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Summary 

 

One of the major problems in the modeling and inversion 

of marine controlled source electromagnetic (MCSEM) 

data is related to the need for accurate representation of 

very complex geoelectrical models typical for marine 

environment. At the same time, the corresponding forward 

modeling algorithms should be powerful and fast enough to 

be suitable for repeated use in hundreds of iterations of the 

inversion and for multiple transmitter/receiver positions. To 

this end, we have developed a novel 3D modeling and 

inversion approach, which combines the advantages of the 

finite difference (FD) and integral equation (IE) methods. 

In the framework of this approach, we solve the Maxwell’s 

equations for anomalous electric fields using the FD 

approximation on a staggered grid. Once the unknown 

electric fields in the computation domain of the FD method 

are computed, the electric and magnetic fields at the 

receivers are calculated using the IE method with the 

corresponding Green’s tensor for the background 

conductivity model. This approach makes it possible to 

compute the fields at the receivers accurately without the 

need of very fine FD discretization in the vicinity of the 

receivers and without the need for numerical differentiation 

and interpolation. We have also developed an algorithm for 

3D inversion of MCSEM data based on the hybrid FD-IE 

method. A model study for the 3D inversion of MCSEM 

data is presented to demonstrate the effectiveness of the 

developed hybrid method. 

 

Introduction 

 

The IE method represents one of the most effective 

numerical solvers for localized anomalous structures 

embedded in a layered earth. One of the advantages of the 

IE method is that it only requires a solution within the 

anomalous domain, and the electric and magnetic fields at 

the receivers are calculated based on the Green’s tensor 

approach. The IE modeling domain includes 

inhomogeneous geoelectrical structures only and it is 

typically very small compared to the modeling domains of 

the differential equation (DE) methods, which require a 

large computational domain to satisfy to the corresponding 

boundary conditions. At the same time, the system matrix 

of the IE method is dense, so if the complexity of the model 

grows, the IE method requires significantly larger amount 

of computational memory and time.  

 

The advantage of the DE method is the sparsity of the 

system matrices, which improves the condition number and 

makes the corresponding systems easier to solve compared 

to the IE method (Avdeev, 2005). However, the DE 

methods require a very large computational domain and 

extensive mesh refinement in the vicinity of the receivers to 

reduce errors caused by the interpolation and numerical 

differentiation required to calculate the electric and 

magnetic fields in the receivers. To avoid mesh refinement 

and/or numerical errors, Cox and Zhdanov (2014) applied 

the Green’s tensor approach to the finite element (FE) 

method to calculate magnetic fields and their sensitivities at 

the receivers. In this paper, we use a similar concept of the 

Green’s tensor approach, and apply it to the FD method.  

 

The FD modeling algorithm is based on the staggered grid 

(Yee, 1966).  Once the unknown electric fields in the 

computation domain of the FD method are computed, the 

electric and magnetic fields at the receivers are calculated 

using the IE method with the corresponding Green’s tensor 

for the background conductivity model. This approach 

makes it possible to compute the fields at the receivers 

accurately without the need of very fine FD discretization 

in the vicinity of the receivers and without the need for 

numerical differentiation and interpolation.  

 

The developed hybrid algorithm was incorporated as the 

forward EM modeling engine in a general regularized 

inversion scheme, based on the re-weighted conjugate 

gradient method. Although the inversion algorithm is 

general, this paper presents an application of this method 

specifically to the 3D inversion of marine controlled-source 

electromagnetic (MCSEM) data. A model study of the 3D 

inversion of synthetic MCSEM data is presented to 

demonstrate the effectiveness of the developed hybrid 

method. 

 

Finite-difference modeling of the anomalous electric 

field 

 

The implementation of the FD method developed in this 

paper follows that of Newman and Alumbaugh (1995) and 

Alumbaugh et al. (1996). The method solves Maxwell’s 

equations in the frequency domain based on a finite-

difference scheme on a staggered grid and uses the 

anomalous field formulation with the total field being 

decomposed into a background, 𝐄𝒃 , and anomalous, 𝐄𝒂 , 

fields. The magnetic permeability within the earth, μ, is 
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assumed to be constant, 𝜇0 = 4𝜋 × 10−7  H/m everywhere, 

and the conductivity tensor, 𝝈 is considered to be diagonal. 

