=1

,                         (8) 

where 𝑛𝑛𝑟𝑟 denotes the number of nodes within the element, 
𝑛𝑛𝑟𝑟 = 6 for triangular prism; (𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) are coordinates of 
the 𝑖𝑖𝑡𝑡ℎ node of the triangular prism, which in turn depend 
on the 𝑗𝑗𝑡𝑡ℎ  triangular prism and the 𝑘𝑘𝑡𝑡ℎ rectangular cell as 
follows: 

𝑁𝑁𝑖𝑖𝑟𝑟 =
1
2

(1 − 𝜉𝜉 − 𝜉𝜉)(1 + 𝜉𝜉𝑖𝑖𝜉𝜉), 𝑖𝑖 = 1, 4, 

𝑁𝑁𝑖𝑖𝑟𝑟 =
1
2 𝜉𝜉

(1 + 𝜉𝜉𝑖𝑖𝜉𝜉), 𝑖𝑖 = 2, 5, 

𝑁𝑁𝑖𝑖𝑟𝑟 =
1
2 𝜉𝜉

(1 + 𝜉𝜉𝑖𝑖𝜉𝜉), 𝑖𝑖 = 3, 6. 
Now we can write the integral in equation (5) in the 
transformed 𝜉𝜉𝜉𝜉𝜉𝜉-space, 

Δ𝑇𝑇𝑘𝑘(𝑥𝑥′,𝑥𝑥′, 𝑥𝑥′) = �� 𝑓𝑓(𝜉𝜉, 𝜉𝜉, 𝜉𝜉, 𝑥𝑥′,𝑥𝑥′, 𝑥𝑥′,𝐌𝐌𝑘𝑘)𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥
𝑉𝑉𝑘𝑘

4

𝑗𝑗=1

 

= ��𝑓𝑓(𝑗𝑗,𝑘𝑘)(𝜉𝜉, 𝜉𝜉, 𝜉𝜉, 𝑥𝑥′,𝑥𝑥′, 𝑥𝑥′ ,𝐌𝐌𝑘𝑘)|𝐽𝐽|𝑑𝑑𝜉𝜉𝑑𝑑𝜉𝜉𝑑𝑑𝜉𝜉
Δ

4

𝑗𝑗=1

.         (9) 

The term |𝐽𝐽|  is the determinant of the Jacobian of the 
transformation described by expressions (6) to (8). 
Following Martin et al. (2013), we use Gaussian quadrature 
to evaluate the integral over the regular triangular prism in 
the 𝜉𝜉𝜉𝜉𝜉𝜉-space in equation (9): 

Δ𝑇𝑇 = �Δ𝑇𝑇𝑘𝑘

𝑁𝑁𝑚𝑚

𝑘𝑘=1

= 

���𝑤𝑤𝑝𝑝𝑓𝑓(𝑗𝑗,𝑘𝑘)�𝜉𝜉𝑝𝑝,𝜉𝜉𝑝𝑝 , 𝜉𝜉𝑝𝑝, 𝑥𝑥′,𝑥𝑥′, 𝑥𝑥′,𝐌𝐌𝑘𝑘�|𝐽𝐽|.

𝑁𝑁𝑝𝑝

𝑝𝑝=1

4

𝑗𝑗=1

𝑁𝑁𝑚𝑚

𝑘𝑘=1

   (10) 

This approach can be extended to computing any potential 
field and/or its derivatives by simply changing the kernel 
function, 𝑓𝑓. 
Using the discrete model parameters and discrete data, we 
can present the magnetic forward modeling, described by 
formula (10), as the following matrix operation: 

𝐝𝐝 = 𝐴𝐴𝐦𝐦,                                          (11) 
where 𝐝𝐝  is the 𝑁𝑁𝑖𝑖  length vector of the observed total 
magnetic intensity field; 𝐦𝐦 is the 3𝑁𝑁𝑟𝑟 length vector of the 
magnetization vector components; and 𝐴𝐴  is a linear 
operator of the magnetic forward modeling problem.  
 
