
Finite element time domain electromagnetic modeling with IP effects using adaptive Padé series 
Hongzhu Cai*, TechnoImaging, and  Michael S. Zhdanov, University of Utah, Technoimaging and MIPT 
 

Summary 

The induced-polarization (IP) method has been widely used 

in geophysical exploration. The correct interpretation of IP 

data requires techniques which can simulate IP responses 

caused by fully 3D dispersive conductivity structures. We 

developed an edge-based finite element time domain 

(FETD) method to simulate the electromagnetic fields in 

3D dispersive medium. The vector Helmholtz equation for 

total electric field is solved using the edge based finite 

element method with unstructured tetrahedral mesh and the 

backward Euler method with adaptive time stepping. We 

use the direct solver based on LU decomposition to solve 

the system of equations. The Cole-Cole conductivity 

relaxation model in frequency domain is expanded using 

truncated Padé series. The Ohm's law with Cole-Cole 

model is transformed into time domain. By using Padé 

expansion, the fractional differential equation problem can 

be avoided. During time stepping, we select the center 

point and orders for Padé series expansion adaptively. The 

developed method was tested for several synthetic 

dispersive conductivity models to validate our algorithm. 

 

Introduction 

The time domain electromagnetic (TEM) methods has been 

widely used to delineate the subsurface conductivity (Ward 

and Hohmann, 1988). Comparing to the frequency domain 

method, the TEM method usually has better resolution to 

the deep target for typical survey configurations and broad 

time scales (Zaslavsky et al., 2011). Correct interpretation 

of field data requires arcuate tools to model the TEM 

response (Um et al., 2012). The common approach is based 

on the Fourier transform of the frequency domain response 

(Mulder et al., 2007; Ralph-Uwe et al., 2008). However, 

the accuracy of such transformation is affected by the 

frequency sampling and the transformation methods (Li, 

2016). 

    One can also directly discretize the Maxwell's equation 

in time domain (Um et al., 2012). The finite difference time 

domain (FDTD) methods has been adopted for advancing 

the electromagnetic response in time domain (Yee, 1966; 

Wang and Hohmann, 1993; Commer and Newman, 2004). 

The TEM simulation requires a large computation domain 

to address the Boundary condition and the mesh needs to be 

refined nearby transmitters, receivers and the domain with 

abrupt conductivity variation (Zaslavsky et al., 2011). The 

size of problem for FDTD can be very large (Um et al., 

2012) and the complex geometries can only be 

approximated by a stair-cased model (Um et al., 2012). 

    To overcome these problems, the FETD method has 

been introduced (Jin, 2014) and applied to large scale 

CSEM modeling (Um, 2011). The FETD method, with 

unstructured spatial discretization, can reduce the size of 

the problem dramatically (Um, 2011; Jin, 2014). We adopt 

the FETD scheme proposed by Um (2011) for solving 

TEM modeling problem. We also update the time step size 

adaptively, to reduce the computational cost (Um, 2011). 

    The conventional time domain electromagnetic (TEM) 

modeling considers non-dispersive conductivity. Pelton et 

al. (1978) studied the frequency-dependent conductivity 

which is manifested as induced polarization (IP) effect. 

Such effect has been well studied in frequency domain 

using Cole-Cole model (Luo and Zhang, 1998), which 

needs to be represented by the convolution of the electric 

field in time domain which is introduced into Maxwell's 

equations through the fractional time derivative (Zaslavsky 

et al., 2011). Solving such equations with fractional 

derivative term requires the electric field at all previous 

stage since either the convolution or the fractional 

derivative corresponds to a global operator. Due to this 

problem, the TEM data with IP effect are rarely modeled 

directly in time domain. 

    The Padé series (Baker, 1996) can be used to avoid the 

fractional derivative problem for modeling dispersive 

medium (Weedon and Rappaport, 1997). The fractional 

differential equation can be transformed to differential 

equation with integer order and further to be solved using 

numerical methods (Rekanos, 2010). Based on the work of 

Weedon and Rappaport (1997) and Rekanos (2010), 

Marchant et al. (2014) proposed a finite volume time 

domain method for simulating IP effect with Cole-Cole 

model. However, these methods use the Taylor expansion 

in the vicinity of one point to calculate the Padé coefficient 

during the time domain modeling. The corresponding Padé 

approximation is only accurate near the selected center 

point in the situation of broad dispersion. 

We implemented the FETD modeling with IP effect using 

the Padé approximation. Instead of using a fixed-point 

Taylor expansion to calculate the Padé coefficient, we 

update the Padé coefficient adaptively. We keep the same 

Padé coefficient for each n steps and update the Padé series 

after these n time steps. For a given model, we use a 

halfspace model with the same dispersion behavior to 

calculate the time domain response at the receivers. We 

also approximate this halfspace Cole-Cole model using 

Padé series with different choice of expansion point and 

order. The optimized expansion point and order is adjusted 

until the Padé model produce closer result to this halfspace 

Cole-Cole model. We repeat this process for each time 

segment. 

