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SUMMARY 

 

This paper develops a method of joint inversion of the 

different individual components of full-tensor gradient (FTG) 

data using the re-weighted regularized Newton-Gauss 

algorithm based on the clustering method. The clustering 

technique is used to enforce the density to be distributed 

around the specific a priori values determined from either 

petrophysical data or the rock sample measurement. To keep 

the density of the inverse model within the imposed 

boundaries, we implemented the inversion algorithm in the 

logarithmic model space. In addition, we applied the model 

weighting matrix to the clustering functional in order to 

guarantee the robustness of the inversion. Compared with a 

standard smooth density inversion, the new inversion 

approach predicts accurately the values of the density, and 

also improves the spatial resolution of the anomalous bodies, 

which is important in studying the complex geological 

structures. We present a model study and a case study for the 

new inversion approach using FTG gravity gradiometry data 

from Nordkapp Basin, Barents Sea.  

 

 

INTRODUCTION 

 

The emergence and successful development of full tensor 

gravity gradiometry (FTG), made it possible to use FTG data 

to improve the effectiveness of the gravity method in mineral 

and hydrocarbon (HC) exploration (Zhdanov et al., 2009). 

For example, salt diapirs, as a kind of typical geological 

structure, are bounded within the host rock by a sharp 

boundary.  

 

The traditional regularization algorithms are based on 

applying the maximum smoothness (Constable, et al., 1987) 

and minimum norm (Bell et al., 1977) constraint to the 

inverse model. But it fails to recognize the sharp boundaries 

of geological formations (Zhdanov, 2002, 2015). 

Portniaguine and Zhdanov (1999) introduced a concept of 

focusing inversion based on the minimum support or 

minimum gradient support constraints which  provide the 

inverse models with sharp boundaries. Another approach is 

based on application of the joint inversion by integrating 

multiple datasets to mitigate some of inherent ambiguity t (e. 

g., Vozoff and Jupp, 2007; Coutant et al., 2012; Zhdanov and 

Cox, 2013; Kamm et al., 2015; Xu and Zhdanov, 2015).  

 

 

 

 

 

In order to exploit anomalous targets with high contrasts by 

given a priori geologic information, an approach based on 

binary transforms was initially developed by transforming 

the continous function into the binary function (Zhdanov and 

Cox, 2013). Zhdanov and Lin (2017) extended the approach 

from binary to quasi-multinary transforms. Nevertheless, in 

order to migitate the difficulty in implementing the 

derivative-based minimization of the Tikhonov parametric 

functional, it is necessary to transform the continuous 

functions of the model parameters and their sensitvities to 

their multinary function. 

 

As an alternative approach in producing a focusing image 

without multinary transform, Sun and Li (2015, 2016a, and 

2016b) proposed a multi-domain joint using the guided 

fuzzy c-means (FCM) clustering method to manage to solve 

the multimodal inverse problem. But the FCM clustering 

objective functional fails to take weighting matrices for the 

model parameters into calculation, of which the function is 

to ensure observed data are of equal snensitivity to the 

model-weighted parameters. 

 

To overcome the two main shortcomings of the current 

focusing-based approaches, in this paper, we apply a 

deterministic approach to minimization of the classic 

Tikhonov regularization parametric functional with the 

model-weighted FCM clustering objective functional. In 

order to make the convergence fast, the Newton-Gauss 

algorithm is implemented in the weighted model space to 

invert density distribution by jointly using the different 

individual components of the FTG tensor. Furthermore, in a 

similar manner as it was done in the framework of multinary 

inversion, we also transfer the original model parameters 

into logarithmic space to guarantee that the corresponding 

parameters will always be found within the imposed 

boundaries.. The approach is tested through 3D synthetic 

study and a case study, of which a field FTG gravity 

gradiometry data acquired in the Nordkapp Basin of the 

Barents Sea. 

 

WEIGHTED FCM INVERSION METHODOLOGY 

 

Consider forward geophysical problems for multiple 

geophysical data sets. These problems can be described by 

the operator relationships: 

             𝒅(𝑖) = 𝑨̂(𝑖)(𝒎̂) = 𝑨(𝑖)(𝒎), 𝑖 = 1,2,3, … , 𝑁;         (1) 
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where, in a general case, 𝒎̂ stands for the unknown sets of 

model parameters in logarithmic space to make sure original 

model 𝒎  will always within the imposed and reasonable 

boundary as: 

    𝒎̂ = 𝑙𝑛
𝒎−𝒎−

𝒎+−𝒎
,                            (2) 

and 𝑨̂(𝑖) is corresponding a linear or nonlinear operator in 

logarithmic space. 𝒅(𝑖) (𝑖 = 1,2,3, … , 𝑛)  are different 

observed data sets which are sensitive to different physical 

properties but are collected over the same survey area.  

