
Joint iterative migration of surface and borehole gravity gradiometry data 
Muran Han*, Le Wan, and Michael S. Zhdanov, University of Utah and Technoimaging 
 

Summary 

 

Gravity and gravity gradiometry surveys have been widely 

used in mining and petroleum exploration. Interest in 

borehole gravity measurements has grown because they can 

help to detect deep targets. The best way to obtain a 3D 

density distribution is by the joint interpretation of surface 

and borehole gravity data which is a very challenging 

problem. The 3D inversion would be a choice for the 

quantitative interpretation of gravity and gravity 

gradiometry data. However, it is a complicated and time 

consuming procedure that is very dependent on the a priori 

model and constraints used. This paper demonstrates that 

joint iterative migration of surface and borehole gravity and 

gravity gradiometry data can effectively image subsurface 

density distribution.  

 

Introduction 

 

High quality gravity gradiometry data can be acquired from 

either airborne or marine platforms over very large areas 

for relatively low cost. However, the sensitivities of the 

gravity field and its gradients are inversely proportional to 

the square or cube of the distance, respectively. Making use 

of the borehole gravity measurement can significantly 

improve the inversion or migration results. The goal of this 

paper is to combine the surface and borehole gravity and 

gravity gradient data to obtain better migration images of 

the subsurface. The borehole gravity method was pioneered 

by Smith (1950) and then applied to problems of reservoir 

evaluation by McCulloh et al. (1968). Unlike the shallower-

sensing density log, the borehole gravimeter is insensitive 

to wellbore conditions such as rugosity and the presence of 

casing. The advantages of measuring gravity gradients 

rather than the gravity field have also been recognized (e.g., 

Nekut, 1989). The borehole gravity log results have also 

been reported in many papers (for example, McCulloh et 

al., 1968; Rasmussen 1975; Jageler, 1976; LaFehr, 1983; 

Gournay et al., 1984; Popta et al., 1990; Alixant and Mann, 

1995; Brady et al., 2006; Nind et al., 2007; MacQueen, 

2007; and Krieger et al., 2009). The prototype borehole 

gravity gradiometers have since been developed (e.g., 

Golden et al., 2007). 

 

Many researchers have tried to combine the borehole and 

the surface gravity data to improve the results of 

interpretation. For example, Cao (2013) inverted the 

surface and borehole seismic data jointly to overcome the 

narrower frequency bandwidth defects of the surface 

seismic data. Li and Oldenburg (2000) inverted the surface 

and borehole magnetic data jointly to better define the 

deeper target. Krahenbuhl and Li (2008) and Sun and Li 

(2010) published the results of the joint inversion of surface 

and borehole gravity data. Also, Rim and Li (2010) and Liu 

and Zhdanov (2011) conducted the research for a single 

borehole data imaging. 

 

Migration of gravity fields is a fast imaging tool to locate a 

target using a transformation of the observed data into a 3D 

density image (Zhdanov, 2002). The results are the same as 

those of 3D inversion; however, the numerical 

implementation and physical interpretation are different. It 

has been used in the interpretation of practical gravity and 

gravity gradient data as a fast imaging tool (Zhdanov et al., 

2011). The migration can be done iteratively and can be 

applied in the same way as inversion for the gravity and 

gravity gradiometry data (Wan and Zhdanov, 2013; Wan et 

al., 2016). 

 

This paper demonstrates that the joint iterative migration of 

surface and borehole gravity gradiometry data can provide 

an improved representation of the subsurface density 

distribution and improve the imaging of a deep target. 

 

Migration of surface gravity and gravity tensor fields 

and 3D density imaging 

 

Let us assume that we have observed some component of 

the surface gravity field 𝒈𝛼
𝑆 (𝐫) and/or some surface gravity 

gradients 𝒈𝛼𝛽
𝑆 (𝐫) over an observational surface S, located 

in the air or on the ground. The problem is to determine the 

3D density distribution, ρ(r′),  under the ground. 

