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Summary 
 
3D inversion of airborne electromagnetic data is a 
challenging task due to the large amounts of data collected 
over relatively large areas. In this paper we detail an 
inversion algorithm based on a moving sensitivity domain 
approach using the integral equation method coupled with a 
multistep regularized conjugate gradient inversion. To tackle 
the computational demands, along with the reduction of the 
problem due to the moving sensitivity domain approach, we 
also parallelize the problem over the data using Message 
Passing Interface (MPI) and OpenMP. The workflow of the 
interpretation includes 1D inversion to obtain a background 
structure that serves as an input to the 3D inversion. The 
background is either a half-space, unique under each data 
point, in the case of frequency domain, or layered 
background in the case of time domain inversion. We 
demonstrate the effectiveness of the developed method and 
computer software by 3D inversion examples of  frequency 
and time domain airborne EM surveys. 
 
Introduction 
 
The mineral and groundwater exploration depends on large 
regional surveys which can detect small-scale ore bodies or 
resources such as perched water tables. Airborne 
electromagnetic (AEM) surveying is one of the few methods 
which can economically cover large areas with the resolution 
required for such exploration. Historically, simple 
techniques, like conductivity depth transforms (Macnae et 
al., 1998) and 1D inversions (layered earth inversions (e.g., 
Viezzoli et al., 2009), were used for interpretation of the 
airborne data. Advances are still being made with respect to 
these 1D methods to make them very large scale and fast 
with parallelization (e.g. Kirkegaard and Auken, 2014). 
More advanced transforms have also been developed to 
extend the approximate inversion methods to 2D (e.g., 
Guillemoteau, 2012). An excellent comparison of these 
methods with each other and with 3D inversion is given in 
Ley-Cooper et. al. (2014). 
The difficulties in performing full 3D inversion for AEM 
surveys stems from the necessity to solve as many large 
linear systems of equations as there are transmitter positions 
in the survey. However, it is widely known that AEM data 
are only sensitive to a limited sensitivity domain (footprint) 
(e.g., Liu and Becker, 1990; Beamish, 2003; Reid et al., 
2006). An AEM system's sensitivity domain is defined as the 
lateral extent of the sensitivity for the AEM system, and is 
typically in the order of hundreds of meters to a kilometer. 
For a single transmitter-receiver pair, there is no need to 
calculate the responses or sensitivities beyond the AEM's 
sensitivity domain. The sensitivity matrix for the entire 3D 

model can then be constructed as the superposition over the 
entire inverse model of the Fréchet derivatives from all 
transmitter-receiver pairs for corresponding sensitivity 
subdomains. This combined sensitivity matrix can be stored 
as a sparse matrix with memory and computational 
requirements reduced by several orders of magnitude. The 
number of nonzero elements in each row of the sensitivity 
matrix is just the number of elements within each footprint 
(in an order of hundreds to thousands) rather than the total 
number of elements in the model (hundreds of thousands to 
millions). 
The concept of a moving sensitivity domain was introduced 
in Cox and Zhdanov (2007), Cox et al. (2010, 2012), and 
Zhdanov and Cox (2013). This concept made possible a 3D 
inversion of frequency-domain (FD) AEM survey data that 
did not rely on any approximations in the modeling or 
inversion kernels.  
In this paper we implement and evaluate parallel integral 
equation-based 3D inversion of frequency and time domain 
(TD) AEM data. 
 
Modeling and Inversion 
 
Time-domain AEM modeling can be accomplished either by 
direct time-domain solutions or by Fourier transformation of 
frequency-domain solutions. The latter offers three distinct 
advantages. First, the effects of frequency-dependent 
conductivity, such as induced polarization, can be modeled. 
Second, artificial dispersion effects that arise in direct time-
domain solutions are avoided. Third, the matrix equations 
for multiple right-hand side source terms can be rapidly 
solved with iterative solutions. Our approach therefore 
calculates the forward modeling response in the frequency 
domain, and in the case of time domain data, this response is 
then transformed to the time domain. In the forward 
modeling, we use the integral equation (IE) method where 
the background field is a field generated by the given sources 
in the model with a background distribution of conductivity 
𝜎𝜎𝑏𝑏, and the anomalous field is produced by the anomalous 
conductivity distribution ∆𝜎𝜎(𝑟𝑟), 𝑟𝑟 ∈ 𝐷𝐷𝑎𝑎 ⊂ 𝑅𝑅3 (Hursán and 
Zhdanov, 2002; Zhdanov, 2009). 
Inversion is the process where we seek to recover the 3D 
conductivity distribution from the AEM data. However, 
AEM surveys are finite in their spatial and frequency 
content, and are contaminated with noise. This means that 
AEM inversion is ill posed; i.e., solutions are non-unique 
and unstable. Regularization must be introduced so as to 
obtain a unique and stable solution, by minimization of the 
Tikhonov parametric functional, 𝑃𝑃𝛼𝛼(𝜎𝜎): 
𝑃𝑃𝛼𝛼(𝜎𝜎) = 𝜑𝜑(𝜎𝜎)2 + 𝛼𝛼�𝜎𝜎 − 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎�