 

FETD discretization of electric field equation 
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FETD modeling of EM data with IP effect using adaptive Padé series 

    In a general 3D dispersive medium, the electric field E 

satisfies the following diffusion equation (Um et al., 2012): 

  ∇ × ∇ × 𝐄(𝑡) + 𝜇
𝜕𝐣𝐞(𝑡)

𝜕𝑡
= −𝜇

𝜕𝐉𝐬(𝑡)

𝜕𝑡
 ,            (1) 

where 𝐉𝐬 is the current density of the source, and 𝐣𝐞 is the 

induction current which can be related to the electric field 

by Ohm's law as follows (Ward and Hohmann, 1988; 

Zhdanov, 2009): 

          𝐣𝐞 = 𝜎̂𝐄,             (2) 

and 𝜎̂  is the electric conductivity tensor (for a general 

anisotropic medium). In the nondisperssive medium, the 

electric conductivity 𝜎̂ is time invariant. 

We use 𝐄(𝑡), 𝐣𝐞(𝑡), and 𝐉𝐬(𝑡) to emphasize that the electric 

field and current density are functions of time. We first 

consider a non-dispersive conductivity and (2) can be 

directly substituted into (1) to get the following equation: 

  ∇ × ∇ × 𝐄(𝑡) + 𝜇𝜎̂
𝜕𝐄(𝑡)

𝜕𝑡
= −𝜇

𝜕𝐉𝐬(𝑡)

𝜕𝑡
 .            (3) 

We adopt the Nédélec basis function (Nédélec, 1980; Jin, 

2014) for unstructured tetrahedral mesh. The electric field 

inside the tetrahedral at any time t can be represented as a 

linear combination of the fields along the edge: 

   𝐄𝑒(𝑡) = ∑ 𝐍𝑖
𝑒𝐸𝑖

𝑒(𝑡)6
𝑖=1              (4) 

After applying edge-based finite element analysis to (3), we 

can get a system of equation as follows (Jin, 2002, 2014): 

  𝐾𝐸(𝑡) + 𝜇𝜎̂𝑀
𝜕𝐄(𝑡)

𝜕𝑡
= −𝜇𝑀

𝜕𝐉𝐬(𝑡)

𝜕𝑡
              (5) 

where the stiffness matrix K and M are defined as: 

      𝐾𝑖𝑗
𝑒 = ∫ (∇ × 𝐍𝑖

𝑒) ⋅ (∇ × 𝐍𝑗
𝑒)

Ω𝑒
𝑑𝑣                (6)

       𝑀𝑖𝑗
𝑒 = ∫ 𝐍𝑖

𝑒 ⋅ 𝐍𝑗
𝑒

Ω𝑒
𝑑𝑣,                       (7) 

We use the implicit backward Euler approximation, which 

is unconditionally stable for time stepping: 

   
𝜕𝐄(𝑡)

𝜕𝑡
≈

𝐄(𝑡)−𝐄(𝑡−Δ𝑡)

Δ𝑡
.              (8) 

After assembling, we can get a system of equation: 

       𝐴𝐄(𝑡) = 𝒃              (9) 

For the FETD modeling, we consider an impulse source 

waveform approximated by a Gaussian function. As a 

result, we can use a zero initial condition for (9). With this 

initial condition and the Dirichlet boundary condition 

which assumes the electric field vanishes on the boundary, 

equation (9) is ready to be solved using sparse LU 

decomposition. We use an adaptive time stepping method 

in such a manner that a fixed time step size is used for n 

steps and then it will be doubled if the accuracy can be 

guaranteed (Um, 2011). The finite element matrix only 

needs to be factorized once for the same time step size.    

 

Modeling IP effects with adaptive Padé series 

We consider the Cole-Cole model in frequency domain: 

 𝜌(𝜔) = 𝜌0 (1 − 𝜂 (1 −
1

1+(𝑖𝜔𝜏)𝑐))          (10) 

where 𝜌0  is the DC resistivity, 𝜂  is the chargeability, 𝜏 is 

the time constant and c is the frequency dependence term 

with the value ranges from 0 to 1 (Pelton, 1977). The 

relaxation model is named as Debye model when c=1 

(Marchant et al., 2014). 

