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Summary 

 

In this paper we demonstrate that the multinary model 

transformation applied to the 3D gravity and gravity 

gradiometry inversion helps to recover the sharp contrasts 

of the density between the host media and anomalous 

targets. This concept is a generalization of the binary 

approach to the multinary density inversion, which uses 

given values of density and error functions to transform the 

density distribution into the desired step-function 

distribution. We solve the multinary inverse problem using 

the regularized conjugate gradient method. The novel 

gravity multinary inversion algorithm is demonstrated to be 

effective in determining the shape, location, and the 

densities of the anomalous targets. We also show that this 

method can be effectively applied to the inversion of the 

full tensor gravity gradiometry data computer-simulated for 

the SEG salt density model. 

 

Introduction 

 

Traditional methods of gravity inversion characterize the 

density distribution in the area of interest by a function, 

which varies continuously within the bounds. In order to 

ensure the unique and stable solution of the gravity inverse 

problem, one can impose additional conditions on the 

density, such as minimum norm (Tikhonov and Arsenin, 

1977), or maximum smoothness (Constable, et al, 1987) or 

the fuzzy c-mean clustering method (Li and Sun, 2014). 

However, the inverse models produced by traditional 

inversions are still represented by a continuous distribution 

of the density over the anomalous targets. At the same time, 

typical geological structures, such as ore deposits, are 

usually characterized by a sharp boundary separating the 

target and a host rock. 

In recent years, several techniques have been developed to 

recover anomalous targets with high contrasts between 

physical properties and sharp boundaries. For example, one 

can use focusing regularization (Portniaguine and Zhdanov, 

1999; Zhdanov, 2002, 2009) to recover model parameters 

with sharp physical property contrasts; or the parametric 

level-set approach can be employed to represent the target 

based on octree-mesh inversion (McMillan et al., 2015). 

However, all these methods still produce a continuous 

distribution of the physical properties, even if the inverse 

images become more focused and sharp. 

In this paper, we investigate a novel approach to inversion 

of the gravity data based on multinary transformation of the 

model parameters. This concept is a generalization of 

binary density inversion, which uses given values of 

density and error function to transform the density 

distribution into the desired step-function distribution 

(Zhdanov and Cox, 2013). Compared with some existing 

realizations of binary inversion, which are solved using 

stochastic optimization methods (e.g. Bosch et al., 2001; 

Krahenbuhl and Li, 2006), our approach is based on 

deterministic optimization methods, which can be applied 

to both linear and nonlinear inverse problems (Zhdanov, 

2002, 2015). 

 

Inverse problem formulation 

 

The gravity inverse problem can be formulated as a 

solution of the following operator equation: 

𝐝 = 𝐀(𝛒),                            (1) 

where 𝐀 is a linear operator for computing the gravity field, 

d are the observed gravity field data, which may include the 

gravity field, 𝐺𝑧 , and all components of the full gravity 

gradient tensor, and 𝛒 represents the model density. In the 

case of a discrete inverse problem, the density distribution 

𝛒 can be represented as a vector formed by 𝑁𝑚 components: 

𝛒 = [𝜌1, 𝜌2, … , 𝜌𝑁𝑚
]𝑇,                         (2) 

and the observed data d can be considered as an N_{d}-

dimensional vector, 

𝐝 = [𝑑1, 𝑑2, … , 𝑑𝑁𝑑
]𝑇,                         (3) 

where the superscript T denotes the transposition operation. 

Usually, the inverse problem (1) is ill-posed, and we solve 

this problem using the regularization method by 

minimizing the corresponding parametric functional: 

𝑃𝛼(𝛒) = ||𝐖𝑑(𝐀(𝛒) − 𝐝)||2 + 𝛼||𝐖𝑚(𝛒 − 𝛒𝒂𝒑𝒓)||2

= 𝑚𝑖𝑛,             (4) 

where 𝐖𝑑 and 𝐖𝑚 are the data and model weights, 𝛒𝒂𝒑𝒓 is 

the a-priori given density distribution, and 𝛼  is a 

regularization parameter. This minimization problem (4) 

can be solved using the regularized conjugate gradient 

method (Zhdanov, 2002, 2015). 

In a general case, the recovered density distribution is 

described by a continuous function. In some geophysical 

application, the desired physical property (e.g., density in 

the case of a gravity inverse problem) can be described by 

the binary function as follows: 

𝑚̅𝑖 = {𝑚𝑖
(1)

= 0, 𝑚𝑖
(2)

= 1},                    (5) 

or by the ternary function: 

𝑚̅𝑖 = {𝑚𝑖
(1)

= −1, 𝑚𝑖
(2)

= 0, 𝑚𝑖
(3)

= 1}.          (6) 

Further, we can extend the description of the distribution of 

a physical property (e.g., density) using the multinary 

function of order P, having discrete numbers of values: 
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3D gravity inversion using multinary transformation 

𝑚̅𝑖 = {𝑚𝑖
(1)

, 𝑚𝑖
(2)

, … , 𝑚𝑖
(𝑃)

}.                    (7) 

However, using such a multinary function in a regularized 

gradient type inversion makes it difficult to implement the 

derivative-based minimization of the Tikhonov parametric 

functional. Following Zhdanov and Cox (2013) and 

Zhdanov (2015), we can use a transformation of the model 

parameters and their sensitivities from their multinary-

function representation to the representation of a 

continuous function. As a result, we will arrive at a 

conventional inverse problem and solve it using the 

regularized conjugate gradient method. 

