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Summary

This paper presents a parallelized version of thyedased
finite element method with a novel post-processing
approach for numerical modeling of an electromagnet
field in complex media. The method uses an unsiradt
tetrahedral mesh which can reduce the number afedsg
of freedom significantly. The linear system of fei
element equations is solved using parallel dirextvess
which are robust for ill-conditioned systems anficet

for multiple source electromagnetic (EM) modelinge
also introduce a novel approach to compute theascal
components of the electric field from the tangdntia
components along each edge based on field redajumin
The method can produce a more accurate result as
compared to conventional approach. We have applied
developed algorithm to compute the EM responseafor
typical 3D anisotropic geoelectrical model of tHféshore
HC reservoir with complex seafloor bathymetry. The
numerical study demonstrates that the modelingriigo

is capable of simulating the complex topography and
bathymetry that is commonly encountered in corgbll
source electromagnetic problems.

Introduction

The development of effective interpretation methdals
electromagnetic (EM) survey data requires fast and
accurate forward modeling algorithms capable ofingk
into account the true complexity of the earth ggimal
formation. This is especially important in applioas of
controlled source EM methods in mineral and oil
exploration (Ward and Hohmann, 1988; Zhdanov and
Keller, 1994; Constable and Srnka, 2007; Um and
Alumbaugh, 2007; Andréis and MacGregor, 2008;
Zhdanov, 2009; Zhdanov, 2010; Cai et al., 2014;afiod,
2010).

The finite element method is one of the mostiliile to
model the complex geoelectrical structures (Schivaiz
et al., 2011; Puzyrev et al., 2013; Cai et al.,401n the
recent years, the edge-based finite element methbith
was originally introduced by Nédélec (1980), gairtkd
interests of the geophysical community for 3D mougbf
the EM fields (Silva et al., 2012; Cai et al., 2DIPhe edge
element approach is characterized by better pregeguch
as automatic enforcement of tangential field cartjnand
divergence free condition, for the simulating of
electromagnetic field compared to the conventiorade-
based finite element method (Jin, 2002).

This paper introduces a linear edge-based figlitenent
method for EM modeling using unstructured tetrahkdr
mesh in a general 3D and anisotropic medium. Idstéa
using the conventional method to compute the scalar
components of the field, we present a novel apgprdac
projecting the tangential electric field along #dge to the
X, y andz components of the fields on the edge. The method
is based on the redatuming technique of electrostagn
data introduced by Cai and Zhdanov (2013). For EM
modeling, the tangential field along the edge can b
computed on the earth's surface and/or seaflocca@e of
marine EM). The tangential field on the surfaceermehthe
EM receiver is placed, can be used to recover ¥di&d
underground on a horizontal plane by solving thmedr
redatuming equations introduced by Cai and Zhdanov
(2013). The underdetermined linear system of eqoati
can be solved efficiently in the least square se@see the
field on the horizontal plane is estimated, one gsa it to
recompute the scalar components of the field orstiniace.
We solve the sparse edge-based finite elementrsyste
equations using two different multifrontal directiveers on
a cluster with multiple nodes. The direct solvet®vs
higher numerical accuracy and robustness for the il
conditioned system of equations over iterative edv
based on the Krylov subspace method. The developed
algorithm was tested for a 3D off-shore reservoodei
with complex seafloor bathymetry. For this compieadel,
we also consider multiple exciting sources to tlate the
effectiveness of the direct solvers.

Edge-based finite element analysis for the tetrahedral
mesh

Compared to the conventional node-based finite efem
methods which use scalar basis functions definedhen
element nodes, the edge-based finite element method
adopt the vector basis functions defined on théecef the
element. The computation domain is usually diszeeti
using either structured (such as rectangular briaks
unstructured (such as tetrahedral) mesh (Cai g2@14).
The unstructured tetrahedral element is preferred t
represent complex geometry and reduce the number of
degrees of freedom without losing accuracy.

Figure 1 is an illustration of a tetrahedralnedmit with
node and edge indexing. From the figure, one carts a
direction is assigned to each edge and it poirs fone
node to another. We denote the linear node basigifuns
as(L$, LS, L8, LS).
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Figure 1: Tetrahedral element with edge and nedi@ition.

It is shown by Jin (2002) that the vector basistion for
each edge can be represented by the node basi®fuas
follows:

Nf = (L§ VL;, — L§ VL )I¢ (1)
wherei; andi, are the first and second nodes connected to
theit" edge;l¢ is the length of the edge.

The electric field is defined at the center atle edge and
is denoted agf. The field inside the tetrahedral element
can be represented by the following equation:

E® = X5, NfEf @

It is easy to verify that the vector edge bésigtions are
divergence free but not curl free:

V-Nf =0,VXN{ #0. ?3)

The vector basis functions are also continuousha
element boundaries. As a result, the divergence fre
condition of the electric field in source free mgyiand the
continuity conditions are imposed directly in thdge-
based finite element formulation (Jin, 2002, Caiakt
2014).