By subsisting (10) into (2), we can obtain the following 

equation in frequency domain:  

𝜎0𝐄(𝜔) + (𝑖𝜔)𝑐𝜏𝑐𝜎0𝐄(𝜔) = 𝐣𝐞(𝜔) + (𝑖𝜔)𝑐(1 −
𝜂)𝜏𝑐𝐣𝐞(𝜔)              (11) 

here 𝐄(𝜔)  and 𝐣𝐞(𝜔)  are the electric field and induction 

current density in frequency domain, 𝜎0 represents the DC 

conductivity. 

 

Figure 1:  A comparison between the Cole-Cole conductivity 

spectrum and the Padé approximation with two different center 

frequencies of 0.01 Hz and 100 Hz. 

 

Figure 2:  A comparison between the normlaized error for the Padé 

model with both fixed and adaptive center frequency 
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FETD modeling of EM data with IP effect using adaptive Padé series 

Following Marchant et al. (2014), we apply the inverse 

Fourier transform to (13) and get the following fractional 

differential equation (Miller and Ross, 1993; Meerschaert 

and Tadjernan, 2004): 

𝜎0𝐄(𝑡) + 𝜏𝜎0
𝜕𝑐𝐄(𝑡)

𝜕𝑡𝑐
= 𝐣𝐞(𝑡) + 𝜏(1 − 𝜂)

𝜕𝑐𝐣𝐞(𝑡)

𝜕𝑡𝑐             (12) 

The Caputo fractional derivative with real order c is 

defined as follows for 𝑛 − 1 ≤ 𝑐 < 𝑛 (Miller and Ross, 

1993; Meerschaert and Tadjernan, 2004): 

𝜕𝑐𝑓(𝑡)

𝜕𝑡𝑐
=

1

Γ(𝑛−𝑐)
∫

𝑓(𝑛)(𝑠)𝑑𝑠

(𝑡−𝑠)𝑐−𝑛+1

𝑡

𝑐
             (13) 

where Γ is the Gamma function.  

Note that for the Debye dispersion with 𝑐 = 1 , (12) 

becomes an first order differential equation and can be 

solved together with (1) in a coupled manner using the 

described FETD method. For a general case with 𝑐 ≠ 1, we 

approximate the term (𝑖𝜔)𝑐 by the Padé series of order M 

(Marchant et al., 2014):  

(𝑖𝜔)𝑐 =
𝑃0+∑ 𝑃𝑚(𝑖𝜔)𝑚𝑀

𝑚=1

1+∑ 𝑄𝑛
𝑁
𝑛=1 (𝑖𝜔)𝑚

            (14) 

By subsisting (14) into  (11), we can obtain the following 

ordinary differential equation for Ohm’s law: 

𝑎0𝜎0𝐄(𝜔) + [∑ 𝑎𝑚(𝑖𝜔)𝑚𝑀
𝑚=1 ]𝜎0𝐄(𝜔) = 𝑏0𝐣𝐞(𝜔) +

[∑ 𝑏𝑚(𝑖𝜔)𝑚𝑀
𝑚=1 ]𝐣𝐞(𝜔)           (15) 

where we define: 

𝑎0 = 1 + 𝑃0𝜏𝑐 , 𝑎𝑚 = 𝑄𝑚 + 𝑃𝑚𝜏𝑐  

𝑏0 = 1 + 𝑃0(1 − 𝜂)𝜏𝑐 , 𝑏𝑚 = 𝑄𝑚 + 𝑃𝑚(1 − 𝜂)𝜏𝑐  

By applying inverse Fourier transform to (15) we can get 

the following differential equation with integer order in 

time domain (Marchant et al., 2014): 

𝑎0𝜎0𝐄(𝑡) + ∑ (𝑎𝑚𝜎0
𝜕𝑚𝐄(𝑡)

𝜕𝑡𝑚 )𝑀
𝑚=1 = 𝑏0𝐣𝐞(𝑡) +

∑ (𝑏𝑚
𝜕𝑚𝐣𝐞(𝑡)

𝜕𝑡𝑚 )𝑀
𝑚=1             (16) 

We use the higher order backward Euler method to 

approximate the time derivative term in (16).  

As a result, the coupling between (3) and (16) can be 

solved using the FETD method to take into account the IP 

effects in TEM data for a general dispersion of 𝑐 ≠ 1. 

However, the accuracy of the proposed method depends on 

how we can accurately approximate the Cole-Cole model 

with Padé series which is only guaranteed to be accurate in 

the vicinity of the center frequency of Padé expansion.  

To illustrate this problem, we consider a Cole-Cole model 

with 𝜎0 = 0.001 𝑆/𝑚, 𝜏 = 1 𝑠, 𝜂 = 0.1, 𝑐 = 0.6 . We use 

two center frequencies for the Padé expansion to 

approximate the Cole-Cole model. From Figure 1, we can 

see that low frequency part of the spectrum can be well 

fitted, with center frequency f₀=0.01 Hz, but the high 

frequency part shows a clear discrepancy, and vice versa.  