 

Multinary model transform 

 

The nonlinear transformation of the multinary function into 

the continuous function, can be described as follows. We 

transform our density distribution, 𝜌𝑖 , into a model space 

defined by a continuous range of multinary densities, 𝜌̃𝑖 , 

using a superposition of error function: 

𝜌̃𝑖 = 𝐸(𝜌𝑖) = 𝑐𝜌𝑖 +
1

2
∑ [1 + erf (

𝜌𝑖 − 𝜌(𝑗)

√2𝜎𝑗

)]

𝑃

𝑗=1

,    (8) 

where 𝛒 = {𝜌𝑖}, 𝑖 = 1, … , 𝑁𝑚, is the original vector of the 

model parameters; 𝛒̃ = {𝜌̃𝑖}, 𝑖 = 1, … , 𝑁𝑚, is a new vector 

of the nonlinear parameters; and P is a total number of 

discrete (multinary) values of the model parameter 

(densities), 𝜌(𝑗). The function 𝐸(𝜌𝑖) is the error function; 

parameter 𝜎𝑗  is a standard deviation of the value, 𝜌(𝑗); and 

the constant c is a small number to avoid singularities in the 

calculation of the derivatives of the multinary densities. 

All the desired densities, 𝜌(𝑗)(𝑗 = 1, … , 𝑃), can be chosen a 

priori based on the known geological information (e.g., 

core samples). Note that, the derivative of the error 

function is equal to the corresponding Gaussian function, as 

follows: 

𝜕𝜌̃𝑖

𝜕𝜌𝑖
= 𝑔(𝜌𝑖) =

1

√2𝜋𝜎𝑗

𝑒

−(𝜌𝑖−𝜌(𝑗))
2

2𝜎𝑗
2

 .               (9) 

Figure 1 represents an example of the error function and its 

derivative, Gaussian function, when 𝜌̃ = {𝜌𝑖
(1)

=

−1, 𝜌𝑖
(2)

= 0, 𝜌𝑖
(3)

= 1} and 𝜎𝑗 = 0.05(𝑗 = 1,2,3). Panel (a) 

shows that the approximate representation of the multinary 

model transform (8) can be interpreted as a cumulative 

density function of the densities, where the Gaussian 

function (9) means the probability density distribution of 

each discrete density 𝜌𝑖  with the mean value 𝜌(𝑗)  and the 

standard deviation 𝜎𝑗 . 

 

Inversion algorithm 

 

As a result of the multinary model transform, the original 

density distribution, 𝛒 , has been changed into the 

transformed distribution, 𝛒̃. Therefore, the original inverse 

problem (1) takes the following form: 

𝐝 = 𝐀̃(𝛒̃),                                (10) 

where 𝐀̃ is the new forward modeling operator acting in the 

transformed model space, 𝛒̃. This nonlinear operator can be 

determined from equation (8) using the original linear 

operator 𝐀 as follows: 

𝐝 = 𝐀̃(𝛒̃) = 𝐀[𝐸−1(𝛒̃)].                    (11) 

 

We solve this problem based on the minimization of the 

following Thikhonov parametric functional: 

𝑃𝛼(𝛒̃) = ||𝐖𝑑(𝐀̃(𝛒̃) − 𝐝)||2 + 𝛼𝑛||𝐖𝑚(𝛒̃ − 𝛒̃𝒂𝒑𝒓)||2

= 𝑚𝑖𝑛,                                         (12) 

where 𝐖𝑑  and 𝐖𝑚  are data and model weights, 

respectively. We apply the regularized conjugate gradient 

(RCG) method (Zhdanov, 2002, 2015) for minimizing the 

parametric functional (12). 

 

Synthetic model study 

 

Synthetic model 1: Two-body model 

In this section we test the developed algorithm of multinary 

inversion using a 3D synthetic model with two bodies with 

different sizes, densities and burial depths: the small and 

shallow one has the anomalous density of -1g/cm³, where 

the density of the big and deep body is 0.5g/cm³ (see Figure 

2, panel b). The value of the background density was set at 

0. The synthetic gravity field, 𝐺𝑧 , contaminated by 3% 

random noise, was used as the observed data. The 

multinary function was set to recover three discrete 

densities of 0g/cm³, -1g/cm³ and 0.5g/cm³. The iterative 

inversion was run until the misfit reached the level of 3%. 

