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SUMMARY

The distortion of regional electric fields by local structures rep-
resents one of the major problems facing three-dimensional
magnetotelluric (MT) interpretation. The effect of 3D local
inhomogeneities on MT data can be described by a distortion
matrix. In this paper, we develop a method for simultaneous
inversion of the full MT impedance data for 3D conductivity
distribution and for a distortion matrix with complex compo-
nents. We use integral equations method for forward model-
ing. Tikhonov regularization is employed to solve the resulting
inverse problem. Minimization of the parametric functional is
achieved via a conjugate gradient method. The inversion al-
gorithm was tested on the synthetic data from Dublin Secret
Model II (DSM 2), for which multiple inversion solutions are
available for comparison. We also investigate a possibility of
using the developed approach for corrections to the effect of
topography on the MT data. Finally, the results are presented
of an application of the inversion to a regional MT dataset ac-
quired as part of the EarthScope project over the Great Basin
region of the Western United States.

INTRODUCTION

Distortion of regional MT responses by local structures is one
of the challenges in the interpretation of MT data. Due to the
computing limitations it is difficult to model local 3D struc-
tures to a small enough scale. There are several approaches
available for minimizing static shift effects. For example, one
can use additional data produced by the controlled source EM
surveys, e.g., coincident time-domain EM soundings (Pellerin
and Hohmann, 1990). Torres-Verdin and Bostick (1992) pro-
posed the EMAP technique of deploying electric dipoles along
a continuous survey path to reduce the static shift effect in the
data. In the paper by deGroot-Hedlin (1991), the unknown
static shift was included as a parameter of the inversion. The
3D MT inversion algorithm of Sasaki and Meju (2006) took
into account the static shift of the impedance amplitudes but
not amplitude or phase mixing. Zhdanov et. al. (2011) nor-
malized observed MT impedances by their amplitudes in or-
der to remove the major part of the static shift effect from
the amplitude data, considering that the phase of impedances
is less affected by near-surface inhomogeneities. Patro et al.
(2013) presented an inversion algorithm for the MT phase ten-
sor, which was based on a similar assumption of the lesser
influence of near-surface distortions on the phase data.

Groom and Bailey (1989) introduced a widely accepted method
of decomposition of the MT impedance tensor in the presence
of local 3D inhomogeneities, which can be formally repre-
sented as a product of the undisturbed impedance tensor and

a distortion matrix:

Zobs = cZund , (1)

where Zobs is the observed impedance tensor,
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c is the distortion matrix,
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]
, (3)

and Zund is the undisturbed impedance tensor,
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The papers by Miensopust (2009) and Avdeeva et al. (2012)
introduced 3D joint inversion of the impedance tensor and dis-
tortion matrix with the real components. Baba et al. (2013)
assumed a distortion matrix with complex components in an
attempt to account for bathymetry effects in a marine magne-
totelluric survey. Our general approach differs from Avdeeva
et al. (2012) in that we invert for complex distortion ma-
trix. This allows us to take into account not only the con-
ventional DC static shift but also possible phase changes of
the impedance tensor. We use the regularized conjugate gra-
dient method (Zhdanov, 2002), which considerably reduces
computer memory requirements compared to direct solution
methods. Further memory savings are provided by consider-
ation of variable sensitivity domains for different frequencies
and receivers based on corresponding skin depths (Zhdanov et.
al. , 2010, 2011, 2012). We use the integral equation forward
modeling method (Hohmann, 1975), which not only provides
an accurate solution of the forward problem, but also supplies
straightforward approximate expression for the Fréchet deriva-
tive (sensitivity) matrix without any additional forward model-
ing required. The inversion method was applied to the DSM2
synthetic data. The resulting inverse model was in good agree-
ment with the true model (Miensopust et al., 2013). In our
opinion, the result provided by our inversion is superior to
most results presented in Miensopust et al. (2013).