2 → 𝑚𝑚𝑚𝑚𝑚𝑚 (1) 
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where σ is the Nm length vector of conductivities, d is the Nd 
length vector of observed data, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 is the Nm length vector 
of the a priori conductivities, and ∥…∥ denotes the respective 
Euclidean norm. The first term of equation (1) describes the 
misfit functional (or residual errors) between the predicted 
dpred and observed dobs AEM data. 
𝜑𝜑(𝜎𝜎) = �𝑤𝑤𝑑𝑑�𝑑𝑑𝑎𝑎𝑎𝑎𝑝𝑝𝑑𝑑 − 𝑑𝑑𝑜𝑜𝑏𝑏𝑜𝑜��

2
 (2) 

where 
𝑤𝑤𝑑𝑑 = 1

𝜀𝜀
, 𝜀𝜀 = �𝑑𝑑𝑜𝑜𝑏𝑏𝑜𝑜

𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝
100

� + 𝜀𝜀𝑎𝑎𝑏𝑏𝑜𝑜 (3) 
where ε is a vector of the estimated errors in each data 
point, 𝜀𝜀𝑎𝑎𝑝𝑝𝑎𝑎 is the estimated error in each data point in 
percent and 𝜀𝜀𝑎𝑎𝑏𝑏𝑜𝑜  is the estimated absolute error in data 
units. This method normalizes the importance of all data 
channels with respect to their uncertainty.  
The second term of equation (1) describes the stabilizing 
functional, which in this case is written as a minimum norm 
stabilizer. The choice of a stabilizer determines the class of 
the solutions from which a model is sought (Zhdanov, 
2002, 2015). The regularization parameter, α, provides a 
balance (or bias) between the misfit and stabilizing 
functionals. 
The parametric functional is minimized iteratively, with 
either the steepest descent or conjugate gradient method, 
using a two-level minimization approach. After each 
forward modeling update (higher level iteration), we 
perform a number of conductivity model updates using the 
same Fréchet derivative, until a threshold of difference 
between the current conductivity and the conductivity used 
in the previous modeling step is reached. This triggers 
another forward modeling update. If this threshold is reached 
only over a subset of inversion domain cells, forward 
modeling is performed only for the data points which include 
these cells. We call this approach adaptive forward 
modeling. 
Each data point is sensitive only to a limited number of cells 
in the 3D model. In Figure 1 we show percent of total 
response (as calculated from integrated sensitivities) as a 
function of distance and half-space resistivity. The 
frequency domain RESOLVE system resolution is limited to 
a few hundred meters while the response of the time domain 
TEMPEST system is considerably larger.  

With a moving sensitivity domain, the Fréchet matrix 
can be constructed as a sparse matrix with memory and 
computational requirements reduced by several orders of 
magnitude. The number of nonzero elements in each row of 
the sensitivity matrix is just the number of elements within 
each sensitivity domain (in an order of hundreds or 
thousands) rather than the total number of elements in the 
domain (hundreds of thousands to millions). 
Due to potentially large variations in the conductivities over 
the AEM survey areas, it is advantageous to allow data 
points and their MSDs to have different background 
conductivity structure. We call this variable background 
(VB). In the AEM modeling and inversion setting, we use 

two kinds of variable backgrounds. One VB is related to 
each data point itself and it is unique for each data point. It 
is used throughout the inversion and for calculation of the 
receiver background fields and domain to receiver Greens’ 
tensors. This data point VB can be either half-space, or 
layered. 

In the forward modeling, a half-space background is used, 
obtained as about 5-10 logarithmically spaced conductivity 
values from a range of the data point backgrounds. Each data 
point is assigned one of these backgrounds, the closest to its 
background value (or average of the background in the case 
of a layered background). Having a limited number of 
forward modeling backgrounds allows us to limit the amount 
of pre-calculation and storage of the background domain 
fields and Green’s tensors in the MSD, but still keeps the 
anomalous conductivities in an appropriate range. 
 
