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Summary 

 

Gravity and gravity gradiometry surveys have been 

widely used in mineral and petroleum exploration. 

Borehole gravity measurements can help to detect a deep 

target, which is of importance in studying both  mineral and 

hydrocarbon (HC) deposits. Joint interpretation of surface 

and borehole gravity data can provide more insight about 

the subsurface geological structures than separate surface 

and borehole data. The major goal of this joint 

interpretation is to produce a 3D density distribution under 

the area of the a surface survey and in the vicinity of a 

borehole. This paper develops a novel approach to solving 

this problem based on the concept of potential field 

migration, which produces images of the subsurface density 

distribution. By applying the migration iteratively, we can 

generate a rigorous inverse model of the density 

distribution. The method is illustrated by the joint 

migration of the borehole and surface data for a set of 

representative density models. 

 

Introduction 

 

Gravity gradiometry has become widely used in 

geophysical exploration since it can provide an independent 

measurement of subsurface density distribution. The 

advantage of gravity gradiometry over other gravity 

methods is that the data are extremely sensitive to local 

density anomalies within regional geological formations 

(Wan and Zhdanov, 2008). The high-quality data can be 

acquired from either airborne, ground, or marine platforms 

over very large areas for relatively low cost. 

However, the sensitivity of the gravity field is inverse 

proportional to the square of the distance. Making use of 

borehole gravity measurements can significantly improve 

the inversion result. Borehole gravity measurements were 

pioneered by Smith (1950) and then applied to problems of 

reservoir evaluation by McCulloh et al. (1968). Unlike the 

shallower-sensing density log, the borehole gravimeter is 

insensitive to wellbore conditions such as rugosity and the 

presence of casing. The first-generation BHGMs (Borehole 

Gravity Meters) were limited to large-diameter, near-

vertical boreholes and were deployed in wells for 

hydrocarbon (HC) exploration. The second-generation 

BHGM has been developed for mining and geotechnical 

applications (Nind et al. 2007; 2013). Prototype borehole 

gravity gradiometers have since been developed by 

Gravitec (e.g., Golden et al., 2007) and Lockheed Martin 

(DiFrancesco, 2007). 

Several researchers have suggested to making joint use 

of the borehole and the surface data to improve the results 

of interpretation (e.g., Cao et al., 2013) and helping to 

overcome the narrower frequency bandwidth of the surface 

seismic data. Li and Oldenburg (2000) used 3D inversion 

of the surface and borehole magnetic data jointly to better 

define the deep target. Krahenbuhl and Li (2008) and Sun 

and Li (2010) conducted a feasibility study of the joint 

inversion of the surface and borehole gravity data. Also, 

Rim and Li (2010) and Liu and Zhdanov (2011) 

demonstrated the capability of interpretation the gravity 

and gravity gradiometry data from a single borehole. 

In this paper we introduce a novel approach to the joint 

interpretation of the surface and borehole gravity data 

based on the concept of the potential field migration, which 

provides fast imaging of the subsurface target (Zhdanov, 

2002, 2015; Zhdanov et al. 2010, 2011). This paper 

develops a method of joint migration of the surface and 

borehole gravity data. The method is illustrated by the joint 

migration of the borehole and surface data for a set of the 

representative density models. 

 

Migration of the surface gravity and gravity tensor 

fields and 3D density imaging 

 

It is well known that the gravity field can be expressed 

by the gravity potential U(r) as follows: 𝒈(𝐫) = ∇𝑈(𝐫) .                                   

The second spatial derivatives of the gravity potential U(r), 

𝒈𝛼𝛽(𝐫) =
𝜕2

𝜕𝛼𝜕𝛽
𝑈(𝐫),      𝛼, 𝛽 = 𝑥, 𝑦, 𝑧 

form a symmetric gravity tensor: 

�̂� = [

𝑔𝑥𝑥 𝑔𝑥𝑦 𝑔𝑥𝑧

𝑔𝑦𝑥 𝑔𝑦𝑦 𝑔𝑦𝑧

𝑔𝑧𝑥 𝑔𝑦𝑦 𝑔𝑧𝑧

], 

Let us assume that we have observed some component 

of the surface gravity field 𝒈𝛼
𝑆 (𝐫) and/or some surface 

gravity gradients  𝒈𝛼𝛽
𝑆 (𝐫) over an observational surface S, 

located in the air or on the ground. The problem is to 

determine the 3D density distribution, ρ(r′), under the 

ground. 