 

The joint inversion recovers density property by using a 

single parametric functional to the following formula: 

 𝑷𝛼(𝒎̂) = ∑ 𝝋𝑤
(𝑖)(𝒎̂)𝑁

𝑖=1 + 𝛼𝑺𝒘(𝒎̂) + 𝜆𝚽𝑤_𝑓𝑐𝑚(𝒎̂)     (3) 

where 𝛼  and 𝜆  are the regularization and compactness 

parameter, respectively. The 𝝋𝑤
(𝑖)(𝒎̂)  is the data-weighted 

misfit functional between the predicted data 𝑨̂(𝑖)(𝒎̂), and the 

observed data 𝒅(𝒊) for one specific dataset i: 

 𝝋𝑤
(𝑖)(𝒎̂) = ‖𝑾̂𝑑

(𝑖)
𝑨̂(𝑖)(𝒎̂) − 𝑾̂𝑑

(𝑖)
𝒅(𝒊)‖

𝐿2

2
        (4) 

and the 𝑺𝒘(𝒎̂) is the model-weighted stabilizing functional 

that is usually introduced as the least-squares difference 

between the regularized solution and some a priori model, 

𝒎̂𝒂𝒑𝒓 as: 

𝑺𝒘(𝒎̂) = ‖𝑾̂𝒎𝒎̂ − 𝑾̂𝒎𝒎̂𝒂𝒑𝒓‖
𝑳𝟐

𝟐
              (5) 

where 𝑾̂𝒅  and 𝑾̂𝒎  are the data the data and model 

weighting matrices, respectively. Eventually, we conduct the 

FCM objective functional term 𝚽𝑤_𝑓𝑐𝑚(𝒎̂) as sum of two 

terms, one is least-squares difference between weighted 

model parameters 𝒎𝒘̂ = 𝑾̂𝒎 𝒎̂  and average physical 

property value (center) 𝑽𝒘̂𝒌 = 𝑾̂𝒎𝑽̂𝒌,  for the kth 

petrophysical unit. Another is to guide weighted 𝑽𝒘̂𝒌 

toward to the target cluster center  𝑻𝒘̂𝒌 = 𝑾̂𝒎𝑻̂𝒌(Sun & Li 

2015a): 

𝚽𝑤_𝑓𝑐𝑚(𝒎̂; 𝑼̂𝒌
𝒒

, 𝑽𝒘̂𝒌) = ∑ (𝒎̂ −𝐶
𝑘=1

𝑽̂𝑘)
𝑇

𝑾̂𝒎
𝑇

𝑾̂𝒎𝑼𝑘
𝑞

(𝒎̂ − 𝑽̂𝑘) + ∑ 𝜂𝑘‖𝑾̂𝒎𝑽̂𝑘 −𝐶
𝑘=1

𝑾̂𝒎𝑻̂𝑘‖
𝐿2

2
                                                                         (6) 

where 𝜂𝑘  stands for closeness parameters and 𝑼𝑘  is the 

membership value in which each element can be interpreted 

as the probability of the corresponding model cell belonging 

to the kth petrophysical unit. (Sun & Li 2017). One of the 

advantages of selecting appropriate model weighting 

coefficients is to eliminate the effect of the units and 

magnitudes. Comparing with traditional model weighting 

approach, as the square root of the integrated sensitivity 

matrix, a modified model weighting matrix, in this paper, 

should be selected: 

𝑾̂𝒎 = 𝑑𝑖𝑎𝑔√(
𝑭̂𝒎𝒏

(𝑖)

𝑚𝑎𝑥(𝑭̂𝒎𝒏

(𝑖)
)
)

𝑇

∙ (
𝑭̂𝒎𝒏

(𝑖)

max (𝑭̂𝒎𝒏

(𝑖)
)
)

4

         (7) 

where 𝑭̂𝒎𝒏

(𝑖)
is the Fr é chet derivative in the space of 

logarithmic model parameters as of the forward operator 

𝑨̂(𝑖) . This choice of model weighting matrix ensures a 

uniform sensitivity to the different model parameters 

(Nocedal et al. 1999). For gravity survey, the linear Fréchet 

derivative operator in log space can be represented as the 

original forward modeling operator 𝑨(𝑖)  by derivative of 

original model parameter 𝒎  with respective with 

logarithmic model parameter 𝒎̂, shown in Eq. (2) as: 

𝑭̂𝒎𝒏

(𝑖)
= 𝑨(𝑖) ∙

𝒎+−𝒎−

(1+𝑒𝑥𝑝(𝒎̂))
2 ∙ 𝑒𝑥𝑝(𝒎̂)                (8) 

and 𝑾̂𝒎is updated for each iteration as  𝒎̂ update, so-called 

re-weighted.  

