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Summary 
 
This paper presents a parallelized version of the edge-based 
finite element method with a novel post-processing 
approach for numerical modeling of an electromagnetic 
field in complex media. The method uses an unstructured 
tetrahedral mesh which can reduce the number of degrees 
of freedom significantly. The linear system of finite 
element equations is solved using parallel direct solvers 
which are robust for ill-conditioned systems and efficient 
for multiple source electromagnetic (EM) modeling. We 
also introduce a novel approach to compute the scalar 
components of the electric field from the tangential 
components along each edge based on field redatuming. 
The method can produce a more accurate result as 
compared to conventional approach. We have applied the 
developed algorithm to compute the EM response for a 
typical 3D anisotropic geoelectrical model of the off-shore 
HC reservoir with complex seafloor bathymetry. The 
numerical study demonstrates that the modeling algorithm 
is capable of simulating the complex topography and 
bathymetry that is commonly encountered in controlled 
source electromagnetic problems.   
 
Introduction 
 
The development of effective interpretation methods for 
electromagnetic (EM) survey data requires fast and 
accurate forward modeling algorithms capable of taking 
into account the true complexity of the earth geological 
formation. This is especially important in applications of 
controlled source EM methods in mineral and oil 
exploration (Ward and Hohmann, 1988; Zhdanov and 
Keller, 1994; Constable and Srnka, 2007; Um and 
Alumbaugh, 2007; Andréis and MacGregor, 2008; 
Zhdanov, 2009; Zhdanov, 2010; Cai et al., 2014; Zhdanov, 
2010). 
   The finite element method is one of the most flexible to 
model the complex geoelectrical structures (Schwarzbach 
et al., 2011; Puzyrev et al., 2013; Cai et al., 2014). In the 
recent years, the edge-based finite element method, which 
was originally introduced by Nédélec (1980), gained the 
interests of the geophysical community for 3D modeling of 
the EM fields (Silva et al., 2012; Cai et al., 2014). The edge 
element approach is characterized by better properties, such 
as automatic enforcement of tangential field continuity and 
divergence free condition, for the simulating of 
electromagnetic field compared to the conventional node-
based finite element method (Jin, 2002). 

   This paper introduces a linear edge-based finite element 
method for EM modeling using unstructured tetrahedral 
mesh in a general 3D and anisotropic medium. Instead of 
using the conventional method to compute the scalar 
components of the field, we present a novel approach for 
projecting the tangential electric field along the edge to the 
x, y and z components of the fields on the edge. The method 
is based on the redatuming technique of electromagnetic 
data introduced by Cai and Zhdanov (2013). For EM 
modeling, the tangential field along the edge can be 
computed on the earth's surface and/or seafloor (in case of 
marine EM). The tangential field on the surface, where the 
EM receiver is placed, can be used to recover the EM field 
underground on a horizontal plane by solving the linear 
redatuming equations introduced by Cai and Zhdanov 
(2013). The underdetermined linear system of equations 
can be solved efficiently in the least square sense. Once the 
field on the horizontal plane is estimated, one can use it to 
recompute the scalar components of the field on the surface.  
We solve the sparse edge-based finite element system of 
equations using two different multifrontal direct solvers on 
a cluster with multiple nodes. The direct solvers show 
higher numerical accuracy and robustness for the ill-
conditioned system of equations over iterative solvers 
based on the Krylov subspace method. The developed 
algorithm was tested for a 3D off-shore reservoir model 
with complex seafloor bathymetry. For this complex model, 
we also consider multiple exciting sources to illustrate the 
effectiveness of the direct solvers. 
 
Edge-based finite element analysis for the tetrahedral 
mesh 
 
Compared to the conventional node-based finite element 
methods which use scalar basis functions defined on the 
element nodes, the edge-based finite element methods 
adopt the vector basis functions defined on the center of the 
element. The computation domain is usually discretized 
using either structured (such as rectangular bricks) or 
unstructured (such as tetrahedral) mesh (Cai et al., 2014). 
The unstructured tetrahedral element is preferred to 
represent complex geometry and reduce the number of 
degrees of freedom without losing accuracy.  
   Figure 1 is an illustration of a tetrahedral element with 
node and edge indexing. From the figure, one can see that a 
direction is assigned to each edge and it points from one 
node to another. We denote the linear node basis functions 
as (��� , ��� , ��� , ��� ). 
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   It is shown by Jin (2002) that the vector basis function for 
each edge can be represented by the node basis function as 
follows: 
          
�� � 
���� ���� � ���� ��������                          (1) 
where �� and �� are the first and second nodes connected to 
the ��� edge; ��� is the length of the edge. 
   The electric field is defined at the center of each edge and 
is denoted as ���. The field inside the tetrahedral element 
can be represented by the following equation:  
   �� � ∑ 
������

���                (2) 
   It is easy to verify that the vector edge basis functions are 
divergence free but not curl free:  
   � ⋅ 
�� � 0, � � 
��  !.              (3) 
   The vector basis functions are also continuous at the 
element boundaries. As a result, the divergence free 
condition of the electric field in source free region and the 
continuity conditions are imposed directly in the edge-
based finite element formulation (Jin, 2002, Cai et al., 
2014). 
   The total field is decomposed into background, �#, and 
anomalous fields to avoid the source singularity problem:  
   � � �# $ �% ,               (4) 
   The anomalous electric field satisfies to the following 
equation (Zhdanov 2002, 2009): 
          � � � � �% � �&'()�% � �&'Δ()�# ,             (5) 
where () � ()# $ Δ() is the conductivity tensor; ()#  and Δ() 
are the background and anomalous conductivity tensors, 
respectively. 
   By substituting equation (2) into equation (5), and using 
Galerkin's method, one can find the weak form of the 
original differential equation as follows: 

 + 
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where Ω is the modeling domain. 
 