The surface migration gravity field, 𝒈𝛼
𝑆𝑚(𝐫) , is 

introduced as a result of application of the adjoint gravity 

operator, 𝑨𝛼
𝑆∗, to the observed component of the surface 

gravity field 𝒈𝛼
𝑆 (𝐫): 

𝒈𝛼
𝑆𝑚(𝐫) = 𝑨𝛼

𝑆∗𝒈𝛼
𝑆                                        (1) 

where the adjoint operator 𝑨𝛼
𝑆∗ for the gravity problem  is 

equal to: 
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𝑨𝛼
𝑆∗(𝑓) = ∬

𝑓(𝐫)

|𝐫′−𝐫|3
𝐾𝛼(𝐫′ − 𝐫)𝑑𝑠

𝑆
,            (2) 

where the kernels are equal to 𝐾𝛼(𝐫′ − 𝐫) = 𝛼′ − 𝛼 , 

𝛼 = 𝑥, 𝑦, 𝑧. 

From the physical point of view, the migration field is 

obtained by moving the sources of the observed gravity 

field above the observational surface. Nevertheless, the 

migration field contains some remnant information about 

the original sources of the gravity anomaly. That is why it 

can be used in imaging the sources of the gravity field. 

    In a similar way, we can introduce a surface migration 

gravity tensor field 𝒈𝛼𝛽
𝑆𝑚(𝐫) and use the following notations 

for the components of this tensor field: 

𝒈𝛼𝛽
𝑆𝑚(𝐫) = 𝑨𝛼𝛽

𝑆∗ 𝒈𝛼𝛽
𝑆 ,                                  (3) 

where the adjoint operators, 𝑨𝛼𝛽
𝑆∗ , applied to some function 

f(r), are given by the formulas: 

𝑨𝛼𝛽
𝑆∗ (𝑓) = ∬

𝑓(𝐫)

|𝐫′−𝐫|3
𝐾𝛼𝛽(𝐫′ − 𝐫)𝑑𝑠

𝑆
,            (4) 

where the kernels, Kαβ are equal to 

𝐾𝛼𝛽(𝒓′ − 𝒓) = {
3

(𝛼−𝛼′)(𝛽−𝛽′)

|𝐫′−𝐫|2 ,   𝛼 ≠ 𝛽

3
(𝛼−𝛼′)

|𝐫′−𝐫|2 − 1,   𝛼 = 𝛽
 , 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧. 

We should note, however, that the direct migration of the 

observed gravity and/or gravity tensor fields does not 

produce an adequate image of the subsurface density 

distribution because the migration fields rapidly attenuate 

with the depth, as one can see from expressions (2) and (4). 

In order to image the sources of the gravity fields at their 

correct location, one should apply an appropriate spatial 

weighting operator to the migration fields. This weighting 

operator is constructed based on the integrated sensitivity 

of the data to the density. 

We can find a distribution of the density of the gravity 

field sources, described by the following expression: 

𝝆𝛼
𝑆𝑚(𝐫) = 𝑘𝛼

𝑆 (𝒘𝛼
𝑆 (𝑧))

−2
𝒈𝛼

𝑆𝑚,                      (5) 

where 𝝆𝛼
𝑆𝑚 is called a migration density. 

The unknown coefficient kα can be determined by a 

linear line search (Zhdanov, 2002; 2015) according to the 

following: 

𝑘𝛼
𝑆 =

‖𝑨𝛼
𝑤∗𝒈𝛼

𝑆 ‖
𝑀

2

‖𝑨𝛼
𝑤𝑨𝛼

𝑤∗𝒈𝛼
𝑆 ‖

𝐷

2  ,   𝑨𝛼
𝑤 = 𝑨𝛼

𝑆 𝑾𝛼
−1 ,  

and the linear weighting operator Wm=Wα is selected as a 

linear operator of multiplication of the density ρ by a 

function, wα; equal to the square root of the integrated 

sensitivity of the gravity field, Sα. 

