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SUMMARY

One of the most widely used inversion methods in geophysics

is a Gauss-Newton algorithm. However, storage and inversion

of the Hessian matrix in the model space is computationally

expensive. At the same time, the size of the Hessian matrix

in the data space can be managed on a workstation for a typ-

ical geophysical inverse problem. We have derived a regular-

ized Gauss-Newton (RGN) algorithm in the data space and ap-

plied it to a magnetotelluric inverse problem. RGN inversion

method was also compared with the preconditioned regular-

ized conjugate gradient (RCG) algorithm. The results of the

RGN inversion of MT data collected in the Pavant Butte hy-

drothermal area indicate that MT sounding represents a valu-

able method in hydrothermal exploration.

INTRODUCTION

The Gauss-Newton method is one of the most popular ap-

proaches to solving inverse problems in geophysics. The major

obstacle to applying the Gauss-Newton method in model space

is the need to invert a square Hessian matrix with both dimen-

sions equal to the number of model parameters. In modern

applications, the number of model parameters can be on the

order of millions. Storage and operations with a matrix of this

size can be unmanageable on a typical workstation, or even on

a moderately sized cluster. Several researchers (Parker, 1994;

Siripunvaraporn et al., 2005; Kordy et al., 2016) described and

applied Gauss-Newton inversion in the data space. The size of

the corresponding square Hessian matrix in the data space is

reduced to both dimensions equal to the number of data points.

The data space RGN formulation is equivalent to the model

space formulation.

We have derived a regularized algorithm of Gauss-Newton in-

version in the data space and applied it to the magnetotelluric

(MT) inverse problem. A synthetic model study was used to

verify our method. The inversion results produced by the Reg-

ularized Gauss-Newton (RGN) method in the data space were

compared to results of the preconditioned Regularized Con-

jugate Gradient (RCG) inversion method. The RGN method

in the data space provides a robust and reliable inverse prob-

lem solution at comparable computational cost. RGN method

was applied to the MT data collected in an area with known

geothermal resources. The conductivity model recovered by

our inversion represents the geological features of the area rea-

sonably well.

TIKHONOV REGULARIZATION

In our formulation we follow the standard Tikhonov regular-

ization procedure (Tikhonov and Arsenin, 1977; Zhdanov, 2002)

of minimizing the following parametric functional:

Pα (m) = ‖r(m)‖2
2 +αS (m) , (1)

where ‖...‖2 is the L2 norm; r is the weighted residual differ-

ence between predicted and observed data,

r(m) = Wd (A(m)−d) ; (2)

Wd is the matrix of the data weights, often selected as the

inverse of the data variance; and A is the forward modeling

operator, applied to the vector of model parameters, m, com-

prised of the logarithms of conductivity of the individual dis-

cretization cells. In the case of magnetotelluric (MT) inver-

sion, forward modeling is based on the contraction integral

equations (CIE) method (Hohmann, 1975; Hursán and Zh-

danov, 2002; Zhdanov, 2002)) and the MT transfer functions

(Cantwell, 1960).

The second term in the parametric functional (1) represents a

stabilizer. One of the most common choices of the stabilizing

functionals is shown below:

S (m) =
∥
∥Wm

(
m−mapr

)∥∥2

2
. (3)

Weighting matrix Wm can incorporate finite difference first

derivative matrix, in which case the stabilizer becomes a max-

imum smoothness (Constable et al., 1987). Model weights

based on the integrated sensitivity (Zhdanov, 2002) can also

be used in the stabilizer. Finally, regularization parameter α
balances the input of the data misfit and stabilization terms of

the parametric functional.