   The electric field �% can be represented for each element 
by its tangential value on the edge using equation (2). The 
background field �#can be represented in a similar way.  

   After applying the first vector Green's theorem, one can 
find the discretized form of equation (6) for each element: 
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where 2� and 3� are the local stiffness matrices defined as 
follows (Jin, 2002; Cai et al., 2014): 
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and Ω� indicates the domain for one element. The integrals 
in equations (8) and (9) can be calculated analytically for 
the tetrahedral and the second term on the left hand side of 
equation (7) can be evaluated efficiently by using Gauss 
quadrature (Jin, 2002).  
   The linear system of equations obtained by assembling 
the local element matrices can be solved efficiently using 
either modern direct or iterative solvers. 
 
Multifrontal solver for a linear system of equations 
 
The direct methods for the solution of the linear system of 
equations have been widely used in numerical applications. 
These methods are based on the decomposition of the 
matrix into a lower triangular and upper triangular form: 
             E � FG             (10) 
   Once the matrix A is decomposed, the solution of the 
linear system of equations can be obtained by using the 
forward and backward substitution method (Ascher et al., 
2011). The direct methods are known for their numerical 
accuracy and robustness but are also characterized by high 
memory consumption and large amount of computation 
(Ascher et al., 2011). As such, they are often avoided in the 
3D modeling of the EM problem. The right-hand side of 
the finite element system of equations represents the EM 
excitation source. Once the matrix A is decomposed using 
the direct method, the decomposed matrix can be reused in 
the case of multiple-source problem. For iterative solvers, 
the multiple-source modeling problem needs to be solved 
separately for each source. 
   In recent years, with advances in computer technology 
and algorithmic developments, the direct solvers are being 
reconsidered for solving the 3D EM modeling problem 
(e.g., Streich, 2009). The modern direct solvers are based 
on multifrontal factorization of the stiffness matrix. The 
two most popular multifrontal solver libraries are MUMPS 
(Amestoy et al., 2001; 2006) and PARDISO (Schenk et al., 
2001). In this paper, we will use these libraries to solve the 
linear system of equations and compare their performance. 
 
Redatuming of the anomalous EM field 
 
Once the projection of the anomalous field, �%, along the 
edge of the tetrahedral is found, the corresponding x, y and 

Figure 1:  Tetrahedral element with edge and node definition. 
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z components of the field can be obtained either inside the 
element or on the edge by using the following equation: 
   �%� � ∑ 
���%���

��� .             (11) 
 

   If the scalar components of the field are computed on the 
edges, the proper weighting functions should be applied 
since the edges may be shared by several tetrahedrons 
(Mukherjee and Everett, 2011). For one edge shared by 
several tetrahedrons, the scalar components of the field 
computed on the edge from each tetrahedral using equation 
(11) usually are different from each other since only the 
tangential continuity along the edge is imposed in the edge-
based finite element formulation. As such, the scalar 
components of the field computed by this method could be 
very noisy, especially for the linear basis (Jin, 2002). 
    Redatuming is a new concept introduced by Cai and 
Zhdanov (2013) for solving the upward and downward 
continuation problem of the electromagnetic field based on 
the Stratton-Chu type integrals (Zhdanov, 1988). This 
method can be extended to the application of the 
interpolation of the electromagnetic field.   
   Let us consider a typical electromagnetic survey with the 
transmitter located at some point A and the receivers 
distributed over the surface ∑  at points with the radius-
vector H′  (Figure 2). We introduce a horizontal plane P 
located at some depth underground (with the axis z directed 
downward). We also assume that the background 
conductivity of the earth is given as J#(H); the domain with 
anomalous conductivity is below plane P. Let us consider a 
semisphere, KL , in the upper half-space with a center 
located at the transmitter, point A, and a radius R. We will 
denote the domain bounded by this semisphere and a part 
ML, of the horizontal plane P, as NL. According to Cai and 
Zhdanov (2013), one can write: 

O ⋅ �%(HP) � ∬ R,�S(HP|H) � U%(H)- � ,�%(HP|H) �V
US(H)-W ⋅ .X,               (12) 
where the field R�S , USW is a background field generated in 
the model with background conductivity by electric dipole 
with unit moments d, located at a point with the radius-
vector HP, YS � Oδ(H � H′) , where δ is a delta function. 