In a similar way, we can introduce a migration density 

based on the gravity tensor migration: 

𝝆𝛼𝛽
𝑆𝑚(𝐫) = 𝑘𝛼𝛽

𝑆 (𝒘𝛼𝛽
𝑆 (𝑧))

−2
𝒈𝛼𝛽

𝑆𝑚,                      (6) 

where: 

𝑘𝛼𝛽
𝑆 =

‖𝑨𝛼𝛽
𝑤∗ 𝒈𝛼𝛽

𝑆 ‖
𝑀

2

‖𝑨𝛼𝛽
𝑤 𝑨𝛼𝛽

𝑤∗𝒈𝛼𝛽
𝑆 ‖

𝐷

2  

Functions 𝒘𝛼𝛽
𝑆  are equal to the square root of the 

integrated sensitivity of the gravity tensor fields, 𝑺𝛼𝛽
𝑆 , 

respectively.                         

   A tensor field migration density, defined by expression 

(6) is proportional to the magnitude of the weighted tensor 

migration field 𝒈𝛼𝛽
𝑆𝑚 . Thus, migration transformation 

provides a stable algorithm for calculating migration 

density.  

 

Migration of the borehole gravity and gravity tensor 

fields and 3D density imaging 

 

Let us assume that we have observed some component 

of the borehole gravity field 𝒈𝛼
𝐵(𝐫) and/or some borehole 

gravity gradients 𝒈𝛼𝛽
𝑆 (𝐫)  along an observational line L, 

associated with a given borehole. The problem is to 

determine the 3D density distribution, ρ(r′),  around the 

borehole. Following Liu and Zhdanov (2011), the borehole 

migration gravity field, 𝒈𝛼
𝐵𝑚(𝐫), is introduced as a result of 

application of the adjoint gravity operator, 𝑨𝛼
𝐵∗  to the 

observed gravity field: 

𝒈𝛼
𝐵𝑚(𝐫) = 𝑨𝛼

𝐵∗𝒈𝛼
𝐵                                        (7) 

where the adjoint operator 𝑨𝛼
𝐵∗  for the borehole gravity 

problem is equal: 

𝑨𝛼
𝐵∗(𝑓) = ∫

𝑓(𝐫)

|𝐫′−𝐫|3
𝐾𝛼(𝐫′ − 𝐫)𝑑𝑙

𝐿
,              (8) 

    In a similar way, we can introduce a migration field, 

𝒈𝛼𝛽
𝐵𝑚(𝐫) , of the borehole gravity tensor components 

observed along a borehole L, and use the following 

notations for the components of this tensor field: 

𝒈𝛼𝛽
𝐵𝑚(𝐫) = 𝑨𝛼𝛽

𝐵∗ 𝒈𝛼𝛽
𝐵                                      (9) 

where the corresponding adjoint operators, 𝑨𝛼𝛽
𝐵∗ , applied to 

some function f(r), are given by: 

𝑨𝛼𝛽
𝐵∗ (𝑓) = ∫

𝑓(𝐫)

|𝐫′−𝐫|3 𝐾𝛼𝛽(𝐫′ − 𝐫)𝑑𝑙
𝐿

,          (10) 

   Thus, we can see that the migration field can be 

calculated everywhere around the borehole for a given 

values of the gravity and/or gravity gradient field, 

measured along the borehole. We should note, however, 

that the direct migration of the observed gravity and/or 
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gravity tensor fields does not produce an adequate image of 

the subsurface density distribution, because the migration 

fields rapidly attenuate away from the borehole, as one can 

see from expressions  (8) and (10). In order to image the 

sources of the gravity field at the correct location, one 

should apply the appropriate spatial weighting operator to 

the migration field. This weighting operator is constructed 

based on the integrated sensitivity of the gravity data to the 

density. Taking into account equation (9) and the direction 

of the steepest ascent, one can find an approximation to the 

distribution of the density as follows: 