 

A finite-difference representation of Maxwell’s equations 

on a staggered grid can be written as a linear system of 

equations as follows: 

𝐊𝐞 = 𝐬,                                     (1) 

where 𝐞 is the unknown vector of the anomalous electric 

field, and 𝐬 is a vector containing the source terms. The 

matrix 𝐊  is sparse and a symmetric complex matrix 

composed of real numbers except for the diagonal elements. 

We use multifrontal massively parallel sparse direct solver, 

MUMPS (Amestoy et al., 2001, 2006), to solve the system 

of equations (1), which enables the solution of large-scale 

problems with multiple sources in an efficient manner.  

 

Integral equation method for computing the EM field at 

the receivers 

 

The conventional FD method requires an interpolation to 

calculate the electric fields at the receivers, a numerical 

approximation of the curl of the electric field, and an 

interpolation to calculate the magnetic fields at the 

receivers. Those numerical differentiation and interpolation 

can cause some numerical errors, and require mesh 

refinement in the vicinity of the receivers to reduce the 

errors. In order to avoid those problems, we use an IE 

approach to calculate the electric and magnetic fields at the 

receiver. The anomalous electric and magnetic fields at the 

receiver position, 𝐫𝒋 , can be expressed as an integral over 

the excess currents in the inhomogeneous domain D: 

𝐄𝐚(𝐫𝒋) = ∭ �̂�𝐄(𝐫𝒋|𝐫)𝚫𝛔(𝐫) ∙ [𝐄𝐛(𝐫) + 𝐄𝐚(𝐫)]
𝐃

𝒅𝒗     (2) 

𝐇𝐚(𝐫𝒋) = ∭ �̂�𝐇(𝐫𝒋|𝐫)𝚫𝛔(𝐫) ∙ [𝐄𝐛(𝐫) + 𝐄𝐚(𝐫)]
𝐃

𝒅𝒗    (3) 

where �̂�𝐄(𝐫𝒋|𝐫) and �̂�𝐇(𝐫𝒋|𝐫) are the electric and magnetic 

Green’s tensors defined for an unbounded conductive 

medium with the normal (horizontally layered) anisotropic 

conductivity 𝛔𝐧𝐨𝐫𝐦 ; the inhomogeneous domain D 

represents a volume with the anisotropic anomalous 

conductivity distribution 𝛔(𝐫) = 𝛔𝐧𝐨𝐫𝐦+ 𝚫𝛔(𝐫).  

 

The volume integrals in equations (2) and (3) are calculated 

numerically using the integration over the cells of the 

discretization grid. In the case of the IE method, vector 𝐫 is 

located at the center of the cell where all three components 

of the electric fields are assigned. However, in the FD 

scheme based on the staggered grid, the electric fields to be 

solved are located at the edges of the cell. Therefore, the 

numerical formulas for the IE method should be modified 

accordingly, so that the vector 𝐫 should represent the points, 

𝐫𝒙, 𝐫𝒚  and 𝐫𝒛 where the x, y, and z components of the 

electric fields are located in the staggered grid, respectively. 

Obviously, the hybrid FD-IE method requires one 

additional computation of the Green’s tensors at the 

midpoints of the cell edges in comparison with the 

conventional IE method. However, this complication can 

be overcome by pre-computing the Green's tensors and 

reusing them at every iteration of the inversion.  

 

Verification of the hybrid FD-IE modeling method 

 

In order to verify the accuracy and the efficiency of the 

hybrid FD-IE forward modeling method, it has been 

compared with three other techniques: (1) a 1D semi-

analytical solution, (2) a conventional FD method, and (3) a 

3D IE method. 

 

Model 1 is a horizontally layered geoelectrical model with 

an isotropic resistive rectangular reservoir (Figure 1). The 

background is a seawater-sediment model with air-earth 

interface at z = 0 and a seawater depth of 1000 m. The 

resistivities of air, seawater, and sediments are 10−6 Ohm-

m, 0.3 Ohm-m, and 1 Ohm-m, respectively. The 

electromagnetic field is excited by a horizontal electric 

dipole oriented in the x direction with a moment of 1 Am 

and located in the seawater with coordinates (0, 0, 950) m, 

which is 50 m above the sea floor. The frequency of the 

current in the transmitting dipole is 1 Hz. An isotropic 3D 

resistive rectangular reservoir with a resistivity of 100 

Ohm-m is embedded in the sediments from a depth of 1400 

to 1500 m and with a size of 3 km x 3 km x 100 m in the x, 

y, and z directions, respectively. The volume of the 3D 

resistive reservoir is considered as a domain with 

anomalous conductivity. 