 

Following Zhdanov (2002), the surface migration gravity 

field, 𝒈𝛼
𝑆𝑚(𝐫), is introduced as a result of application of the 

adjoint gravity operator, 𝑨𝛼
𝑆∗, to the observed component of 

the surface gravity field 𝒈𝛼
𝑆 : 

𝒈𝛼
𝑆𝑚(𝐫) = 𝑨𝛼

𝑆∗𝒈𝛼
𝑆 ,                                 (1) 

where the adjoint operator 𝑨𝛼
𝑆∗  for the gravity problem 

(Zhdanov et al., 2011) is equal to: 

𝑨𝛼
𝑆∗(𝑓) = ∬

𝑓(𝐫)

|𝐫′−𝐫|3 𝐾𝛼(𝐫′ − 𝐫)𝑑𝑠
𝑆

.             (2) 

From the physical point of view, the migration field is 

obtained by moving the sources of the observed gravity 

field above the observational surface. Nevertheless, the 

migration field contains some remnant information about 

the original sources of the gravity anomaly. That is why it 

can be used in imaging the sources of the gravity field. 
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Joint iterative migration of surface and borehole Gravity gradiometry data 

In a similar way, we can introduce a surface migration 

gravity tensor field 𝒈𝛼𝛽
𝑆𝑚(𝐫) and use the following notations 

for the components of this tensor field: 

𝒈𝛼𝛽
𝑆𝑚(𝐫) = 𝑨𝛼𝛽

𝑆∗ 𝒈𝛼𝛽
𝑆 ,                           (3) 

where the adjoint operators, 𝑨𝛼𝛽
𝑆∗ , applied to some function 

f(r), are given by the formulas: 

𝑨𝛼𝛽
𝑆∗ (𝑓) = ∬

𝑓(𝐫)

|𝐫′−𝐫|3
𝐾𝛼𝛽(𝐫′ − 𝐫)𝑑𝑠

𝑆
.            (4) 

We can find a distribution of the density of the gravity field 

sources, described by the following expression: 

𝜌𝛼
𝑆𝑚(𝐫) = 𝑘𝛼

𝑆 𝑤𝛼
𝑆(𝑧)𝑔𝛼

𝑆𝑚,                      (5) 

where unknown coefficient 𝑘𝛼
𝑆  can be determined by a 

linear line search (Zhdanov, 2002) according to the 

following: 

𝑘𝛼
𝑆 =

‖𝐴𝛼
𝑤∗𝑔𝛼

𝑆‖
𝑀

2

‖𝐴𝛼
𝑤𝐴𝛼

𝑤∗𝑔𝛼
𝑆‖

𝐷

2  ,                               (6) 

𝐴𝛼
𝑤 = 𝐴𝛼

𝑆 𝑊𝛼
−1 ,                                  (7) 

and the linear weighting operator Wm=Wα is selected as a 

linear operator of multiplication of the density ρ by a 

function, wα; equal to the square root of the integrated 

sensitivity of the complex intensity of the gravity field, Sα: 

𝑤𝛼
𝑆 = √𝑆𝛼

𝑆                                   (8) 

In a similar way, we can introduce a migration density 

based on the gravity tensor migration: 

𝜌𝛼𝛽
𝑆𝑚(𝐫) = 𝑘𝛼𝛽

𝑆 (𝑤𝛼𝛽
𝑆 )

−2
𝒈𝛼𝛽

𝑆𝑚(𝐫),                  (9) 

where: 

𝑘𝛼𝛽
𝑆 =

‖𝐴𝛼𝛽
𝑤∗ 𝑔𝛼𝛽

𝑆 ‖
𝑀

2

‖𝐴𝛼𝛽
𝑤 𝐴𝛼𝛽

𝑤∗ 𝑔𝛼𝛽
𝑆 ‖

𝐷

2  ,                               (10) 

Functions 𝑤𝛼𝛽
𝑆  are equal to the square root of the integrated 

sensitivity of the gravity tensor fields, 𝑆𝛼𝛽
𝑆 , respectively: 

𝑤𝛼𝛽
𝑆 = √𝑆𝛼𝛽

𝑆                                    (11) 

 

Migration of borehole gravity and gravity tensor fields 

and 3D density imaging 

 

Let us assume that we have observed some component of 

the borehole gravity field 𝒈𝛼
𝐵(𝐫)  and/or some borehole 

gravity gradients 𝒈𝛼𝛽
𝐵 (𝐫)  along an observational line L, 

associated with a given borehole. The problem is to 

determine the 3D density distribution, ρ(r′),  around the 

borehole. Following Zhdanov (2002, 2011), the borehole 

migration gravity field, 𝒈𝛼
𝐵𝑚(𝐫), is introduced as a result of 

application of the adjoint gravity operator, 𝑨𝛼
𝐵∗  to the 

observed gravity field: 

𝒈𝛼
𝐵𝑚(𝐫) = 𝑨𝛼

𝐵∗𝒈𝛼
𝐵,                                      (12) 

where the adjoint operator 𝑨𝛼
𝐵∗  for the borehole gravity 

problem is equal: 