 𝝆𝛼
𝐵𝑚(𝐫) = 𝑘𝛼

𝐵(𝒘𝛼
𝐵(𝑅))

−2
𝒈𝛼

𝐵𝑚,                      (11) 

where unknown coefficient 𝑘𝛼
𝐵  is determined by a linear 

line search (Zhdanov, 2002, 2015) as follows: 

𝑘𝛼
𝐵 =

‖𝑨𝛼
𝑤∗𝒈𝛼

𝑆 ‖
𝑀

2

‖𝑨𝛼
𝑤𝑨𝛼

𝑤∗𝒈𝛼
𝑆 ‖

𝐷

2  ,   𝑨𝛼
𝑤 = 𝑨𝛼

𝐵𝑾𝛼
−1 ,  

and the linear weighting operator Wα is selected as a linear 

operator of multiplication of the density by a function, 𝑤𝛼
𝐵, 

equal to the square root of the integrated sensitivity of the 

complex intensity of the gravity field, 𝑺𝛼
𝐵 . In a similar 

manner, we can introduce a migration density based on the 

gravity tensor migration. 

 

Joint migration 

 

Our goal is to jointly migrate the surface and borehole 

gravity fields to make a clear image of a deep target. We 

consider a joint migration of the multiple components of 

the surface and borehole gravity and gravity tensor fields 

according to the following formula: 

𝝆𝑚(𝐫) = 𝑐𝛼
𝑆𝝆𝛼

𝑆 (𝐫) + ∑ 𝑐𝛼𝛽
𝑆 𝝆𝛼𝛽

𝑆 (𝐫) + 𝑐𝛼
𝐵𝝆𝛼

𝐵(𝐫) +

∑ 𝑐𝛼𝛽
𝐵 𝝆𝛼𝛽

𝐵 (𝐫)                          (12) 

where 𝑐𝛼
𝑆, 𝑐𝛼𝛽

𝑆 , 𝑐𝛼
𝐵, and 𝑐𝛼𝛽

𝐵  can be treated as the weights of 

the corresponding migration fields in the density model, 

which can be empirically determined from the results of the 

model studies. 

 

Iterative migration 

 

Equation (12) can produce a migration image of the 

density distribution in the lower half-space. A better quality 

migration image can be produced by repeating the 

migration process iteratively (Wan and Zhdanov, 2013). 

We begin with the migration of the gravity and/or gravity 

tensor field data observed on the surface and/or in the 

borehole. In order to check the accuracy of our migration 

imaging, we apply the forward modeling and compute a 

residual between the observed and predicted data for the 

given density model. 

𝒓1 = 𝒈𝑝𝑟𝑒 − 𝒈𝑜𝑏𝑠                              (13) 

where gobs is the observed gravity or gravity gradient 

component; gpre is the predicted gravity or gravity gradient 

component calculated with the density ρ₁
m obtain from 

equation (12). If the residual is smaller than the prescribed 

accuracy level, we use the migration image as a final 

density model. In a case where the residual is not small 

enough, we migrate the residual field and produce the 

density correction, 𝛿𝝆1
𝑚, to the original density model using 

the same analysis, which we have applied for the original 

migration: 

𝛿𝝆1
𝑚 = 𝑘𝒘−2𝒓1,        𝝆2

𝑚 = 𝝆1
𝑚 − 𝛿𝝆1

𝑚          (14) 

where  𝛿𝝆1
𝑚  stands for the migration image obtained by 

residual field migration, equation (12). 

A general scheme of the iterative migration can be 

described by the following formula: 

𝝆𝑛+1
𝑚 = 𝝆𝑛

𝑚 − 𝛿𝝆𝑛
𝑚                          (15) 

The iterative migration is terminated when the residual 

field becomes smaller than the required accuracy level of 

the data fitting. The iterative migration can be combined 

with the regularization method. This also allows us to apply 

the smooth or focusing stabilizers to produce a more 

focused image of the target (Wan and Zhdanov, 2013). 