 

Substituting Eq. (6) into Eq. (3), we find: 

𝑷𝜶,𝝀(𝒎̂; 𝑼̂𝒌
𝒒

, 𝑽𝒘̂𝒌) = ∑ 𝝋𝒘
(𝒊)(𝒎̂)𝑵

𝒊=𝟏 + 𝜶𝑺𝒘(𝒎̂) +

𝝀𝜱𝒘_𝒇𝒄𝒎(𝒎̂)                                                                    (9) 

In this paper, there are two key points to apply model 

parameter weighting on the FCM objective functional. First 

of all, for physical point of view, the linear operator 𝑨(𝑖) acts 

from the space M to the space D. It is easier to solve the 

inverse problem if the corresponding operator equation 

describes the transformation within the same vector space, 

for example, within a space of the model parameters M. On 

the other hand, it can be shown that, by reformulating the 

minimization problem in Eq. (9) using a space of weighted 

parameters, the iterative process converges faster than the 

one in a space of original model parameters (Zhdanov, 2002).  

 

According to the basic principles of the regularization 

method, we have to find a model, 𝒎̂, a quasi-solution of the 

inverse problem, that minimizes the parametric functional: 

 
Fig. 1. The true synthetic model (a). 3D view of the model. (b). 

X-Z section view of the model, (c), Y-Z section view of the model, 

(d) X-Y plane view of the model. 
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𝑷𝛼 (𝒎̂, 𝑼𝑘
(𝑖)

, 𝑽𝑘
(𝑖)

, 𝑑) = 𝑚𝑖𝑛                (11) 

 

SYNTHETIC STUDY: TWO-BODIES MODEL 

 

In our model study, two density models which consist of two 

rectangular bodies with same sizes are used, densities and 

burial depths submerged in a 0 𝑔 𝑐𝑚3⁄  homogenous 

background (Figure. 1). The two of the bodies are both 

located at a depth of 100 m. The body sides in the x, y, and 

z directions have a length of 150 m, 150 m, and 200 m, 

respectively. The two bodies with positive anomalous 

densities of 0.4 𝑔 𝑐𝑚3⁄ . The partial synthetic FTG data for 

this model were denoted as 𝑔𝑧𝑧, 𝑔𝑥𝑧, and 𝑔𝑦𝑧. In order to 

improve the effectiveness of the new algorithm, both 

traditional regularization inversion with and without FCM 

term are carried out. The iterative process of the RCG 

algorithm was terminated when the norm of the difference 

between the observed and predicted data reached the level of 

noise, 3%. 

 

Figure. 2 and 3 show the traditional regularization inversion 

results without and with considering FCM term, respectively. 

It demonstrates that the proposed inversion technology is not 

only able to covert the value of density, but also improve the 

spatial imaging of anomaly bodies, even more sharp than the 

traditional one.  

Additionally, the recovered value of density is about 0.3 

𝑔 𝑐𝑚3⁄  which is still far away from the assigned 0.4 𝑔 𝑐𝑚3⁄  

However, the proposed method is able to reach accurate 

values of the anomaly bodies and significantly improves the 

image, especially stand out the clear boundaries of the 

anomaly bodies.  

 

The Figure. 4 shows comparison of the histograms of 

traditional regularization and the one with FCM, it indicates 

that an inversion for the a priori petrophysical data 

achievable. In another word, a model whose cell values 

adequately reproduce the statistical behavior of the true 

model cell values is produced. 

 

CASE STUDY: INVERISON OF FTG DATA AT THE 

NORDKAPP BASIN 

 

The FTG survey was conducted within the Nordkapp basin 

in the Barents Sea, offshore Norway (Figure 5.a). The 

southwestern part sub-basin (Obelix survey location) 

 
Fig. 2. The inversion results without considering FCM (a). 3D 

slice view of the model. (b). X-Z section view of the model (Y = 

800 m), (c), X-Z section view of the model (Y=200 m), (d) X-Y 

plane view of the model (Z = 200 m). 

