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Summary 

 

This paper demonstrates that an ellipsoidal model of the 

generalized effective-medium theory of induced 

polarization (GEMTIP) can be used to effectively invert 

complex resistivity (CR) data into petrophysical parameters 

of rocks, including matrix resistivity, volume fraction, etc. 

The inversion of the CR data has proven to be very 

challenging due to the nonuniqueness and instability of this 

problem. This paper introduces a new hybrid method based 

on a genetic algorithm with simulated annealing and 

regularized conjugate gradient minimization (SAAGA-

RCG). This fast and effective approach combines the 

advantages of both the SAAGA and RCG methods and 

converges into the global minimum. The case study 

presents the results of inversion of the observed CR data 

and their comparison with a QEMSCAN analysis for 

representative mineral rock samples. 

 

Introduction 

 

The induced polarization (IP) effect has been used in 

mineral exploration (e.g., Pelton et al., 1978; Nelson, 1997) 

and in oil and gas prospecting for a long time (e.g., Zonge 

and Wynn, 1975; Pelton et al., 1978; Vanhala, 1997). 

Zhdanov (2008) introduced the generalized effective-

medium theory of induced polarization (GEMTIP) using a 

rigorously formulated complex resistivity (CR) model to 

describe the relationships between the resistivity of the 

multiphase heterogeneous rocks and their petrophysical and 

structural properties. 

The GEMTIP model can be used to study the petrophysical 

properties of rocks by inverting the CR data for the 

GEMTIP parameters. The inversion of CR data is a very 

challenging task because of the nonuniqueness and 

instability of this inverse problem. In this paper, we 

introduce a hybrid approach to inversion of the CR data for 

GEMTIP model parameters by combining the genetic 

algorithm with simulated annealing -- SAAGA -- at the 

initial phase of the iterative inversion with the regularized 

conjugate gradient (RCG) method at the final stage for 

rapid convergence to the global minimum. We demonstrate 

that the novel hybrid inversion algorithm is faster and more 

effective than the original SAAGA method, and it 

converges rapidly into the global minimum. We present a 

case study of inverting the observed CR data and a 

comparison of the results of the inversion with the 

QEMSCAN analysis of representative mineral rock 

samples. 

 

GEMTIP model of a three-phase medium with 

ellipsoidal inclusions 

 

The pertrophysical properties of the rock samples were 

analyzed using the GEMTIP model, developed by Zhdanov 

(2008). This theory makes it possible to present the 

effective resistivity as the function of geometrical and IP 

parameters of the rock - volume fraction of grains (𝑓 ), 

average grain size (𝑎), ellipticity of the grains (𝑒), matrix 

resistivity (𝜌0), time constant (𝜏), and decay coefficient (𝐶). 

In the case of a three-phase medium with ellipsoidal 

inclusions, the GEMTIP model can be described by the 

following formula: 
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where 𝑎𝑙̅ is an average value of the equatorial (𝑎𝑙𝑥 and 𝑎𝑙𝑦) 

and polar ( 𝑎𝑙𝑧 ) radii of the ellipsoidal grains. The 

coefficients 𝛾𝑙𝛼 and 𝜆𝑙𝛼  are the structural parameters 

defined by geometrical characteristics of the ellipsoidal 

inclusions (Zhdanov et al., 2009). 

 

The GEMTIP equation (1) can be used to obtain the 

nonlinear relationships between the CR data and the 

GEMTIP parameters, which in compact form can be 

written as the following operator equation: 

𝐝 = 𝐆𝐼𝑃(𝐦).                                (2) 

In the last formula we denote by m the vector of the 

unknown model parameters, 

𝐦 = [𝜌0, 𝑒1, 𝜏1, 𝐶1, 𝑓1, 𝑒2, 𝜏2, 𝐶2, 𝑓2],              (3) 

and vector d of the observed data is formed by the values of 

the CR resistivity at different frequencies, 𝜌𝑒𝑖 = 𝜌𝑒(𝜔𝑖) 
One has to solve the inverse problem (2) in order to find the 

GEMTIP parameters from the CR data. 

 

Adaptive genetic algorithm with simulated annealing 

(SAAGA) 

 

This section summarizes the adaptive genetic algorithm 

with simulated annealing (SAAGA). The SAAGA method 

is an iterative solver, which generates the best solution 

from the solution set (population) on each iteration using 

the genetic and annealing operations. The detailed steps of 

the SAAGA method are as follows: 

 

1. Misfit functional 

The GEMTIP inversion is based on minimization of the 

following misfit functional: 

𝜑(𝐦) = ‖𝐝 − 𝐆𝐼𝑃(𝐦)‖2 = min,                (4) 
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where a standard least-square norm is used; m is the vector 

of unknown GEMTIP parameters (3), and d is the vector of 

observed CR data. 