The total field is decomposed into backgrouEf, and
anomalous fields to avoid the source singularitbpgm:

E = E’ + E¢, 4)

The anomalous electric field satisfies to théofeing
equation (Zhdanov 2002, 2009):

V X VX E® — iwu6E® = iwuAGE?, 5)
whereg = @, + Aa is the conductivity tensof,;, andAc
are the background and anomalous conductivity tsnso
respectively.

By substituting equation (2) into equation @hd using
Galerkin's method, one can find the weak form o th
original differential equation as follows:

Jo Ni+[VXVXE® — iwuGE® — iwpAGE"ldv =0  (6)
where( is the modeling domain.

The electric fielE&* can be represented for each element
by its tangential value on the edge using equd@)nThe
background fielcE?can be represented in a similar way.

After applying the first vector Green's theoreamge can
find the discretized form of equation (6) for eatément:
Yo lKCEE — iwpMeGoE] — iwp Toty Yoy N; -

R T
(8oL (ES B ES)') =0, @
whereK¢ andM¢ are the local stiffness matrices defined as
follows (Jin, 2002; Cai et al., 2014):

K = [, (VXNP) - (VX Nf) dv, @)

Mg = fﬂe N7 - N} dv, 9)
and(), indicates the domain for one element. The intsgral
in equations (8) and (9) can be calculated analyyidor
the tetrahedral and the second term on the leftl sade of
equation (7) can be evaluated efficiently by us@®auss
quadrature (Jin, 2002).

The linear system of equations obtained by akbeq
the local element matrices can be solved efficjentling
either modern direct or iterative solvers.

Multifrontal solver for alinear system of equations

The direct methods for the solution of the linegstem of
equations have been widely used in numerical agjbias.
These methods are based on the decomposition of the
matrix into a lower triangular and upper trianguftaom:
A=LU (10)

Once the matrix A is decomposed, the solutiorthef
linear system of equations can be obtained by usieg
forward and backward substitution method (Aschealet
2011). The direct methods are known for their nucaér
accuracy and robustness but are also charactdriz&ibh
memory consumption and large amount of computation
(Ascher et al., 2011). As such, they are often deaiin the
3D modeling of the EM problem. The right-hand safe
the finite element system of equations represdmsBM
excitation source. Once the matrix A is decompassdg
the direct method, the decomposed matrix can bseckin
the case of multiple-source problem. For iterasedrers,
the multiple-source modeling problem needs to beeso
separately for each source.

In recent years, with advances in computer teldgy
and algorithmic developments, the direct solveeslaing
reconsidered for solving the 3D EM modeling problem
(e.g., Streich, 2009). The modern direct solvers lmased
on multifrontal factorization of the stiffness matrThe
two most popular multifrontal solver libraries &d&JMPS
(Amestoy et al., 2001; 2006) and PARDISO (Scherdd.et
2001). In this paper, we will use these libraresolve the
linear system of equations and compare their paidorce.

Redatuming of the anomalous EM field

Once the projection of the anomalous fidlg, along the
edge of the tetrahedral is found, the correspongirygand
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z components of the field can be obtained eithedathe
element or on the edge by using the following eiquat

EG = X0, NPEG. (11)
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Figure 2: An illustration of redatuming for a tgpl CSEM
survey.

If the scalar components of the field are coraguin the
edges, the proper weighting functions should belieghp
since the edges may be shared by several tetraigedro
(Mukherjee and Everett, 2011). For one edge shased
several tetrahedrons, the scalar components offida:
computed on the edge from each tetrahedral usingtien
(11) usually are different from each other sincdy dhe
tangential continuity along the edge is imposethnedge-
based finite element formulation. As such, the ascal
components of the field computed by this methodd:be
very noisy, especially for the linear basis (Jid02).

Redatuming is a new concept introduced by Cal a
Zhdanov (2013) for solving the upward and downward
continuation problem of the electromagnetic fieltséd on
the Stratton-Chu type integrals (Zhdanov, 1988)isTh
method can be extended to the application of the
interpolation of the electromagnetic field.

Let us consider a typical electromagnetic sunwii the
transmitter located at some point A and the recsive
distributed over the surfacg at points with the radius-
vectorr’ (Figure 2). We introduce a horizontal plaRe
located at some depth underground (with the agisected
downward). We also assume that the background
conductivity of the earth is given ag(r); the domain with
anomalous conductivity is below plaReLet us consider a
semisphereSg , in the upper half-space with a center
located at the transmitter, poiAf and a radiuRk We will
denote the domain bounded by this semisphere gratta
Py, of the horizontal plan®, asVy. According to Cai and
Zhdanov (2013), one can write:

d-E*(r') =[], {[E¢(r'|r) x H*(r)] — [E4(r'|r) X

HY(1)]}- ds, (12)
where the fieldE¢, H%} is a background field generated in
the model with background conductivity by electdlipole
with unit momentsd, located at a point with the radius-
vectorr’, j¢ = d§(r — r') , wheres is a delta function.