We proposed a method to adaptively select the center 

frequency for Padé series. We gradually decrease the value 

of center frequency with time increase. The total 

observation time period is divided in to a series of time 

segment. For a model (can be 3D) with given Cole-Cole 

dispersion, the true time domain response of a halfspace 

model with the same/equivalent dispersion parameter will 

be calculated by cosine transform for each time segment. 

For each time segment, the response for the Padé model 

will be calculated for a series of trial center frequency. The 

optimal center frequency will be selected, for each time 

segment, based on the misfit between the Padé model and 

the halfspace response.  

To illustrate this approach, we consider a halfspace model 

with the model parameters described before for Figure 1. 

The EM field is excited by a horizontal electric ground wire 

with the moment of 10⁵ Am. We first calculate the time 

domain response of the in-line 𝐸𝑥 field at the offset of 1000 

m using cosine transform for the actual Cole-Cole model. 

Then, we calculate the TEM response for the Padé model 

 

Figure 3:  A comparison between the analytical solution and FETD 

solution for the halfspace model with Debye dispersion. 

 

Figure 4:  A comparison between TEM response for the non-

dispersive halfspace model and halfspace Debye model at y=300m 

and t=0.22s. The arrow represents the direction of the total electric 

field on this vertical plane. The color scale is in logarithmic space. 
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FETD modeling of EM data with IP effect using adaptive Padé series 

with both optimized fixed and adaptive center frequency. 

We normalize the solution for the Padé model (with both 

fixed and adaptive center frequency) by the actual Cole-

Cole model solution. Figure 2 shows a comparison between 

the normalized error (value of 1 indicates perfect fitting) 

for the Padé model with both fixed and adaptive center 

frequency. We can clearly see that the modeling accuracy is 

improved significantly by the proposed adaptive method. 

 

Model studies 

We now consider a halfspace model with earth conductivity 

of 10⁻³ S/m. The EM field is excited by a x oriented ground 

wire with the center located at (-1000,0,0) m and a length 

of 10 m. We assume an impulse current, with the maximum 

value of 10⁴ A, is injected into the ground through the wire. 

The 𝐸𝑥 component will be recorded. The modeling domain 

is selected to be 80km×80km×80km based on the 

experience. The corresponding unstructured tetrahedral 

mesh contains 162,394 elements and 193,341 edges. For 

the Cole-Cole parameters, we set 𝜏 = 1 𝑠, 𝜂 = 0.1. Figure 3 

shows the comparisons between FETD modeling results 

and the analytical solutions for the halfspace model with 

Debye dispersion (c=1) at the offset of 1000 m, on the 

earth's surface. We can see that the FETD results compare 

well to the analytical solutions. Figure 4 shows comparison 

between the FETD solution for the halfspace model with no 

IP and Debye dispersion at the vertical plane of y=300 m. 

We can clearly see that the time domain response is 

distorted significantly by the IP effect. 

Finally, we consider a model with non-dispersive halfspace 

background and localized dispersive 3D anomaly with a 

dyke shape. The conductivity of the background is 0.01 

S/m. For this model, we consider several different scenarios 

with and without IP (both Debye and general dispersion). 

For IP case, we set τ=0.1s, η=0.5.The dipping angle of the 

dyke is 45 degree. The dimension of the dyke in y direction 

is 200 m. Figure 5 shows the tetrahedral mesh of this model 

at the plane of y=0. The magenta color represents the 

location of the dyke. We consider a grounded wire source 

with the length of 10 m, located at (-1000, 0, 0) m. The 

wire carries the electric current of 10000 Amper with 

Gaussian impulse waveform. Figure 6 shows the decay of 

electric field Ex on the earth's surface, directly above the 

center of the dyke. For the general dispersion (𝑐 ≠ 1), the 

optimized Padé series with third order and adaptive center 

frequency is selected using the proposed method.  

 

Conclusions 

 

We have developed an edge-based finite element time 

domain method for simulating electromagnetic fields in 

conductive and general dispersive mediums. We used the 

Padé series to approximate the Cole-Cole model for the 

conductivity dispersion. Using this method, the differential 

equation in the time domain with fractional derivative can 

be approximated by the differential equation with integer 

order. We proposed a method with the adaptive Padé series 

in such a manner that the center frequency for the Padé 

series expansion was updated with time stepping. Our 

algorithm automatically calculate the optimized center 

frequency at different time stages. We validated the 

accuracy and effectiveness of the developed algorithm 

based on several model studies.  
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Figure 5:  Tetrahedral mesh of the dyke model at y=0. 

 

Figure 6:  A comparing between the time domain responses above 

the center of the dyke for different scenario. 
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