 

2. Search subspace and search interval 

The search subspace is selected from the model parameter 

space by determining the lower and upper bounds of the 

scalar components 𝑚𝑖  of model m, 𝑚𝑖
−  and 𝑚𝑖

+ , 

respectively. The search intervals, [𝑚𝑖
− , 𝑚𝑖

+ ], for every 

scalar component, 𝑚𝑖 , are divided into 2𝑁𝑖  segments, 

where numbers 𝑁𝑖  determine the total number of free 

parameters in the search subspace. In this paper, we use 

𝑁𝑖=10, i=1,2,3,4, which means that the search space of 

each GEMTIP parameter is divided into 210 segments.  

 

3. Selection of initial population and individuals 

A possible solution (called an individual) is randomly 

generated from the search subspaces for each GEMTIP 

parameter. Following the conventional technique of the GA 

algorithm, each scalar parameter, 𝑚𝑖 , is encoded into the 

binary number. Then all the binary numbers for different 

scalar components of the vector m are connected into a 

string to form a binary representation of each individual.  

Finally the above steps are repeated Q times, obtaining Q 

individuals, 𝐦(𝑘), k=1,2,...,Q, to form the initial population.  

 

4. Fitness function 

The fitness function is defined by the following expression: 

𝑓(𝑘) = 1/∑𝑒
𝜑(𝑘)−𝜑(𝑙)

2𝜎

𝑄

𝑙=1

,                        (5) 

where 𝑘=1,2,...,Q, 𝜑(𝑘) = 𝜑(𝐦(𝑘)) is the misfit functional 

for the individual 𝐦(𝑘); and 𝜎 is the standard deviation of 

𝜑(𝑘) over the entire initial population. 

 

5. Selection 

The "roulette rule" is used to determine which individual 

should be selected. The chances are higher for the 

individuals which have larger fitness values. In the first 

step of this process, the fitness function is normalized as 

follows: 

𝑓(𝑘) =
𝑓(𝑘)

∑ 𝑓(𝑘)𝑄
𝑘=1

.                           (6) 

In the second step, the "roulette" space for each individual 

is defined by the following function: 

𝑠(𝑘) =∑𝑓(𝑗)

𝑘

𝑗=1

.                             (7) 

In the third step, a randomly generated number a (0 ≤ 𝑎 ≤
1) is used to determine the reproduction chance for each 

individual. If 𝑠(𝑘) ≤ 𝑎 < 𝑠(𝑘), then the kth individual will 

be selected. This step is repeated Q times to form a new 

generation with the same population size. 

 

6. Crossover and mutation 

In the framework of the GA method a new population is 

produced from the initial population by crossover and 

mutation operations (Whitley, 1994). It is well known that 

moderately large values of crossover probability, 𝑃𝑐 

(0.5 < 𝑃𝑐 < 1), and small values of mutations probability, 

𝑃𝑚  (0.001 < 𝑃𝑚 < 0.05), are essential for the successful 

work of the GA methods. We also apply the adaptive 

genetic algorithm by adjusting the probabilities of 

crossover and mutation in each iteration (Srinivas and 

Patnaik, 1994). 

 

7. Annealing operation 

It is known that the convergence of the GA algorithm could 

be very slow. To overcome this difficulty, we have 

introduced the adaptive genetic algorithm combined with 

the simulated annealing (SA) method (Kirkpatrick et al., 

1983), which can be described by the following steps: 

a) Generate a new model set, 𝐦(𝑛+1) = 𝐦(𝑛) + ∆𝐦, where 

𝐦(𝑛) is the solution produced by the GA; and ∆𝐦 is the 

perturbation (step) of this solution. A random search is 

applied to the current model 𝐦(𝑛)  to produce the model, 

𝐦(𝑛+1). 

b) Calculate the fitness difference (∆𝑡) between the new 

model and the current model: 

∆𝑡 = 𝑓(𝐦(𝑛+1)) − 𝑓(𝐦(𝑛)),                  (8) 

where f is the fitness function. 

c) If ∆𝑡 > 0 , then we accept the new model 𝐦(𝑛+1) ; 

otherwise we accept this new model if: 

𝑎 < 𝑒∆𝑡/𝑇𝑒 ,                                (9) 

where a is a random number generated from [0,1]; and 𝑇𝑒 is 

the parameter of the SA method called initial temperature.  

d) In a simulated annealing method, one usually considers 

two additional parameters called cooling velocity: number 

of iterations, 𝑁𝑆 , before the step, ∆𝐦 , is adjusted; and 

number of iterations, 𝑁𝑇 , before the temperature, 𝑇𝑒 , is 

reduced. After the SA iterations reach the second cooling 

velocity, 𝑁𝑇 , the temperature, 𝑇𝑒 , is reduced according to 

the following formula: 

𝑇𝑒 = 𝜆𝑇𝑇𝑒,                                (10) 

where 𝜆𝑇 is the temperature reduction factor. We use 𝑁𝑇=2 

and 𝜆𝑇=0.85. 