Inversion of the TMI field for the magnetization vector 
 
The inversion is based on minimization of the Tikhonov 
parametric functional (Zhdanov, 2002), 

𝑃𝑃𝛼𝛼(𝐦𝐦) = 𝜑𝜑(𝐦𝐦) + 𝛼𝛼𝑆𝑆𝑀𝑀𝑁𝑁,𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀(𝐦𝐦) → min,     (12) 
where 𝜑𝜑(𝐦𝐦) is a misfit functional: 
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𝜑𝜑(𝐦𝐦) = (𝑊𝑊𝑖𝑖𝐴𝐴𝐦𝐦−𝑊𝑊𝑖𝑖𝐝𝐝)𝑇𝑇(𝑊𝑊𝑖𝑖𝐴𝐴𝐦𝐦−𝑊𝑊𝑖𝑖𝐝𝐝),    (13) 
and 𝑊𝑊𝑖𝑖  and 𝑊𝑊𝑟𝑟  are the data and model weighting linear 
operators, respectively. The terms 𝑆𝑆𝑀𝑀𝑁𝑁, 𝑆𝑆𝑀𝑀𝑀𝑀, and 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀are 
the stabilizing functionals, based on minimum norm, 
minimum support, and minimum gradient support 
constraints, respectively. Minimization problem (12) can be 
solved using the re-weighted regularized conjugate gradient 
(RRCG) method (Zhdanov, 2002). 
Inverting for the magnetization vector is a more 
challenging problem than inverting for scalar magnetic 
susceptibility, because we have three unknown values of 
the magnetization vector for every cell. We should notice 
that, there is inherent correlation between the different 
components of the magnetization vector. The different 
scalar components have similar spatial variations and 
represent the same zones of anomalous magnetization. 
Therefore, it is possible to expect that the different 
components of the magnetization vector should be mutually 
correlated. It was demonstrated in Zhdanov et al. (2012), 
that one can enforce the correlation between the different 
model parameters by using the Gramian constraints. 
Following the cited paper, we have included the Gramian 
constraint in equation (12) as follows: 

𝑃𝑃𝛼𝛼(𝑚𝑚) = 𝜑𝜑(𝑚𝑚) + 𝛼𝛼𝑐𝑐1𝑆𝑆𝑀𝑀𝑁𝑁,𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚) 

+𝛼𝛼𝑐𝑐2 � 𝑆𝑆𝑀𝑀�𝑚𝑚𝛽𝛽 ,𝜒𝜒eff�
𝛽𝛽=𝑥𝑥,𝑦𝑦,𝑧𝑧

.              (14) 

where 𝑚𝑚 is the 3𝑁𝑁𝑟𝑟 length vector of magnetization vector 
components; 𝑚𝑚𝛽𝛽 is the 𝑁𝑁𝑟𝑟  length vector of the 𝛽𝛽 
component of magnetization vector, 𝛽𝛽 = 𝑥𝑥,𝑥𝑥, 𝑥𝑥; 𝜒𝜒eff is the 
𝑁𝑁𝑟𝑟 length vector of the effective magnetic susceptibility, 
defined as the magnitude of the magnetization vector, 

𝜒𝜒eff = �𝑀𝑀𝑥𝑥
2 + 𝑀𝑀𝑦𝑦

2 + 𝑀𝑀𝑧𝑧
2;                       (15) 

and 𝑆𝑆𝑀𝑀 is the Gramian constraint, 

𝑆𝑆𝑀𝑀�𝑚𝑚𝛽𝛽 ,𝜒𝜒eff� = �
�𝑚𝑚𝛽𝛽 ,𝑚𝑚𝛽𝛽� �𝑚𝑚𝛽𝛽 ,𝜒𝜒eff�
�𝜒𝜒eff,𝑚𝑚𝛽𝛽� (𝜒𝜒eff,𝜒𝜒eff)

� .      (16) 

Using the Gramian constraint (16), we enhance a direct 
correlation between the scalar components of the 
magnetization vector with 𝜒𝜒eff, which is computed at the 
previous iteration of an inversion and is updated on every 
iteration. The advantage of using the Gramian constraint 
(16) is that it does not require any a priori information 
about the magnetization vector (e.g. direction, relationship 
between different components, and etc.). 
 
Numerical model study -- a magnetized dipping dyke 
 
We consider a model of a dipping dyke with a 
magnetization opposite to the inducing field. The dyke has 
a horizontal dimension of 250 m x 300 m and extends 
vertically from 50 m to 400 m as shown in Figure 2. The 
dyke has a constant magnetization with a magnitude of 0.06 
SI. There are 441 receivers distributed over a 21 by 21 grid 
with a spacing of 50 m. The parameters of the inducing 

magnetic field were selected as follows: 𝐻𝐻₀ = 50 000 nT, 
𝐼𝐼 = 75°, and 𝐷𝐷 = 25°.   