 

 
Figure 1: Model 1. A horizontally layered geoelectrical model with 

a coarse grid (left panel) and a fine grid (right panel). The isotropic 
resistive reservoir layer with a resistivity of 100 Ohm-m is 

embedded in the sediment below the seawater layer. The white star 

indicates the position of the electrical dipole source, and the white 

circles denote the receiver positions. 
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We calculated the EM responses for Model 1 using two 

different grids (coarse and fine), and the responses were 

then compared with the 1D semi-analytical solution. For 

both grids, the FD modeling domains were selected as 

𝐃𝐅𝐃={−4 km ≤ x, y ≤ 4 km; −0.5 km ≤ z ≤ 3 km} based 

on the skin depth. The coarse grid consisted of 41 x 31 x 21 

= 26,691 cells, with uniform cells of 200 m by 200 m in the 

x and y directions, and with logarithmically increasing cell 

size from the bottom of the reservoir (anomalous domain) 

to the boundaries of the FD domain in the z direction as 

shown in the left panel of Figure 1. The anomalous domain 

is discretized using a 200 m x 200 m x 10 m uniform grid. 

In Figure 2, the anomalous electric fields computed by the 

hybrid FD-IE method and the conventional FD method are 

compared to the 1D semi-analytical solution based on the 

Hankel transform (Ward and Hohmann, 1988; Zhdanov and 

Keller, 1994). On this coarse grid, the hybrid FD-IE 

responses were in a good agreement with the semi-

analytical solution, showing less than 3% relative errors, 

whereas the FD responses exhibited large discrepancies.  

 

Next, we gradually increased the number of cells within the 

same FD modeling domain was increased as was done 

above for the coarse grid, and the grids surrounding the 

receivers were refined as well, until a grid was found for 

which the FD response was characterized by relative errors 

similar to those produced by the hybrid FD-IE method on 

the coarse grid. The fine grid, which was finally determined 

by this process, consisted of 81 x 61 x 52 = 256, 932 cells, 

with 100 m x 100 m uniform grid in the x and y directions, 

a minimum cell size of 5 m near the receiver positions, and 

a maximum cell size of 250 m in the z direction, as shown 

in the right panel of Figure 2. Note that, in order to have the 

level of errors for the FD responses similar to those for the 

hybrids FD-IE responses on the coarse grid, we had to 

refine not only the grid in the vicinity of the receivers, but 

also the entire grid within the FD domain. We have also 

computed the fields using the hybrid FD-IE on the fine grid. 

The main conclusion is that the hybrid FD-IE method 

always provides the smaller errors than the conventional 

FD method, if the same discretization grids are used.  

 

Inversion methodology 

 

We have implemented the developed hybrid FD-IE 

modeling method in the algorithm of inversion of the 

MCSEM data following the paper by Gribenko and 

Zhdanov (2007). The regularized inversion algorithm is 

based on minimization of the Tikhonov parametric 

functional, (Tikhonov and Arsenin, 1977; Zhdanov, 2002): 

 

𝑷𝜶(𝚫𝛔) = ‖𝐖𝐝(𝐀𝒉(𝚫𝛔) − 𝐝)‖𝟐 + 𝛂𝐬(𝚫𝛔) = min (4) 
 

where 𝐝 is the vector of the observed data; 𝐀𝒉(𝚫𝛔) is the 

forward modeling operator for computing the predicted 

data based on the hybrid FD-IE method; and 𝐖𝐝  is the 

diagonal data weighting matrix formed by the inverse 

amplitudes of the background electric field. 

 

The first term of the parametric functional (4) represents 

the weighted misfit functional, and the second term is the 

stabilizer. We apply the regularized conjugate gradient 

(RCG) algorithm of the parametric functional minimization, 

summarized as follows (Zhdanov, 2002): 