 

Regularized SAAGA method 

 

The original formulation of the SAAGA method presented 

above was based on the direct minimization of the misfit 

functional (4) between the observed and predicted data. 

However, the GEMTIP inverse problem is ill-posed and 

minimization of the misfit between the observed and 

predicted data may result in an unstable solution (Zhdanov, 

2002). In order to overcome the ill-posedness of the 

inversion, we apply the SAAGA method for minimization 
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of the Tikhonov parametric functional with the minimum 

norm stabilizer, 

𝑃𝛼(𝐦) = ‖𝐝 − 𝐆𝐼𝑃(𝐦)‖2 + 𝛼‖𝐖𝑚𝐦−𝐖𝑚𝐦𝑎𝑝𝑟‖
2
, 

               (11) 

where 𝛼 is a regularization parameter, 𝐖𝑚 is the weighting 

matrix of the model parameters, and 𝐦𝑎𝑝𝑟 is some a priori 

model selected based on all available rock physics data for 

the rock sample under consideration (Zhdanov, 2002). 

A simple probabilistic interpretation of this approach is that, 

by using the Tikhonov parametric functional in the 

framework of the SAAGA method, we increase 

significantly the chances of selection for those individuals, 

whose GEMTIP parameters are close to the a priori model. 

Another important characteristic of the developed method 

is that the initial population has a normal distribution with 

the mean values close to the a priori values of the GEMTIP 

model parameters.  

We apply the regularized adaptive genetic algorithm with 

simulated annealing (SAAGA) on the first phase of the 

solution of the GEMTIP inverse problem in order to 

overcome the presence of the local minima of the misfits 

functional. However, it is well known that the convergence 

of the GA and SA methods can be very slow. In order to 

speed up the convergence, we apply the regularized 

conjugate gradient method in the second phase of the 

iterative inversion to make the solution converge into a 

global minimum. 

The stopping criterion for the first phase of the inversion is 

based on the condition that the difference of the misfits 

between the last several iterations is smaller than a given 

threshold value, e. Once the best individual from the 

population is "mature" enough to satisfy stopping criterion 

above, we apply the regularized conjugate gradient method 

to determine the global minimum. 

 

Regularized conjugate gradient (RCG) method 

 

The regularized conjugate gradient (RCG) method is an 

iterative process of finding the minimum of the parametric 

functional (11), by updating the model parameters on each 

iteration using conjugate gradient direction, 𝐥𝛼̃ , according 

to the following formula: 

𝐦𝑛+1 = 𝐦𝑛 + 𝛿𝐦 = 𝐦𝑛 − 𝑘𝑛
𝛼̃𝐥𝛼̃(𝐦𝑛).        (12) 

The conjugate gradient directions are given by the 

expression: 

𝐥𝛼̃(𝐦𝑛+1) = 𝐥𝛼(𝐦𝑛) + 𝛽𝑛
𝛼𝐥𝛼̃(𝐦𝑛−1),          (13) 

In the initial step we use the direction of the regularized 

steepest ascent: 

𝐥𝛼̃(𝐦0) = 𝐥𝛼(𝐦0),                         (14) 

The step length 𝑘𝑛
𝛼̃  is calculated based on the linear line 

search of the minimum of the corresponding parametric 

functional: 

𝑃𝛼(𝐦𝑛+1) = 𝑃𝛼[𝐦𝑛 − 𝑘𝑛
𝛼̃𝐥𝛼̃(𝐦𝑛)] = Φ(𝑘𝑛

𝛼̃) = min. 

               (15) 

Thus, the step length 𝑘𝑛
𝛼̃  can be determined based on the 

following expression: 

𝑘𝑛
𝛼̃ =

(𝐥𝑛
𝛼̃ , 𝐥𝑛

𝛼)

‖𝐅𝑛𝐥𝑛
𝛼̃‖

2
+ 𝛼‖𝐖𝑚𝐥𝑛

𝛼̃‖
2,                 (16) 

The coefficients 𝛽𝑛
𝛼 are computed as follows: 

𝛽𝑛
𝛼 = ‖𝐥𝛼(𝐦𝑛)‖

2/‖𝐥𝛼(𝐦𝑛−1)‖
2.              (17) 

The numerical scheme of the RCG method can be found in 

Zhdanov (2002) 

 

Synthetic model study 

 

The synthetic data set was obtained from the forward 

modeling considering a model formed by a homogeneous 

host rock filled with two types of grains with two grain 

sizes. It comprises a rock matrix with a resistivity of 200 

Ohm-m and two inclusions with grain ellipticity of 1.0 and 

4.0, respectively. The known values of the time constant, 

relaxation parameter, and the volume fraction of these two 

inclusions are 0.01, 0.9, 15% and 0.9, 0.9, 10%, 

respectively. The stopping criterion is set as the misfit of 

the imaginary effective resistivity is less than 0.5%. 