REGULARIZED GAUSS-NEWTON METHOD

RGN model update at iteration k+1 for the parameter pertur-

bation Δmk+1 can be expressed as (Zhdanov, 2002):

Δmk+1 =−(Hα )−1 lα (mk) , (4)

where Hα is the matrix of the regularized quasi-Hessian oper-

ator:

Hα = F∗
wFw +αCm. (5)

lα is the regularized direction of the steepest ascent:

lα (mk) = F∗
wrw +αCm

(
mk −mapr

)
, (6)

and we use the following notations:

Fw = WdF,
rw = Wd (A(mk)−d) ,

Cm = W∗
mWm,

where F is a Fréchet derivative (sensitivity) matrix.
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Gauss-Newton inversion in data space

The solution (4) can be re-formulated in the ”data space”, re-

sulting in a much smaller square matrix to be computed and

inverted. Indeed, we can rewrite equation (4) as follows:

Hα (mk+1 −mk) =−lα (mk) , (7)

equivalently:

(F∗
wFw +αCm)

(
mk+1 −mapr

)
− (F∗

wFw +αCm)
(

mk −mapr
)

=−
[
F∗

wrw +αCm
(

mk −mapr
)]

,

or:

(F∗
wFw +αCm)

(
mk+1 −mapr

)
=F∗

w
[
Fw

(
mk −mapr

)
− rw

]
.

(8)

Solving the last equation with respect to mk+1, we have:

mk+1−mapr =(F∗
wFw +αCm)

−1 F∗
w
[
Fw

(
mk −mapr

)
− rw

]
.

(9)

Using the following matrix properties,
(

F−∗
w
)−1

= F∗
w and

(AB)−1 = B−1A−1, we modify equation (9) further:

mk+1 −mapr =

C−1
m

[
F−∗

w
(

F∗
wFwC−1

m +αI
)]−1 (Fw

(
mk −mapr

)
− rw

)
=

C−1
m

(
FwC−1

m +αF−∗
w
)−1 (Fw

(
mk −mapr

)
− rw

)
=

C−1
m F∗

w
(

FwC−1
m F∗

w+αI
)−1 (Fw

(
mk −mapr

)
− rw

)
.

Finally, we arrive at the following equation for the model up-

date in the data space:

mk+1 = C−1
m F∗

w
(

Hα
d

)−1 (Fw
(

mk −mapr
)
− rw

)
+mapr.

(10)

Note that, equation (10) includes inversion of a square matrix

of the transformed regularized Hessian, Hα
d :

Hα
d = FwC−1

m F∗
w+αI, (11)

with both dimensions equal to the number of the data.

Note that, expression (10) involves computing the inverse ma-

trix, C−1
m , of squared model weights. In the case of the max-

imum smoothness stabilizer weighting matrix Wm includes a

non-diagonal finite difference gradient matrix, inverse of which

can be difficult to compute. To avoid this difficulty and still

obtain a solution with the properties similar to the maximum

smoothness inversion, we assume Wm = I and introduce an a

priori model, mapr, at iteration k+1 as follows:

mapr = (D+I)mk, (12)

where D is the finite difference matrix of the first derivatives.

PRECONDITIONED REGULARIZED CONJUGATE GRA-
DIENT METHOD

Another way of avoiding computation of the inverse Hessian

matrix (5) in the inverse problem solution is to apply the reg-

ularized steepest descent or conjugate-gradient (RCG) meth-

ods and their variations (Nocedal and Wright, 1999; Zhdanov,

2002, 2015). These methods are based on the computation of

the model updates using the gradient or steepest ascent direc-

tions according to formula (6) with further computation of the

model update as follows:

mk+1 = mk − sklαk+1, (13)

where sk is a ”step length” computed by a line search method.

To improve the convergence rate of a gradient method, one can

apply a preconditioning matrix P (Nocedal and Wright, 1999;

Zhdanov, 2002) as follows:

hα
k+1 = P−1lαk+1 = P−1

(
F∗

wrw +αCm
(

mk −mapr
))

. (14)

This expression bears a lot of resemblance to the model update

used in the RGN method in the model space, equation (4), with

the regularized Hessian matrix, Hα , replaced by the precondi-

tioner, P. The idea behind preconditioning is to select an easy

to invert matrix P, which best represents the Hessian matrix. A

common choice for P is a diagonal of the Hessian matrix taken

to some power:

P = diag [H]γ . (15)

Different choices of the preconditioner’s exponent γ are pos-

sible. In our model study, we have computed the conjugate-

gradient solutions using variable values of γ to investigate its

effect on the inverse problem solution and to compare the re-

sults of the preconditioned RCG method to the RGN solution.