Suppose that R andd is a unit vector on the surface
where the receivers are distributed. From equdfi@j), one
can see that the EM field on the surface in theation
denoted byd can be obtained if we know the distribution of
the EM field on plan®.

In a general case, the EM field on pldhés unknown
while the EM field on the surfacE (which can be the
earth's surface or seafloor) is given, since therEdgivers
are distributed on this surface. In such case,aamesolve
the inverse problem of equation (12) to estimate EHM
field behavior on plan® (Cai and Zhdanov, 2013). Once
the field is estimated on plaf one can use equation (12)
to re-compute the field on the surfagebut in a much
denser receiver distribution and in an arbitrargction.

We consider that the receiver orientation deshdig the
unit vectord is in an arbitrary direction which is the same
as the direction of the edges of the element orstinface.
The tangential field along the edge on the surfaeafloor)
will be used to estimat&r® andHZ? by solving an inverse
problem (Cai and Zhdanov, 2013). Finally, we wileu
equation (12) to recompute tlreandy components of the
electric field on the surface by setting the urgcter d
orientation in thex andy directions.

Offshore hydrocarbon reservoir model with complex
seafloor bathymetry

The developed algorithm was applied to an anisardp
reservoir model with complex seafloor bathymetriick
is shown in Figure 3. The three-layered backgroisd
formed by air, 1000 m thick seawater, and marine
sediments. The conductivities of air and seawateisat to
be 10° S/m, and 3.3 S/m respectively.

In this model, the following horizontal and veal
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Figure 3: A 3D reservoir model with a complex $aaf

bathymetry indicated by the surface. The blue zander the
surface indicates the 3D reservoir. The color sogpeesents onl
the elevation of the bathymetry.

conductivities of the marine sediments were usgds=
oy =0,=1S/m, 0, =08S/m . The horizontal and
vertical conductivities of the reservoir are set ttee
following values: g4y, = 0qx = 0y = 0.05S/ , 04, =
0.005 S/m , respectively.
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We use seven dipole sources for this model to
demonstrate the effectiveness of the direct solfarshe
problem with multiple right-hand sides. The sources
located at y=0 and z=-600 m. The computation don®in
discretized into a 3D unstructured mesh with 5 iomll
elements and 5.9 million edges. Figure 4 shows aig8y
of the tetrahedral mesh for the part of y<O gemerdiy
COMSOL. The receivers are placed directly above the
seafloor bathymetry. To better simulate the bathyyrend
to ensure high accuracy results on the receivezgefined
our mesh around the receivers and bathymetry region

Figure 5 shows the total field for these 7 différen
sources. This larger model is well suited for tlerafiel
scaling analysis that we performed on up to 16 sode
Table 1 shows the runtime and parallel scaling doth
MUMPS and MKL PARDISO, from which it can be seen
that the MKL outperforms the MUMPS by about 20%. We
have also observed parallel scaling deterioratifiar at
nodes, which was caused by decreased local proitzsn
and increased communication needs.

z(m)

9000 ¢¥*°®

Figure 4: A 3D view of the unstructured tetrahéalament for
the part of y<0.
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Figure 5: Total field for all 7 different sources.

Table 1: Runtime and parallel scaling of MKL PARED (MP)

and MUMPS (MU) for the 3D reservoir model

Runtime [sec] Parallel scaling

Nodes MP MU MP/MU MP MU
1 1098.64 | 1255.79 0.87 1.00 1.00
467.78 581.50 0.80 2.35 2.16

343.89 421.24 0.82 319 595
12 307.52 309.16 0.99 3.57 4.06
16 297.82 327.97 0.91 3.69 3.83

Conclusions

We have developed an edge-based finite elementithigo
for 3D marine CSEM modeling in an anisotropic medliu
We consider the Nédélec element with fully unstrced
tetrahedral mesh. Two different parallel multifraint
algorithms were used to solve this problem. Nunaric
results show that the multifrontal direct solvererev
accurate and robust for the ill-conditioned systeifn
equations. The direct solver also works efficientbr
solving CSEM problems with multiple transmitters.eW
have also introduced a novel approach of projectivey
tangential field along the edge to the scalar camepb of
the field. The resulting method is based on thetxgding
theory of electromagnetic field and Stratton-Chipety
integral.

The developed algorithm was tested on a modehafff-
shore HC reservoir in the presence of a complex
bathymetry. The edge-based finite element solutiofis
these models shows a good agreement with the alyt
solution and the integral equation solution. Thenarical
results also demonstrate that the proposed redagumi
method for post-processing of the finite elemehatsan is
more accurate than the conventional method. Thues, w
conclude that the developed forward modeling atboriis
capable of simulating complex bathymetry in CSEM
modeling.
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