Parallelization 
 
Our AEM modeling and inversion program is parallelized 
using Message Passing Interface (MPI) and OpenMP. In the 
AEM, moving sensitivity domain size is limited and as such 
modeling computation and storage requirements are 
relatively small for each data point. This lends to parallel 
distribution over the data (soundings), while keeping the 
problem scalable. The advantage of such parallelization is 
limited inter-process communication, as modeling of each 
data point is independent. Loops in each MPI task are 
shared-memory parallelized using OpenMP. 
We distribute the data points evenly across the MPI tasks, 
but, since we use the iterative solver, the number of iterations 
to solution can vary, which can lead to load imbalance. The 
load imbalance can be made worse by the adaptive forward 
modeling, recalculating the response only if the conductivity 
model under each data point changes more than certain 
threshold. We alleviate this imbalance by round-robin 
distribution of the data points, but, in the future, we will 
consider exploring adaptive load balancing by on demand 
migration of data points between the MPI tasks. 

 
 
Figure 1: Percent of total response (as calculated from integrated 
sensitivities) as a function of footprint size for the different half-
space resitivities for the (a) RESOLVE and (b) TEMPEST systems. 
Note the 10x larger distance scale in the TEMPEST plot 
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In Figure 2 we show parallel scaling on a subset of the 
frequency domain data discussed below. We use one to eight 
24 core nodes with two Intel Xeon CPUs. On a single node 
(4 MPI tasks) we vary number of OpenMP threads from 1 to 
6, on multiple nodes we use 4 MPI tasks per node and 6 
OpenMP threads per MPI task. The OpenMP scaling in the 
figure is relative to one thread performance, while the MPI 
scaling is relative to one node performance. 

 
We look at three different scaling characteristics. The pre-
calculation includes once-per-inversion calculation of 
background fields and domain to receiver Green’s tensors. 
Since this calculation is independent for each data point and 
frequency, it exhibits linear or nearly linear scaling both for 
OpenMP and MPI. Then we look at the first forward 
modeling calculation, where the scaling is less than linear. 
In the case of OpenMP, there are several factors. One is 
limited memory bandwidth with increased thread count. 
Another is the size of the footprint, which limits the amount 
of calculation available for OpenMP parallelization. In the 
frequency domain the footprint is about an order of 
magnitude smaller than in the time domain, where we 
observe improved OpenMP scaling by factor of 30-50 % as 
compared to the frequency domain. In the case of MPI, the 
poorer scaling is mostly due to the load discussed above. 
Finally, the scaling of the whole inversion is improved, as 
the subsequent modeling iterations converge with less 
variability. In the case of MPI, we even notice super-linear 
scaling for 2 and 4 nodes, which we attribute to the reduction 
in memory bandwidth contention as the problem is 
distributed on more than one node. 

 
Case study – inversion of the FD AEM data 
 
We inverted a Fugro RESOLVE data set obtained for the 
USGS in the Yukon Flats area near Fort Yukon, Alaska 
(Minsley et. al., 2012). The goal of this survey was 
permafrost mapping. According to Minsley et. al., 2012, the 
uppermost unfrozen Eolian silt and sands have an expected 
resistivity of 100-200 Ohm-m. At larger depth there are 
frozen fluvial gravels with resistivity greater than 1000 
Ohm-m, below which are lacustrine silts and clays with 
resistivity near or below 100 Ohm-m. Within the survey 
there are numerous water bodies, including the Yukon River 
and Twelvemile Lake. Water resistivity in Twelvemile Lake 
was measured at a range between 2.5 and 18 Ohm-m. 

The FD AEM data consisted of 1200 line km with six 
frequencies between 0.4 and 129 kHz, covering about a 300 
km2 area and was inverted on a 10×25 m horizontal grid and 
24 vertical cells ranging from 1 m at the surface to 15 m at 
depth, to a total of 155 m depth, with nearly 30 million cells. 
We used a data point every 10 meters, which ended up being 
81,185 receivers with 6 frequency readings each. The MSD 
was set to a 400 m diameter.  
We used the following workflow for the FD inversion: 
• Perform half-space inversion to obtain the best-fit 
half-space conductivity under each data point. 
• Extrapolate and smooth this model over the 3D model 
cells; this constitutes the half-space background for each 
data point and the optional initial model. 
• Find maximum and minimum 3D model conductivity 
and create a logarithmically spaced set of conductivities, 4 
per decade, bound by this minimum and maximum; this 
constitutes the half-space background model for forward 
modeling. 
• Run the 3D inversion.  
 
The 3D inversion was run on 120 nodes with two six-core 
Intel Xeon X5660 2.8 GHz CPUs and took 3.5 hours to reach 
convergence at RMS 1.67. 