 
Figure 2: A model of the magnetized dipping dyke. The 
magnitude of magnetization f is 0.06 SI. The dyke has a 
horizontal dimension of 250 m x 300 m and extends from 
50 m to 400 m in depth. 
We invert for the magnetization vector using both TMI and 
magnetic components in three directions. The recovered 
magnetizations using only minimum norm stabilizer and 
using both minimum norm and Gramian constraint are 
shown in Figure 3. The different panels from the left to the 
right in this figure represent the scalar components, 𝑀𝑀𝑥𝑥 , 
𝑀𝑀𝑦𝑦, and 𝑀𝑀𝑧𝑧 respectively. By using the Gramian constraint 
in the inversion, we are able to enhance the correlation 
between three components. The dipping structure is better 
resolved using our new approach. In this synthetic test, we 
also found artifacts associated with 𝑀𝑀𝑥𝑥 and 𝑀𝑀𝑦𝑦 components 
using only minimum norm stabilizer. These artifacts are 
greatly reduced in the inversion using both the minimum 
norm stabilizer and the Gramian constraint. 

 
Figure 3: Vertical sections of the recovered scalar 
components of the magnetization vector obtained by the 
inversion based on the minimum norm stabilizer only 
(middle panels) and that based on both the minimum norm 
and Gramian constraints (bottom panel). The top panel 
shows the scalar components of the magnetization vector 
for the true model.  
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Case study 
 
The area of the airborne magnetic survey is located in the 
Northwest Territories of Canada, which forms a distinct 
cratonic block within the Canadian Precambiran Shield. 
The kimberlites in this area have been characterized by 
strong remanent magnetization, which required the 
inversion for the magnetization vector instead of the scalar 
magnetic susceptibility. We have applied the developed 
inversion algorithm based on both minimum norm and 
Gramian constraints to the field airborne magnetic data 
collected in this area for kimberlite exploration. We have 
also taken into account the terrain heights in constructing 
the inversion domain. The typical magnetic susceptibility 
of kimberlites in the survey area is around 5×10-3 SI. We 
have expected to recover the targets associated with 
kimberlites with the magnitude of magnetization close to 
this number. The residual TMI anomaly within the airborne 
magnetic survey area was inverted for a magnetization 
vector using both the minimum norm and Gramian 
stabilizers. A set of triangular prisms was used to better 
represent the topography in the uppermost layer of the 
inversion domain. 
Figure 4 shows vertical sections of the magnitude and 
scalar components of the magnetization vectors obtained by 
the inversion. Using both the minimum norm and Gramian 
stabilizers in the inversion, we were able to enhance a 
correlation between the different scalar components and 
recover a higher intensity of magnetization in the target 
area. Basically, the kimberlite deposits are associated with 
the round-shape anomalies having a negative 𝑀𝑀𝑧𝑧 
component. The elongated anomaly along the northeast and 
southwest directions are magnetic dykes, which extends 
deeper than the kimberlite pipes as seen from the vertical 
sections. 
Figure 5 presents, for a comparison, the inversion results 
obtained by using the minimum norm stabilizer only. One 
can see the artifacts in the images of the 𝑀𝑀𝑥𝑥  and 𝑀𝑀𝑦𝑦 
components in the locations of the kimberlite pipes. These 
artifacts were reduced by using the Gramian stabilizer in 
the inversion. 
 

 
Figure 4: Vertical sections of the recovered magnitude and 
scalar components of the magnetization vector in the 
survey area. Both the minimum norm and Gramian 
stabilizers were used in the inversion.  

 
Figure 5: Vertical sections of the recovered magnitude and 
scalar components of magnetization vector obtained by the 
inversion with the minimum norm stabilizer only. One can 
see the artifacts in the images of the 𝑀𝑀𝑥𝑥  and 𝑀𝑀𝑦𝑦 
components in the locations of kimberlite pipes. 
 
Conclusions 
 
A majority of the conventional 3D magnetic inversion 
methods are based on the assumption that there is no 
remanent magnetization and the inversion is applied to 
determine the subsurface distribution of a scalar magnetic 
susceptibility. However, in many geological areas the 
direction of magnetization in a rock differs from the 
direction of the inducing magnetic field, which is 
manifested by the presence of remanent magnetization in 
the rocks. In this case, the inversion should be applied for 
the magnetization vector rather than the scalar 
susceptibility. 
 
We have developed a novel method of inversion of the total 
magnetic intensity (TMI) data for the scalar components of 
the magnetization vector. This method is based on a new 
magnetic forward modeling algorithm, which uses 
triangular prisms of arbitrary shape in order to achieve a 
more accurate approximation of the topography and 
complex geological structures. The inversion also includes 
Gramian constraints in order to obtain a robust solution of 
otherwise ill-posed magnetic inverse problems. 
 
The method was successfully illustrated by a number of 
synthetic models of the magnetized bodies. The results of 
inversion of airborne TMI data demonstrate how inversion 
for the magnetization vector with Gramian constraints can 
improve the subsurface imaging of kimberlites. 
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