 
 

Figure 1:  An example of the multinary function of the third 

order: (a) a combination of the error function, (b) its 

derivative, a combination of the Gaussian function. The values 

of the discrete densities are as follows: -1.0 g/cm³, 0.0 g/cm³ , 

1.0 g/cm³, and 𝜎𝑗 = 0.05(𝑗 = 1,2,3). 
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3D gravity inversion using multinary transformation 

Figure 2, panel (a), presents the profiles of the predicted 

gravity field (solid line) and the synthetic gravity field 𝐺𝑧 

(dotted line), obtained by the inversion, at Y=3750m 

(Northing). Panel (b) in the same Figure shows the vertical 

cross section of the synthetic model, corresponding to this 

profile, while panel (c) and (d) provide the same cross 

sections of the recovered density distribution using 

conventional inversion and multinary inversion, 

respectively. One can see that the conventional inversion 

failed to recover the correct values of the densities and 

locations of the anomalous bodies, however the multinary 

inversion successfully recovered the target bodies. Figure 3 

presents a 3D view of the true Model 1 (panel a), and the 

multinary inversion result (panel b). Thus, the multinary 

inversion is able to image both the shallow and deep bodies 

at their true locations and densities. 

 

Synthetic model 2: Modified SEG salt dome model 

In this section we will use the SEG salt dome model to test 

the multinary inversion. We have simplified the SEG salt 

model slightly by considering the anomalous targets 

associated with the salt dome only. Figure 4 shows a 2D 

cross section of the SEG salt model (modified after 

Boonyasiriwat, 2009), where the red part shows the salt 

body. The density of salt dome was set as -0.5g/cm³, and 

the value of background density was 0. 

The synthetic full tensor gravity gradiometry (FTG) data 

were used as the observed data and were contaminated by 3% 

random noise. In this synthetic model study the multinary 

inversion was set to recover two discrete densities of 

0g/cm³ and -0.5g/cm³. We ran the iterative inversion until 

the final misfit value reached 3% at iteration number 170. 

Figure 5 shows a comparison between the synthetic data 

(dotted lines) used for multinary inversion and the 

predicted data (solid lines) for the FTG components, 𝐺𝑧𝑧, 

𝐺𝑧𝑥 , 𝐺𝑧𝑦 , 𝐺𝑥𝑥  and 𝐺𝑦𝑦 , at Y=2300m (Northing). One can 

see a very good data fitting. The vertical cross section of 

the synthetic model is given in Figure 5 (f), while panels (g) 

and (h) show the cross sections of the recovered models 

using the conventional smooth and multinary inversions, 

respectively. One can see that, the conventional inversion 

can only show a weak anomaly near the surface; however 

the multinary inversion recovers the approximate location 

and shape of the salt dome at its true density very well. 

Figure 6 presents a 3D view of the true Model 2 (panel a), 

and the multinary inversion result (panel b). Thus, the 

inversion results demonstrate that the multinary inversion 

approach has a strong potential to improve the quality of 

the gravity inversion for geological targets with sharp 

density contrast, e.g., a salt dome structure. 

 
 

Figure 2:  Model 1. Panel (a): Predicted gravity field (solid 

line) vs. synthetic gravity field 𝐺𝑧  (dotted line) along the 
profile at Y=3750m (Northing). Panel (b): vertical cross 

section of the synthetic model. Panel (c) and (d) provide the 
same cross sections of the recovered density distribution using 

the conventional inversion and multinary inversion, 

respectively. 

 
 

Figure 3:  Model 1. 3D views of the synthetic model (panel a) 

and the inversion result (panel b). 

 
 

Figure 4:  A 2D cross section of the SEG salt model (modified 

after Boonyasiriwat, 2009). 
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3D gravity inversion using multinary transformation 

 

 

 

 

 

 

 

Conclusion 

 

We have applied a multinary inversion to solve the gravity 

and gravity gradiometry inverse problem with the 

anomalous bodies characterized by a finite number of 

discrete values of the densities. We have demonstrated that 

this inverse problem can be solved using deterministic 

optimization methods (Zhdanov, 2002). We have tested this 

method with two 3D synthetic models: a two-body model 

and a modified SEG salt dome density model. The results 

of our modeling studies demonstrated that multinary 

inversion can recover the approximate shapes and locations 

of the anomalous bodies and their densities well. Thus, the 

results of our study demonstrate that the novel multinary 

inversion approach has a strong potential to improve the 

quality of the gravity inversion for geological targets with 

sharp density contrast, e.g., a salt dome structure. 
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Figure 5:  Model 2: Predicted gravity field (solid line) vs. 

synthetic FTG data (dotted line) along the profile at Y=2300m 

(Northing) for (a) 𝐺𝑧𝑧 , (b) 𝐺𝑧𝑥 , (c) 𝐺𝑧𝑦 , (d) 𝐺𝑥𝑥  and (e) 𝐺𝑦𝑦 

components. Panel (f) presents the vertical cross section of the 
synthetic model. Panels (g) and (h) provide the same cross 

sections of the recovered density distribution using 

conventional inversion and multinary inversion, respectively. 

 
 

Figure 6:  Model 2. 3D views of the synthetic model (panel a) 

and the inversion result (panel b). 
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