𝑨𝛼
𝐵∗(𝑓) = ∫

𝑓(𝐫)

|𝐫′−𝐫|3
𝐾𝛼(𝐫′ − 𝐫)𝑑𝑙 

𝐿
,            (13) 

In a similar way, we can introduce a migration field 

𝒈𝛼𝛽
𝐵𝑚(𝐫)  of the borehole gravity tensor components 

observed along a borehole L, and use the following 

notations for the components of this tensor field: 

𝒈𝛼𝛽
𝐵𝑚(𝐫) = 𝑨𝛼𝛽

𝐵∗ 𝒈𝛼𝛽
𝐵 ,                                (14) 

where the corresponding adjoint operators, 𝑨𝛼𝛽
𝐵∗ , applied to 

some function f(r), are given by: 

𝑨𝛼𝛽
𝐵∗ (𝑓) = ∫

𝑓(𝐫)

|𝐫′−𝐫|3
𝐾𝛼𝛽(𝐫′ − 𝐫)𝑑𝑙

𝐿
.            (15) 

Using the same principles as we discussed above for 

migration of the surface data, one can calculate the density 

distribution by migration of the borehole data. 

 

Joint migration 

 

Our goal is to jointly migrate the surface and borehole 

gravity fields to make a clear image of a deep target. We 

consider a joint migration of the multiple components of 

the surface and borehole gravity and gravity tensor fields 

according to the following formula: 

𝜌𝑚(𝐫) = 𝑐𝛼
𝑆𝜌𝛼

𝑆(𝐫) + ∑ 𝑐𝛼𝛽
𝑆 𝜌𝛼𝛽

𝑆 (𝐫) + 𝑐𝛼
𝐵𝜌𝛼

𝐵(𝐫) +

∑ 𝑐𝛼𝛽
𝐵 𝜌𝛼𝛽

𝐵 (𝐫) ,                         (16) 

where 𝑐𝛼
𝑆, 𝑐𝛼𝛽

𝑆 , 𝑐𝛼
𝐵, and 𝑐𝛼𝛽

𝐵  can be treated as the weights of 

the corresponding migration fields in the density model, 

which can be empirically determined from the results of the 

model studies. 

 

We use the following expressions for joint migration, 

which provides an averaging for both the surface and 

borehole data: 

𝜌𝑚(𝐫) = 𝑐1

𝜌𝛼
𝑆(𝐫)+∑ 𝜌𝛼𝛽

𝑆 (𝐫)

𝑁𝑆+1
+ 𝑐2

𝜌𝛼
𝐵(𝐫)+∑ 𝜌𝛼𝛽

𝐵 (𝐫)

𝑁𝐵+1
 ,       (17) 

if the gravity field is used in the migration, or: 

𝜌𝑚(𝐫) = 𝑐1(∑ 𝜌𝛼𝛽
𝑆 (𝐫)) 𝑁𝑆⁄ + 𝑐2(∑ 𝜌𝛼𝛽

𝐵 (𝐫)) 𝑁𝐵⁄  .   (18) 

if the gravity field is not used. In the last formulas, 𝑁𝑆 is the 

number of the surface gravity gradient components, the 𝑁𝐵 

is the number of borehole gravity gradient components, and 

𝑐1 = 0.5 and 𝑐2 = 0.5. 
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Joint iterative migration of surface and borehole Gravity gradiometry data 

Iterative migration 

 

Equation (17) or (18) produces a migration image of 

density distribution in the lower half-space. A better quality 

migration image can be produced by repeating the 

migration process iteratively (Wan and Zhdanov, 2013). 

We begin with the migration of the observed gravity and/or 

gravity tensor field data and get the density distribution. In 

order to check the accuracy of our migration imaging, we 

apply the forward modeling and compute a residual 

between the observed and predicted data for the given 

density model. 

𝒓1 = 𝒈𝑝𝑟𝑒 − 𝒈𝑜𝑏𝑠                              (19) 

where gobs is the observed gravity or gravity gradient 

component, gpre is the predicted gravity or gravity gradient 

component. If the residual is smaller than the prescribed 

accuracy level, we use the migration image as a final 

density model. In the case where the residual is not small 

enough, we migrate the residual field and produce the 

density, 𝛿𝜌1
𝑚, to the original density model using the same 

analysis, which we have applied for the original migration. 