The MT method is one of a few geophysical methods capa-
ble of imaging the regional structures of the Earth’s crust and
upper mantle. The Great Basin region of the Western United
States has a rich tectonic history and is undergoing an exten-
sional deformation at the present time. We applied our inver-
sion to the MT data collected over the Great Basin as part of
the EarthScope project. The results of inversion outline the
areas of increased conductivity, which correspond to areas of
active tectonism and potential geothermal reservoirs.
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PRINCIPLES OF MT INVERSION WITH A COMPLEX
DISTORTION MATRIX

Taking into account decomposition 1, the forward MT prob-
lem can be written in operator notations as follows:

d = cZund= c A(σ) , (5)

where d stands for the observed MT impedance data, Zobs,
recorded in the receivers; A is a forward modeling operator
based on IE formulation, which is used to compute the undis-
turbed impedance Zund ; and σ is a vector of the anomalous
conductivity distribution within the inversion domain. In or-
der to find the conductivity distribution and the distortion ma-
trix from the observed MT impedances, we follow the stan-
dard Tikhonov regularization procedure (Tikhonov and Ars-
enin, 1977; Zhdanov, 2002) of constructing a parametric (cost)
functional:

P(σ ,c) = ‖r‖2 +α ‖S‖2 , (6)

r = Wd (cA(σ)−d) , (7)

S = Wm

[
Sσ

Sc

]
= Wm

[
L(σ −σb)
(c− c0)

]
, (8)

where Wd and Wm are the data and model weighting matri-
ces, respectively; σb is a vector of the reference conductivity
distribution; L is a matrix of the finite difference operator, c0
is an priori distortion matrix, selected as a 2x2 identity matrix,
which represents the case with no distortion. The regulariza-
tion parameter α balances the effect of the misfit and stabiliz-
ing functionals and is selected using the adaptive regulariza-
tion as described below. The data weights are computed as the
inverse of the noise levels (variances) for the corresponding
data points. If the noise level is unknown, 3.5% of the value of
the principal impedances for a given station and frequency is
used for all components. The model weighting matrix, Wm, is
calculated based on the integrated sensitivity as follows (Zh-
danov, 2002):

Wm = diag(FT F)1/4, (9)

where F is a Fréchet derivative (sensitivity) matrix of the for-
ward modeling operator.

We use preconditioned conjugate gradient method with a linear
line search (Nocedal and Wright, 1999) to minimize paramet-
ric functional 7. The inverse of the squared model weighting
matrix 9 is used as the preconditioner, P:

P =
(

WT
mWm

)−1
. (10)

Application of a gradient method to a nonlinear inverse prob-
lem, such as minimization of the parametric functional 7, re-
quires calculation of a Fréchet derivative or sensitivity matrix,
F. A direct ”brute force” calculation of the sensitivity matrix
using the finite-difference method requires multiple additional
forward modeling solutions. One of the advantages of using
the IE method as a forward modeling engine is that an approx-
imate but accurate Fréchet derivative F with respect to the con-
ductivity is readily available from the solution of the forward
modeling problem (Gribenko and Zhdanov, 2007):

FE,H
σ =

δE,H
δ∆σ

= GE,HED. (11)

This approximation of the Fréchet derivative is called quasi-
Born due to its similarity to the classical Born approximation,
where instead of the total electric field the background field
is used. A simple chain rule is applied to obtain the Fréchet
derivatives of the impedance components once the derivatives
of the EM field components are computed (Zhdanov, 2009).
The Fréchet derivatives of impedances Zobs

αβ
with respect to the

components of the distortion matrix ci j can be obtained di-
rectly from equation 1, for example

FZobs
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δ
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yx
)

δc11
= Zund

xx . (12)

The code was written in the MatLab(R) language. All inver-
sions were performed on a 12-core Intel(R) Xeon(R) X5690
@ 3.47 GHz with 192 GB of RAM available, running Red
Hat Enterprise Linux release 6.4. The MatLab(R) version was
R2014a with the parallel computing toolbox. Calculations of
Greens’ tensors and Fréchet derivatives were parallelized over
frequencies using the toolbox. The IE forward problem was
solved via the PIE3D v.2012 code. The PIE3D is a paral-
lel EM forward modeling software based on the IE method.
The PIE3D ver. 2012 is portable on any computer that sup-
ports message passing interface (MPI). This code simulates
frequency-domain EM responses of 3D anomalous conduc-
tivity structures located within a horizontally layered medium
(Zhdanov et al., 2006; Cuma and Zhdanov, 2013).