 

 

The inversion stopped at the total iteration number of 228 

(computation time = 220 s) with 0.48% misfit. Figure 1 

presents both the synthetic and predicted resistivity curves 

for the three-phase ellipsoidal GEMTIP model plotted 

against frequency. Figure 2 shows the misfit plot of the 

imaginary resistivity versus the iteration number. The 

recovered GEMTIP parameters are very close to the true 

values, and the fitting of the synthetic data by the predicted 

data is good. Thus, the synthetic model study demonstrates 

 
 

Figure 1:  The plots of the synthetic observed and predicted CR 

data. Panel (a) shows the real part of the CR data, while panel 

(b) presents the imaginary CR plot. 
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that the hybrid SAAGA algorithm with RCG method 

provides a robust solution of the inverse problem. 

 

 

Case study 

 

This section analyzes the experimental data obtained from a 

rock sample provided by the CEMI at the University of 

Utah. The complex resistivity data were measured over a 

frequency range from 10⁻² to 103 Hz. Also, the sample has 

been analyzed by the QEMSCAN system at the Department 

of Geology and Geophysics at the University of Utah to 

determine a variety of quantitative parameters of rock 

samples including the mineral distribution, volume fraction 

of different mineral grains, etc. 

The rock sample was collected from a Cu-Au porphyry 

deposit. Figure 3, panel (a) shows a representative section 

of this sample produced by the QEMSCAN system. This 

sample contains 0.18% bornite, 0.13% chalcopyrite, and 

6.64% pyrite. The two main grains in this sample are 

chalcopyrite and pyrite, which are shown by orange and 

yellow colors, respectively, in the section. It is known that 

bornite does not usually produce any IP effect; thus, the 

major sources of the IP response are the grains of pyrite 

and chalcopyrite with a total volume fraction of 6.77%.  

 

The hybrid SAAGA algorithm with the RCG method was 

applied to recover the GEMTIP parameters for this sample. 

Figure 4 presents the plots of the observed and predicted 

imaginary parts of the CR data produced by the hybrid 

approach. Table 1 summarizes the inversion results for the 

final misfit of 3.5%. Note that, the difference between the 

recovered by GEMTIP inversion volume fractions and the 

results of the QEMSCAN analysis is below 2%. 

 

 

𝜌0(Ω ∙ 𝑚) 470.96 

Grain 1: Pyrite Grain 2: Chalcopyrite 

𝑒1 3.72 𝑒2 1.83 

𝜏1(𝑠) 5.46 𝜏2(𝑠) 0.03 

𝐶1 0.41 𝐶2 0.64 

𝑓1(%) 4.58 𝑓2(%) 1.80 
 

Table 1: GEMTIP inversion results for the rock sample obtained 

using the hybrid regularized SAAGA algorithm with RCG method. 

 

Conclusion 

 

The three-phase ellipsoidal generalized effective-medium 

theory of induced polarization (GEMTIP) can be used to 

interpret the IP effect for multiphase rocks by inverting the 

complex resistivity (CR) data into the rock's induced 

polarization parameters. In this paper we have developed a 

novel hybrid approach which combines the SAAGA 

algorithm with the regularized conjugate gradient (RCG) 

method and is based on the minimization of the Tikhonov 

parametric functional, and the normal distribution for the 

initial population. The model and case studies indicate that 

this novel approach combines the advantages of both the 

SAAGA method and the RCG method, and the inversion 

converges rapidly into the global minimum. 
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Figure 2:  The convergence plot of the misfit functional versus 

the iteration number for the GEMTIP inversion using the 

hybrid of the regularized SAAGA algorithm with the RCG 

method. 

 
 

Figure 3:  A representative section of the rock sample produced 

by the QEMSCAN system. Panel (a) shows the entire image of 

the analyzed section. Panel (b) presents the name and % of the 

corresponding minerals. 

 
 

Figure 4:  Plots of the observed and predicted imaginary parts 

of the CR spectrum obtained using the hybrid regularized 

SAAGA algorithm with the RCG method. 
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