MODEL STUDY

We illustrate the inversion methods described above by inver-

sion of the magnetotelluric (MT) data. The MT method is well

described in many publications (e.g. Vozoff, 1972; Zhdanov

and Keller, 1992; Zhdanov, 2009). Specifics of our magne-

totelluric inversion implementation can be found in Gribenko

and Zhdanov (2015).

The model used for the synthetic study contained two conduc-

tive anomalies of different dimensions and different depths. A

regional MT survey was computer simulated with 49 stations

arranged in an approximately 60×60 km2 grid. The top pan-

els of Figures 1 and 2 show the horizontal and vertical sections

through the geoelectrical model. The locations of the station

are shown by stars in Figure 1. The synthetic observed MT

data (full impedance tensor) were computed at 19 frequencies

between 0.0001 and 0.1 Hz and contaminated with 3.5% ran-

dom Gaussian noise.

Figure 1 presents horizontal sections of the true and inverse

geoelectrical models. The locations of the sections are indi-

cated by dashed white lines in the top panels of Figure 2. The

RCG inversions with three different values of the precondi-

tioner exponent, γ, as well as RGN inversion in the data space

were performed. All four inversions converged to an accept-

able normalized root mean square error of RMS < 1.2. It is

apparent from the inversion results that the resolution of the

deeper body was improved by increasing the preconditioner

exponent γ; however, the shape of the deeper anomaly was

slightly distorted. Also, for larger values of γ the inversion

produced resistive anomalies not present in the true model in

the vicinity of the conductors. The value of the preconditioner
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Gauss-Newton inversion in data space

exponent, γ = 0.5, resulted in the fastest convergence rate. The

RGN inversion produced a reasonable model as well. The shal-

low conductor recovered by the RGN inversion appeared less

smooth than those obtained by the RCG inversions, possibly

due to the work-around used to avoid inversion of the gradient

matrix required for a rigorous RGN maximum smoothness in-

version in the data space. Figure 2 presents vertical sections

Figure 1: Horizontal sections through the true model (top);

second row - RCG inversion with γ = 0.25; third row - RCG

inversion with γ = 0.5; fourth row - RCG inversion with γ =
0.75, bottom row - RGN inversion.

of the true and inverse geoelectrical models. The two sec-

tions are drawn close to the horizontal centers of the anoma-

lous bodies. The locations of the sections are indicated by the

dashed white lines in the top panels of Figure 1. The sections

at 40 km appearing in the right panel of Figure 2 show a weak

anomaly around the depth of the shallow anomaly due to the

proximity of the section to the location of the anomaly. From

these vertical sections it can also be noticed that, in the case of

the RCG inversion, the resolution of the deeper body was im-

proved with the higher values of the preconditioner exponent,

γ. At the same time, the upper body appeared more extended.

The resistive anomalies, absent in the true model, were also

apparent in the vicinity of the conductors for the higher values

of γ. The vertical sections of the RGN inversion result indicate

a relatively good resolution of the bottom of the deeper body

and of its true conductivity.

Figure 2: Vertical sections through the true model (top); sec-

ond row - RCG inversion with γ = 0.25; third row - RCG inver-

sion with γ = 0.5; fourth row - RCG inversion with γ = 0.75;

bottom row - RGN inversion.