DUBLIN SECRET MODEL 2

We applied the algorithm described above to the DSM2 data
available from:
http://www.dias.ie/mt3dinv2/3D inversion test data set.html (last
accessed 26 August, 2013). This data set was used at the 2nd
MT inversion workshop to test and compare results of differ-
ent 3D inversion codes. The results of comparison were thor-
oughly reviewed in Miensopust et al. (2013). Unlike the work-
shop participants, we had an advantage of knowing the model
for which the data were computed. Nevertheless, inverting the
data posed a challenging problem due to the amount of data,
range of frequencies, and data corruption from noise. DSM 2
model is a modified version of the COMMEMI 3D-2A model
of Zhdanov et al. (1997). The random galvanic distortions
were applied to the synthetic data set. The distortion matrix
C was calculated according to the Groom–Bailey Decomposi-
tion (Groom and Bailey, 1989) from randomly generated val-
ues for the twist angle (within ±60o), the shear angle (within
±45o) and the anisotropy (within ±1). The gain value was
fixed to be equal to one at all locations. Finally, random Gaus-
sian noise of 5 percent of the maximum impedance value was
applied to the distorted data set (Miensopust et al., 2013). 144
MT stations were included in the synthetic survey. The data
were provided as a set of 30 periods from 0.0158 to 10,000
sec. Our inversion code is parallelized over periods, and runs
most efficiently when the number of periods is a multiple of the
number of available processors (12). Therefore, the data were
interpolated on a new set of 24 logarithmically spaced periods
from 0.04 to 10,000 sec. All 144 stations were included in the
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inversion. The result of 1D inversion of the sounding curve
averaged over all stations was used as the initial model for 3D
inversion. The size of the inversion domain was 80 x 80 x
37.76 km3. This domain was discretized into 76,800 inversion
cells with a horizontal cell size of 2 x 2 km2. We used 48 hori-
zontal layers with thicknesses increasing logarithmically from
200 m to 2,000 m.

We first applied conductivity-only inversion to the DSM 2 dataset.
The conversion stopped at RMS error of 6.66 after 851 total
iterations with 43 rigorous updates, taking approximately 16
hours of CPU time. We run conductivity-only inversion until
the RMS error had changed less than 1% between the rigor-
ous iterations. For the DSM 2 inversion the change occurred
at an RMS value of 6.90 after 101 total iterations with 4 rig-
orous updates. A complex distortion matrix was introduced in
the inversion at this point. The RMS reached 1.35 and stopped
changing after 1,606 total iterations with 28 rigorous updates,
including conductivity-only iterations, taking approximately 9
hours. The most striking difference between the two inver-
sions, conductivity-only and with the distortion matrix, can be
seen in the levels of the data misfit. The joint inversion pro-
vides a close to perfect RMS error of 1.35. Figure 1 illus-
trates the data fit for both conductivity-only and joint inver-
sions. This figure shows the values of the RMS errors at each
station as well as examples of the observed and predicted MT
sounding curves.

Figure 1: A comparison of the data fit. The left panel shows
the distribution of the RMS errors for the conductivity-only
inversion. The central panel presents the RMS errors for joint
inversion. The right panel presents examples of observed and
predicted MT sounding curves for one of the stations.

Figure 2 compares conductivity distributions for the true model,
the results of the conductivity-only inversion, and the result of
a joint inversion for conductivity and the complex distortion
matrix. The results of both inversions provide a very reason-
able representation of the true model. The joint inversion pro-
duces a more accurate estimate of the depth of the bottom of
the conductive layer as well as the shape and resistivity of the
resistor appearing in the top layer. These features of the model
have small overall effect on the observed data, and cannot be
recovered by conductivity-only inversion due to strong regu-
larization. In this case, regularization parameter α remains
relatively high throughout the inversion process due to high
level of the data misfit. It is apparent that the data cannot be
fitted with high accuracy without adding distortions as inver-
sion parameters. On the other hand, the joint inversion reaches
the lower level of the misfit, which results in the smaller values
of the regularization parameter. The more relaxed regulariza-
tion results in the less smooth conductivity image.