 

Model study 

 

In this section we present an example of 3D joint 

migration for surface and borehole gravity gradient field 

data. We consider a model that contains two HC reservoirs 

with the size of 3000 m x 1500 m x 100 m (L x W x H). It 

is known that the density of sandstone is between 2.2~2.8 

g/cm³, the density of shale is between 2.4~2.8 g/cm³, the 

density of petroleum is 0.64 g/cm³, the density of seawater 

is about 1.02 g/cm³. Therefore we can set the anomalous 

density of reservoir at -1 g/cm³. The upper reservoir is 

located at a depth of 1 km below the surface, and the lower 

one is located at a depth of 2 km to the surface with a 

slightly large size (see Figure 1).  

The synthetic observed data were computed in the set of 

receivers, located on the ground over an area having 7 km 

in the x direction and 5.5 km in the y direction with 100 m 

separation in both the x and y directions. A borehole is 

located at a point with the coordinates x=3300 m and 

y=3800 m. The borehole receivers are located with a 

vertical separation of 50 m. The observed data were 

contaminated by 5% random noise (see Figures 2 and 3). 

For comparison, we first ran the iterative migration using 

the surface gzz component only. The misfit reached a 5% 

data error level. Figure 4 shows the result of iterative 

migration of the surface 𝑔𝑧𝑧  component only at the cross 

section of x=3400 m. 
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Figure 1: Model. The blue dots shows the observed station at the 

surface. The red dots shows the observed position in the borehole. 

 

 
Figure 2: Maps of the observed gravity and gravity gradient data 

on the surface. 

 
Figure 3: Profiles of the observed gravity and gravity gradient data 

in the borehole. 

The density image shows only one target, and the lower 

anomalous body cannot be seen at all from the surface data 

migration; even the data fitting is very good and the 

migration only runs 5 iterations. Figure 5 shows the result 

from iterative migration of surface 𝑔𝑧𝑧  and borehole 𝑔𝑧𝑧 

components jointly at the cross section of x=3400 m and 

y=2100 m.  One can see that the image shows clearly the 

two anomalous bodies from the cross section image. The 

predicted data fits well the observed data in both surface 

and borehole data. 

 
Figure 4: The result of the iterative migration of the surface gzz 

component only at the vertical section at x=3400 m (the bottom 

panel). The blue line shows the observed data and the red line 
presents the predicted data on the surface (top panel). 

 

 
Figure 5: The result of the joint iterative migration of the surface, 

gzz, and borehole, gzz, components at the vertical section at x=3400 
m (bottom panel). The blue lines show the observed data and the 

red lines present the predicted data on the surface (top panel) and 

in the borehole (right panel). The white lines outline the true 
contours of the HC reservoirs. 

 

Conclusions 

 

We have developed a novel approach to the joint 

interpretation of the surface and borehole gravity and 

gravity gradient data based on the concept of potential field 

migration. The results of the numerical model study 

demonstrated that the potential field migration can be used 

for 3D imaging of deep seated HC reservoirs. The joint 

migration of the surface and borehole gravity and gravity 

gradient components can significantly improve the imaging 

of 3D targets in comparison to the use of the surface data 

only. 

 

Acknowledgments 

The authors acknowledge the support of the University 

of Utah Consortium for Electromagnetic Modeling and 

Inversion (CEMI) and TechnoImaging for support of this 

research. 

Page 1610© 2016 SEG 
SEG International Exposition and 86th Annual Meeting 

D
ow

nl
oa

de
d 

09
/2

8/
16

 to
 1

55
.1

01
.1

8.
15

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



EDITED REFERENCES  
Note: This reference list is a copyedited version of the reference list submitted by the author. Reference lists for the 2016 

SEG Technical Program Expanded Abstracts have been copyedited so that references provided with the online 
metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web.  

  
REFERENCES  
Cao, D., 2013, Impedance joint inversion of surface and borehole seismic data: GeoConvention 2013, 

Integration: Geoscience Engineering Partnership, AAPG Search and Discovery Article #90187. 
Difrancesco, D., 2007, Advances and challenges in the development and deployment of gravity 

gradiometer systems: EGM 2007 International Workshop, Innovation in EM, Grav and Mag 
Methods: A New Perspective for Exploration. 