MT DATA INVERSION AT THE PAVANT BUTTE AREA

In this section, we use MT survey data collected in the Pavant

Butte area as an example of the MT field data inversion us-

ing the RGN method in the data space. The Pavant Butte area

is a part of the Sevier Thermal Belt (Figure 3, panel A). The

Sevier Thermal Belt, which represents most of Utah’s moder-

ate and high temperature (>90oC) hydrothermal systems, is

located in the north-south trending region covering the edge

of the Basin and Range province and the Basin and Range-

Colorado Plateau transition zone. It is characterized by a high

regional heat flow (90 to 150 mWm−2), zones of active seis-

micity, abundant Late Cenozoic normal faults, Tertiary vol-

canic and plutonic rocks, and Quaternary basalt and rhyolite.

The inversion domain, spreading 94.4 x 56.64 x 32.69 km3 in

the x, y, and z directions, was discretized into rectangular cells

of 944 x 944 m2 in horizontal dimensions with 36 layers rang-

ing from 100 m to 3,162 m in thickness. The full impedance

tensor data were used in the inversion. The original data were

interpolated on a set of 25 logarithmically spaced frequencies

ranging from 0.01 to 100 Hz. Figure 4 shows vertical and hor-

izontal sections of the inversion result. A relatively resistive
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Gauss-Newton inversion in data space

Figure 3: Location map of the survey area. Panel A: the known

Geothermal Resource Areas (KGRA) are indicated by the red

hatched areas. The Pavant Butte area is indicated by one of

the yellow stars. Panel B: a map of the Black Rock Desert and

Pavant Butte MT survey area. The orange box outlines approx-

imate horizontal inversion domain boundaries. Adopted from

Hardwick (2013).

zone in the central-Northern region at a shallow depth coin-

cides with the surface basalt flows present in the area. This re-

gion is highlighted by yellow and light blue colors surrounded

by more conductive sediments in the vertical section at 1 km

depth. A 3 km horizontal section indicates the presence of the

conductive material underlying the basalt flow. The hydrother-

mal fluids are likely responsible for the areas of elevated con-

ductivity. The source of the hot material is imaged by the con-

ductive body appearing in the western part of the inversion do-

main. This reservoir is visible in the horizontal section at 12

km depth, as well as in the vertical sections at 4305, 4315, and

4325 km Northing. The multiple pathways of the fluid are im-

aged, and can be traced in the horizontal sections at 9 and 6

km depths.

Figure 4: Vertical (left) and horizontal (right) sections of the

conductivity distribution obtained by the inversion of the Pa-

vant MT data.

CONCLUSIONS

We implemented the data space regularized Gauss-Newton in-

version method in our magnetotelluric inversion. A conven-

tional model space RGN method requires the inversion of the

large square Hessian matrix, which is one of the main obstacles

for using the RGN method in geophysical inversion. The data

space implementation involves inversion of a much smaller

matrix, which makes it possible to use the RGN method with

limited computer resources. The two formulations are equiva-

lent and yield identical solutions.

We have also outlined a generic regularized conjugate gradient-

type method in the model space. The advantage of such meth-

ods is that the Hessian matrix and its inversion are not required.

However, the RCG method has slower convergence in compar-

ison with the RGN approach. The preconditioners are usually

applied to speed up the RCG methods. We have introduced

a preconditioner based on the diagonal of the Hessian matrix

taken to some power, γ . Our model study has demonstrated

that, the different values of preconditioner power, γ, for RCG

method can change the resolution of the inverse model at dif-

ferent depths. In our study preconditioner exponent γ = 0.5
produced better results and faster convergence compared to

other RCG solutions. The locations and conductivities of the

targets recovered by the RGN method seem to better represent

the true model. The artificial resistive anomalies are also ab-

sent in the RGN inversion result. Note that, future research

will be aimed at improvement of our regularization approach

in RGN implementation in order to produce a smoother or

sharper inversion result.

We applied our method to MT data collected in the Pavant

Butte hydrothermal area. The resistivity distribution recov-

ered by our inversion produced a reasonable representation of

the geology of the region. Our study indicates that magne-

totelluric sounding represents a useful method in hydrothermal

exploration. The inverse conductivity model of the deeper re-

gions may provide valuable information about the geothermal

sources.
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