Figure 2: DSM 2 conductivity distributions. The left column
shows the true model. The middle column presents the results
of the conductivity only inversion. The right column shows the
results of the joint inversion for the conductivity and distortion
matrix.

The real and imaginary components of the distortion tensor
are shown in Figure 3. The DSM 2 data were contaminated
with random distortions represented by the real numbers. Note
that, the inversion for the complex components of the distor-
tion matrix did not introduce complex distortions; the values of
the imaginary parts are negligibly small compared to the real
parts of the components of the distortion matrix. This fact con-
firms the suggestion made by Zhdanov et. al. (2011) that the
phase of the impedances is less affected by the near-surface
inhomogeneities than their amplitude. Significant values of
the off-diagonal distortion components indicate that amplitude
and phase mixing is present in the observed data.

GREAT BASIN DATA INVERSION

For a real data example we selected a subset of the MT data
collected as a part of the EarthScope project over the Great
Basin region of the Western United States (www.earthscope.org).
The MT data used at this example were collected in 98 sites
distributed approximately 80 km apart over 1000 km x 500
km area covering parts of California, Oregon, Nevada, Idaho,
Utah, and Wyoming. The original data contained 30 periods
ranging from 7.3153 to 18,724 sec. The impedance data were
interpolated on 24 log-spaced periods from 10 to 10,000 sec.
Minimal data cleaning resulted in the removal of 48 impedance
values out of 11,400.

The inversion domain was extended 650 km in the X (North-
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Figure 3: DSM 2 distortion distribution. The circles corre-
spond to the receiver locations. The top row shows the real
parts of the distortion,while the bottom row presents the imag-
inary parts. The four columns correspond to the four compo-
nents of the distortion matrix.

South) direction, 1150 km in the Y (East-West), and 308.2 km
in the vertical direction. The horizontal cell size was kept at a
constant size at 10×10 km2, while the thicknesses of the cells
increased from 1 to 20 km logarithmically for a total number of
48 layers. Figure 4 shows horizontal and vertical sections of
the inversion result. Several geological provinces show distinct
conductivity anomalies. The Great Basin province is charac-
terized by the regions of elevated conductivity at relatively low
depths of around 100 km or less, bounded by resistive Col-
orado Plateau to the East and the Sierra Nevada mountains to
the West. There is a prominent conductive region at the east-
ern edge of the Great Basin province along the Wasatch Fault
at shallow depths. The Snake River plain is also characterized
by higher conductivity. It appears that the boundaries of the 15
- 30 Ma Basin and Range extension may have a conductivity
signature at a depth of about 200 km.

CONCLUSIONS

We have developed a 3D MT inversion algorithm which takes
into account the effect of 3D local inhomogeneities on the MT
data by introducing in the inversion scheme the unknown com-
ponents of the distortion matrix jointly with the unknown con-
ductivity. In order to provide more flexibility for the inversion,
the components of the distortion matrix were allowed to be
complex. The inversion algorithm is based on the rigorous IE
forward modeling method and regularized conjugate gradient
optimization.

The developed inversion code was successfully applied to the
synthetic data from Dublin Secret Model II (DSM 2) with sig-
nificant distortion and noise levels. We also tested the feasi-
bility of the method for removal of the topography effect from
the MT data. Application of this MT inversion algorithm to
real data from the Great Basin region of the Western US re-
vealed conductivity anomalies which agreed well with major
geological provinces of the area. From the topography model
study we concluded that allowing the nonzero imaginary part

Figure 4: The horizontal (left) and vertical (right) sections of
the inversion result for the Great Basin MT data. The gray
boundaries in the plan views outline the Cenozoic tectonic
provinces (Colgan et. al., 2006), the Steens Basalts (Hooper
et al., 2002), and an approximate contour of 30–15 Ma Basin
and Range extension (Dilles and Gans, 1995).

of the components of the distortion matrix helped to minimize
the topography effect. At the same time, both the model and
case studies demonstrated that the imaginary part of the dis-
tortion matrix components was typically significantly smaller
than the real part. This observation confirms the well estab-
lished fact that the phase of impedances is less affected by the
near-surface inhomogeneities than their amplitude. Significant
values of the off-diagonal distortion matrix components ver-
ify that amplitude and phase mixing are present in realistic 3D
situations.
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