Golden, H., W. McRae, and A. Veryaskin, 2007, Description of and results from a novel borehole gravity 
gradiometer: Presented at the ASEG 19th Geophysical Conference and Exhibition, 
http://dx.doi.org/10.1071/ASEG2007ab047. 

Krahenbuhl, R., and Y. Li, 2008, Joint inversion of surface and borehole 4D gravity data for continuous 
characterization of fluid contact movement: 78th Annual International Meeting, SEG, Expanded 
Abstracts, 726–729, http://dx.doi.org/10.1190/1.3063750. 

Li, Y., and D. W. Oldenburg, 2000, Joint inversion of surface and three-component borehole magnetic 
data: Geophysics, 65, 540–552, http://dx.doi.org/10.1190/1.1444749. 

Liu, X., and M. Zhdanov, 2011, 3D imaging of gravity gradiometry data from a single borehole using 
potential field migration: 81st Annual International Meeting, SEG. 

McCulloh, T. H., G. R. Kandle, and J. E. Schoellhamer, 1968, Application of gravity measurements in 
wells to problems of reservoir evaluation: Society of Professional Well Log Analysts 9th Annual 
Logging Symposium Transactions, 1–29. 

Nind, C., H. O. Seigel, M. Chouteau, and B. Giroux, 2007, Development of a borehole gravimeter for 
mining applications: First Break, 25, 71–77. 

Nind, C. J. M., and J. D. MacQueen, 2013, The borehole gravity meter: Development and results: 10th 
Biennial International Conference and Exposition, http://dx.doi.org/10.2118/166833-MS. 

Rim, H., and Y. Li, 2010, Single-borehole imaging using gravity gradiometer data: 80th Annual 
International Meeting, SEG, Expanded Abstracts, 1137–1140, 
http://dx.doi.org/10.1190/1.3513045. 

Smith, N. J., 1950, The case for gravity data from boreholes: Geophysics, 15, 605–636, 
http://dx.doi.org/10.1190/1.1437623. 

Sun, J., and Y. Li, 2010, Inversion of surface and borehole gravity with thresholding and density 
constraints, 80th Annual International Meeting, SEG, http://dx.doi.org/10.1190/1.3513191.  

Wan, L., and M. S. Zhdanov, 2008, Focusing inversion of marine full-tensor gradiometry data in offshore 
geophysical exploration: 76th Annual International Meeting, SEG, Expanded Abstracts, 751–754, 
http://dx.doi.org/10.1190/1.3063755. 

Wan, L., and M. Zhdanov, 2013, Iterative migration of gravity and gravity gradiometry data: 83rd Annual 
International Meeting, SEG, http://dx.doi.org/10.1190/segam2013-1036.1. 

Zhdanov, M. S., 2002, Geophysical inverse theory and regularization problems: Elsevier. 
Zhdanov, M. S., 2015, Inverse theory and applications in geophysics: Elsevier. 
Zhdanov, M. S., X. Liu, and G. Wilson, 2010, Potential field migration for rapid 3D imaging of gravity 

gradiometry surveys: First Break, 28, 47–51. 
Zhdanov, M. S., X. Liu, G. A. Wilson, and L. Wan, 2011, Potential field migration for rapid imaging of 

gravity gradiometry data: Geophysical Prospecting, 59, 1052–1071, 
http://dx.doi.org/10.1111/j.1365-2478.2011.01005.x. 

Page 1611© 2016 SEG 
SEG International Exposition and 86th Annual Meeting 

D
ow

nl
oa

de
d 

09
/2

8/
16

 to
 1

55
.1

01
.1

8.
15

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1071/ASEG2007ab047
http://dx.doi.org/10.1190/1.3063750
http://dx.doi.org/10.1190/1.1444749
http://dx.doi.org/10.2118/166833-MS
http://dx.doi.org/10.1190/1.3513045
http://dx.doi.org/10.1190/1.1437623
http://dx.doi.org/10.1190/1.3513191
http://dx.doi.org/10.1190/1.3063755
http://dx.doi.org/10.1190/segam2013-1036.1
http://dx.doi.org/10.1111/j.1365-2478.2011.01005.x