 
Fig. 3. The inversion results considering FCM (a). 3D view of the 

model. (b). X-Z section view of the model, (c), X-Z section view 

of the model, (d) X-Y plane view of the model. 

 
Fig. 4. (a) The distribution of the inverted density values without 

considering FCM. (b). Histogram of inverted density values with 

considering FCM. 

 
Fig. 5. The true synthetic model (a). 3D view of the model. (b). 

X-Z section view of the model, (c), Y-Z section view of the model, 

(d) X-Y plane view of the model. 
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contains some 17 salt diapirs located along the basin's axis 

(Figure 5.b). The purpose of the FTG survey was to obtain 

additional information for evaluation of the salt diapirs G2 

and F2 (Figure 5.c) overhang geometries.  

 

A typical density of the base tertiary rocks in the area of 

investigation is within 2.30-2.38 𝑔 𝑐𝑚3⁄ . The salt diapirs, of 

which density is estimated as 2.1-2.15 𝑔 𝑐𝑚3⁄ , are often 

visualized by negative density anomalies. The density of the 

rocks of the deeper basement is approximately 2.5-2.54 

𝑔 𝑐𝑚3⁄ . Therefore, three clusters corresponding three 

different geologic units of which the centers are -0.2 𝑔 𝑐𝑚3⁄ , 

0 𝑔 𝑐𝑚3⁄ , and 0.2 𝑔 𝑐𝑚3⁄ are established. We have applied 

the FCM clustering inversion to combine the two 

components of the gravity tensor: 𝑔𝑧𝑧, and 𝑔𝑦𝑧.  A modeling 

domain with 20 km (east-west, x-axis) × 11 km (north-south, 

y-axis) and extended at a depth of about 8 km is selected.  

 

Figure 6.a and b illustrate the joint inversion results for the 

𝑔𝑧𝑧  and 𝑔𝑦𝑧  components in the form of vertical sections 

along the profiles a-a’ and b-b’. The horizontal section 

(z=3000 m) is shown in Figure 6.c. One can clearly see the 

salt diapirs G2 and F2 geometry and the boundary between 

salt diapirs and host rock. The histograms shown in Figure 

6.d indicates three clear geologic units representing the 

corresponding anomalous density values of salt diapir, host 

rock, and basement rock, respectively and that the possible 

density values are around -0.2, 0, and 0.2 𝑔 𝑐𝑚3⁄ . 

Figure 7 shows a 3D image of the results of the joint 

inversion of three components of the gravity tensor: 𝑔𝑧𝑧 and 

𝑔𝑦𝑧 . It shows that in this image the domains haves an 

anomalous density less than -0.1 𝑔 𝑐𝑚3⁄ . It also shows that 

the two salt diapirs G2 and F2 geometry is consistent with 

the seismic interpretation as well. 

 

CONCLUSIONS 

In this paper, we have developed a new algorithm and a 

computer code for inversion of the FTG data, which takes 

into account the known geological information about the 

subsurface density values. To ensure a stable convergence, 

we use a regularized Newton-Gauss method in the weighted 

model parameter space. In addition, a logarithmic model 

parameter was used to guarantee the solution being 

constrained within the imposed boundaries. Finally, a 

model-weighted FCM clustering functional was introduced 

to make the inversion stable and reliable. 

 

The synthetic inversion results demonstrate that the new 

inversion technology produces the correct values of the 

density, and also improves the spatial resolution of 

anomalous bodies, recovering the sharp boundaries correctly. 

We have applied the developed method to interpretation of 

the FTG survey data collected in the Barents sea. It is clear 

that the marine FTG survey is very sensitive to the density 

distribution in geological formations. The gravity tensor 

components represent well the density anomalies associated 

with complex salt diapirs and their related structural traps. 

 

The 3D inversion with FCM clustering of FTG data made it 

possible to resolve the complex geological structures of the 

salt formations. We have run inversion of the individual 

components of the full gravity gradient tensor, and we have 

also applied a joint inversion. The numerical results 

demonstrated that the joint inversion with FCM clustering 

functional helped sharpening the inverse image and 

producing a reliable 3D model of the density distribution in 

the area of FTG survey.  
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Fig. 7. The true synthetic model (a). 3D view of the model. (b). 

X-Z section view of the model, (c), Y-Z section view of the model, 

(d) X-Y plane view of the model. 

 
Fig. 6. The true synthetic model (a). 3D view of the model. (b). 

X-Z section view of the model, (c), Y-Z section view of the model, 

(d) X-Y plane view of the model. 
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