 

A general scheme of the iterative migration can be 

described by the following formula: 

𝜌𝑛+1
𝑚 = 𝜌𝑛

𝑚 − 𝛿𝜌𝑛
𝑚                          (20) 

The iterative migration is terminated when the residual 

field becomes smaller than the required accuracy level of 

the data fitting. 

 

The iterative migration can be combined with 

regularization method. This also allows to apply the smooth 

or focusing stabilizers to produce a more focused image of 

the target (Wan and Zhdanov, 2013). 

 

Model study 

 

In this section we present an example of 3D joint migration 

for surface and borehole gravity gradient field data. We 

consider a model, which contains two reservoirs, the size of 

1000 m x 1000 m x 200 m (L x W x H), one above the 

other. The upper reservoir is located at a depth of 0.9 km 

below the surface, and the lower reservoir is located at 1.9 

km below the surface (see Figure 1).  

 

The surface gravity sensors are distributed within the range 

of 6 km in the x direction and 5.6 km in the y direction with 

100 m separation in the x and y directions. A vertical 

borehole is located at the poring with the coordinates of x = 

3000 m and y = 2200 m. The interval of observation in the 

borehole is 5 m in the z direction. The observed data 

contained 5% random noise. 

 

Figure 2 shows as an example the results of iterative 

migration of the surface 𝑔𝑧𝑧  component only at the cross 

section of x = 3000 m. The blue line shows the observed 

data and the red line represents the predicted data at the 

surface (top panel). One can see that the migration density 

image shows one target only, the lower reservoir cannot be 

seen at all from the surface data, even though the data 

fitting is very good, as shown in the top panel of the Figure 

2. 

 

Now, we consider the migration of the borehole data. 

Figure 3 presents the results of iterative migration of the 

borehole 𝑔𝑧𝑧 data. The blue line shows the observed data 

and the red line represents the predicted data in the 

borehole (side panel). The migration density image shows 

that it is possible to resolve two reservoirs from the 

borehole data. However, the artifacts on the opposite side 

from the borehole complicate the image. 

 

 
Figure 1: Model of two HC reservoirs. The blue dots show the 

observation stations at the surface. The vertical black dots denote 

the position of the borehole. 
 

 
Figure 2: The result of iterative migration of surface 𝑔𝑧𝑧  

component only at the cross section of x = 3000 m (bottom panel). 

The blue line shows the observed data and red line shows the 

predicted data at the surface (top panel). 
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Joint iterative migration of surface and borehole Gravity gradiometry data 

 
Figure 3: The result of iterative migration of surface 𝑔𝑧𝑧  

component only at the cross section of x = 3000 m (left panel). The 

blue line shows the observed data and red line shows the predicted 

data at the surface (right panel). 
 

 

In the next step of our numerical study, we consider a joint 

migration of the surface and borehole gravity data. Figure 4 

shows the result of the iterative migration of the surface 

𝑔𝑦𝑧  component and borehole 𝑔𝑦𝑧  component jointly. The 

migration density image reconstructs two reservoirs clearly 

enough in this figure. 

 

Finally, Figure 5 presents the results of joint iterative 

migration of the surface and borehole 𝑔𝑧𝑧 + 𝑔𝑦𝑧 data. The 

migration transformation in this case provides a clean 

image of the two targets without any artifacts. 

 

 

 
Figure 4: The result of joint iterative migration of surface and 

borehole 𝑔𝑦𝑧  component only at the cross section of x = 3000 m 

(bottom left panel). The blue line shows the observed data and red 
line shows the predicted data at the surface (top panel) and in the 

borehole (right panel). 

 
 

 
Figure 5: The result of joint iterative migration of surface and 

borehole 𝑔𝑧𝑧 + 𝑔𝑦𝑧   data at the cross section of x = 3000 m 

(bottom left panel). The blue line shows the observed data and red 

line shows the predicted data at the surface (top panel) and in the 

borehole (right panels). 

 

Conclusions 

 

We have developed a novel approach to interpretation of 

the gravity gradiometry data by considering the joint 

iterative migration of the data observed both on the surface 

and in the borehole. The numerical modeling study has 

demonstrated that this approach provides an efficient tool 

for rapid imaging of gravity gradiometry data. Our results 

also show that by migrating the borehole data jointly with 

the surface data, we obtain a vertical resolution of the 

inversion, which would be otherwise impossible to achieve 

with surface observation only. Thus, this research shows 

the importance of developing gravity gradiometry systems 

capable of measuring the gravity tensor field in the 

borehole.  
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