𝐫𝒏 = 𝐀𝒉(𝚫𝛔) − 𝐝,  

𝐥𝒏 = 𝐅𝒏
∗𝐖𝐝

∗𝐖𝐝𝐫𝒏 + 𝛂𝐖𝐦
∗ 𝐖𝐦(𝚫𝛔𝒏 − 𝚫𝛔𝒂𝒑𝒓), 

𝛃𝐧 = ‖𝐥𝒏‖𝟐/‖𝐥𝒏−𝟏‖𝟐, 

�́�𝒏 = 𝐥𝒏 + 𝛃𝐧�́�𝒏−𝟏, �́�𝟎 = 𝐥𝟎, 

𝒌𝒏 = (�́�𝒏, 𝐥𝒏)/(‖𝐖𝐝𝐅𝒏�́�𝒏‖
𝟐

+ 𝛂‖𝐖𝐦�́�𝒏‖
𝟐

), 

𝚫𝛔𝒏+𝟏 = 𝚫𝛔𝒏 − 𝒌𝒏�́�𝒏, 
where F is the Fréchet  derivative matrix based on the 

quasi-Born (QB) approximation (Gribenko and Zhdanov, 

2007), and 𝐖𝐦  is the weighting matrix of the model 

parameters determined based on the weighted Fréchet 
derivative matrix (sensitivities): 

𝐖𝐦 = 𝒅𝒊𝒂𝒈(𝐅∗𝐖𝐝
∗𝐖𝐝𝐅)𝟎.𝟐𝟓. 

 
Figure 2: Model 1. A comparison of anomalous electrical fields 

computed using the hybrid FD-IE method, the FD method, and an 

1D semi-analytic solution based on the horizontally layered model 
with an isotropic resistive reservoir layer. The top, middle, and 

bottom panels present the x, y, and z components of the anomalous 

electric field, respectively. 
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Synthetic model study of the inversion algorithm based 

on hybrid FD-IE method 

 

We have considered a salt dome  in order to test the 

inversion method (Model 2 shown in Figure 3), which 

consists of a 300 m seawater layer with a resistivity of 0.3 

Ohm-m, and a 10 Ohm-m half-space of sediments. A salt 

dome structure is embedded in the sediments, and it is 

located at a depth from 700 m below the sea floor down to 

5000 m with a resistivity of 300 Ohm-m as shown in Figure 

3. The synthetic in-line electric field data at frequencies of 

1, 2, and 3 Hz were computed in 14 receivers from -7 km to 

7 km in the x direction located 5 m above the sea floor. The 

transmitter line was positioned 45 m above the receiver line 

from -17 km to 17 km in the x direction. The synthetic 

observed data were generated by the 3D IE method, and 

were contaminated with random Gaussian noise having 

source-moment-normalized amplitude up to 10−14 V/Am2. 

The inversion domain was discretized using uniform 

rectangular grid with the cell size of 200 m x 500 m in the x 

and y directions, respectively. This grid has 30 layers in the 

z direction with the thickness logarithmically increasing 

from 20 m to 500 m down until 5000 m depth below the 

sea bottom. The FD modeling domain was designed by 

padding all sides of the inversion domain with 8 more 

layers logarithmically increasing in size. 

The inversion was terminated when the RMS misfit reached 

about 1, which was in good agreement with the level of the 

noise in the data. Figure 4 shows an example of the 

observed and predicted data at this misfit level. Figure 5 

presents the inversion result at this misfit level. As one can 

see, we can find a very good shape of the upper part of the 

salt dome, but its bottom part cannot be recovered because 

the depth of the bottom (approximately 3000 m) is beyond 

the sensitivity of the data. This modeling study illustrates 

the practical effectiveness of the developed inversion 

algorithm based on the hybrid FD-IE method. 

Conclusions 

 

We have developed a novel 3D modeling and inversion 

approach, which combines the advantages of the finite 

difference (FD) and integral equation (IE) methods. This 

method was carefully validated by comparing the results 

with a conventional FD, a 1D semi-analytical solution, and 

a 3D IE solution. We have also developed an algorithm of 

3D inversion for MCSEM data based on the novel hybrid 

FD-IE method. The developed inversion method was 

demonstrated in synthetic model study. The inverse 

geoelectrical images produced by the hybrid FD-IE 

inversion method agree well with the true model. 
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Figure 3: Model 2. A 3D view of the salt dome structure within the 

sea-bottom sediments.  

 
Figure 4: Examples of the data fit by the MCSEM inversion based 

on a salt dome model. The red lines represent the observed data, 

while the blue lines correspond to the predicted data. 

 
Figure 5: The resistivity distribution recovered by the inversion of 

MCSEM data based on a salt dome model. The top panel shows the 

FD modeling domain and discretization grid. The bottom panel 

shows the inversion result within the inversion domain only. 
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