In Figure 3 we compare vertical cross section of our 
resistivity model with that of Minsley et. al., 2012 obtained 
with 1D inversion. The models are very similar, which one 
would expect for the layered permafrost formations. At the 
surface we notice unfrozen area with resistivity 100 Ohm-m 
and less, which follows the Yukon river sediments. More 
conductive features include the Yukon River itself and 
numerous lakes, the largest of which is Twelvemile Lake in 
the left of the picture. The rest of the surface is highly 
resistive and consists of frozen silts and sands. With 
increasing depth, the leftmost third of the area is resistive 
and frozen with occasional conductors caused by unfrozen 
areas under water bodies. About the center third is less 
resistive suggesting partially frozen sediments, followed by 
a conductive unfrozen area under the Yukon River. 
 
Case study – inversion of the TD AEM data 
 
The TEMPEST time-domain survey was conducted by 
MMG for mineral exploration. The fixed-wing AEM system 

 
Figure 2: OpenMP (a) and MPI (b) parallel scaling. 

 
Figure 3: Vertical cross sections of Ft. Yukon survey along profile 
B-B’ obtained by Minsley et al (2012) (upper panel) and by this 
study (lower panel). 
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recorded 13 channels of in-line and vertical B data from 6.5 
μs to 6.5 ms. The survey was inverted on a horizontal grid of 
20×20 m and 24 vertical cells ranging from 5 m at the surface 
to 70 m at depth to total depth of 730 m. This equals about 
6.7 million cells. 12 time channels of 15,788 measurement 
positions were used with spacing about 40 m resulting in 
189,456 data points.  
In time domain inversion, we used the following workflow: 
• Perform 1D half space inversion to obtain best fit half 
space conductivity under each data point. 
• Extrapolate and smooth this 1D model; this 
constitutes the half space background under each data point 
and the initial model for 1D layered inversion. 
• Perform 1D layered inversion to obtain layered 1D 
model. 
• Extrapolate and smooth the 1D layered model over 
3D model cells, this is an (optional) initial model for 3D 
inversion and layered background conductivity under each 
data point. 
• Find maximum and minimum 3D model conductivity 
and create logarithmically spaced set of conductivities, 4 per 
decade, bound by this minimum and maximum; this 
constitutes the half space background model for forward 
modeling. 
• Run the 3D inversion.  

 
As compared to the frequency domain, the time domain adds 
the extra step of 1D layered inversion, which is implemented 
as an option in our parallel inversion program. 
The inversion was run on 43 nodes with 24 CPU cores each 
(Xeon E5-2680 v3) and took 18.5 hours to achieve RMS 
misfit of 3.6. The increased computer resources in the time 
domain inversion, as compared to frequency domain, are 
needed for larger MSD (1200×800 m diameter) and to 
compute a larger number of frequencies (32 in this case, in 
the range of 0.1 Hz to 100 kHz).  
The targets for the inversion were mineralized black shale 
units. These are conductive and up to 100 m thick, which 
makes a great airborne target. Also in the area is a conductive 
overburden of variable thickness and uneconomic near-
surface conductive lineaments. This can be easily confused 
with the mineralized shale if accurate interpretation is not 
done. The plunge, dip, and general geometry of the black 
shale was also of interest to the client. Figure 4 shows the 
conductive overburden of variable thickness in the area, 
which are not of economic interest but show in the data as 
conductors. The conductive features of economic interest are 
shown clearly in Figure 5, which is a horizontal slice at 325 

m below the surface. The black shale units are clearly 
imaged.  

 
Conclusions 
 
In this paper we have introduced a method and optimized 
workflows for the large-scale inversion of frequency and 
time domain AEM data. Utilization of a moving sensitivity 
domain along with multilevel parallelization allows us to 
invert large AEM surveys for a finely discretized model. The 
convergence of the inversion is improved with variable 
background under each data point, which is obtained from a 
smoothed 1D inversion result. 
Our implementation is based on the 3D integral equation 
method for computing data and sensitivities, as well as the 
re-weighted regularized conjugate gradient method for 
minimizing the parametric functional, and has been 
generalized in such a way that it can be applied to any AEM 
system. 
The 3D model for the frequency domain case study 
corresponds well to the published 1D inversion model, 
which was expected for the case of the horizontally-layered 
geoelectrical formations representing permafrost.. The 
model produced for the time domain case study provides a 
good example of true 3D inversion capabilities, clearly 
imaging the conductors of interest at a depth of several 
hundreds of meters. 
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Figure 4: Vertical slice through 3D inversion result. The conductive 
overburden is well imaged with the time domain data. 

 
Figure 5: Horizontal slice through 3D inversion result at 329 meters 
below the surface. The economic mineralization is being shown here 
by association with the black shales 
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