   Suppose that R→∞ and d is a unit vector on the surface 
where the receivers are distributed. From equation (12), one 
can see that the EM field on the surface in the direction 
denoted by d can be obtained if we know the distribution of 
the EM field on plane P. 
   In a general case, the EM field on plane P is unknown 
while the EM field on the surface Σ (which can be the 
earth's surface or seafloor) is given, since the EM receivers 
are distributed on this surface. In such case, one can solve 
the inverse problem of equation (12) to estimate the EM 
field behavior on plane P (Cai and Zhdanov, 2013). Once 
the field is estimated on plane P, one can use equation (12) 
to re-compute the field on the surface Σ but in a much 
denser receiver distribution and in an arbitrary direction.  
   We consider that the receiver orientation denoted by the 
unit vector d is in an arbitrary direction which is the same 
as the direction of the edges of the element on the surface. 
The tangential field along the edge on the surface (seafloor) 
will be used to estimate �[V% and U[V% by solving an inverse 
problem (Cai and Zhdanov, 2013). Finally, we will use 
equation (12) to recompute the x and y components of the 
electric field on the surface by setting the unit vector d 
orientation in the x and y directions.  
 
Offshore hydrocarbon reservoir model with complex 
seafloor bathymetry 
 
The developed algorithm was applied to an anisotropic 3D 
reservoir model with complex seafloor bathymetry, which 
is shown in Figure 3. The three-layered background is 
formed by air, 1000 m thick seawater, and marine 
sediments. The conductivities of air and seawater are set to 
be 10⁻⁶ S/m, and 3.3 S/m respectively. 
   In this model, the following horizontal and vertical 

conductivities of the marine sediments were used: J� �
J8 � J9 � 1	S/m , J: � 0.8	S/m . The horizontal and 
vertical conductivities of the reservoir are set to the 
following values: J%� � J%8 � J%9 � 0.05	S/ , J%: �
0.005	S/m , respectively.    

 
Figure 2:  An illustration of redatuming for a typical CSEM 
survey. 

 
Figure 3:  A 3D reservoir model with a complex seafloor 
bathymetry indicated by the surface. The blue zone under the 
surface indicates the 3D reservoir. The color scale represents only 
the elevation of the bathymetry. 
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We use seven dipole sources for this model to 
demonstrate the effectiveness of the direct solvers for the 
problem with multiple right-hand sides. The sources are 
located at y=0 and z=-600 m. The computation domain is 
discretized into a 3D unstructured mesh with 5 million 
elements and 5.9 million edges. Figure 4 shows a 3D view 
of the tetrahedral mesh for the part of y<0 generated by 
COMSOL. The receivers are placed directly above the 
seafloor bathymetry. To better simulate the bathymetry and 
to ensure high accuracy results on the receivers, we refined 
our mesh around the receivers and bathymetry region.      

Figure 5 shows the total field for these 7 different 
sources. This larger model is well suited for the parallel 
scaling analysis that we performed on up to 16 nodes. 
Table 1 shows the runtime and parallel scaling for both 
MUMPS and MKL PARDISO, from which it can be seen 
that the MKL outperforms the MUMPS by about 20%. We 
have also observed parallel scaling deterioration after 4 
nodes, which was caused by decreased local problem size 
and increased communication needs.  

 

 

 

Table 1:  Runtime and parallel scaling of MKL PARDISO (MP) 
and MUMPS (MU) for the 3D reservoir model  

 

 Runtime [sec]  Parallel scaling 

Nodes MP MU MP/MU MP MU 

1 1098.64 1255.79 0.87 1.00 1.00 

4 467.78 581.50 0.80 2.35 2.16 

8 343.89 421.24 0.82 3.19 2.98 

12 307.52 309.16 0.99 3.57 4.06 

16 297.82 327.97 0.91 3.69 3.83 

 
Conclusions 
 
We have developed an edge-based finite element algorithm 
for 3D marine CSEM modeling in an anisotropic medium. 
We consider the Nédélec element with fully unstructured 
tetrahedral mesh. Two different parallel multifrontal 
algorithms were used to solve this problem. Numerical 
results show that the multifrontal direct solvers were 
accurate and robust for the ill-conditioned system of 
equations. The direct solver also works efficiently for 
solving CSEM problems with multiple transmitters. We 
have also introduced a novel approach of projecting the 
tangential field along the edge to the scalar component of 
the field. The resulting method is based on the redatuming 
theory of electromagnetic field and Stratton-Chu type 
integral.  
   The developed algorithm was tested on a model of an off-
shore HC reservoir in the presence of a complex 
bathymetry. The edge-based finite element solutions of 
these models shows a good agreement with the analytical 
solution and the integral equation solution. The numerical 
results also demonstrate that the proposed redatuming 
method for post-processing of the finite element solution is 
more accurate than the conventional method. Thus, we 
conclude that the developed forward modeling algorithm is 
capable of simulating complex bathymetry in CSEM 
modeling. 
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Figure 4:  A 3D view of the unstructured tetrahedral element for 
the part of y<0. 

 
Figure 5:  Total field for all 7 different sources. 
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