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Summary 

 

Joint inversion of multiphysics data is a practical approach 

to the integration of geophysical data, which produces 

models of reduced uncertainty and improved resolution. The 

development of effective methods of joint inversion requires 

considering different resolutions of different geophysical 

methods.  This paper presents a new framework of joint 

inversion of multiphysics data, which is based on  Gramian 

constraints and mitigates the difference in resolution 

capabilities of different geophysical methods. Our method 

enforces structural similarity between different model 

parameters through minimizing a structural Gramian term 

and it also balances the different resolutions of geophysical 

methods using a multiscale resampling strategy. The 

effectiveness of the proposed method is demonstrated by 

synthetic model study of joint inversion of the P-wave 

traveltime and gravity data. 

 

Introduction 

 

Joint inversion of multiphysics data is an effective approach 

to mitigate the non-uniqueness of geophysical inverse 

problems and to reduce the uncertainties of inverse models 

(Zhdanov et al., 2012). It applies constraints through 

complementing each dataset with information derived from 

the other datasets. The different physical fields are sensitive 

to different properties and exhibit different sensitivity 

patterns as a result of their different governing physical laws. 

We could, therefore, harness the complementary sensitivity 

to produce geophysical models of the subsurface target with 

reduced uncertainty.   

 

Several approaches to joint inversion have been developed 

over the last decades. They can be classified into two 

categories, namely, petrophysical and structural approaches. 

The former correlates different physical parameters via a 

theoretical, empirical, or statistical petrophysical 

relationship (e.g., Sun and Li, 2016; 2015; Nielsen and 

Jacobsen, 2000; Giraud et al., 2017; Afnimar et al., 2002; 

Gao et al., 2012). The latter enforces the models of different 

physical properties to have similar spatial structures (e.g., 

Gallardo and Meju, 2004; 2007; Roux et al., 2011). The 

majority of the aforementioned methods, however, do not 

consider different resolution capabilities of different 

geophysical methods while representing models of different 

physical parameters with the same discretization mesh. The 

resolution capabilities of geophysical methods often differ 

significantly from each other due to different factors, such as 

data coverage, subsurface geology, the physical nature of 

geophysical field, etc. Ignoring the resolution issue may lead 

to (1) data fitting issues; (2) artifacts of unreasonable fine 

(i.e., too good to be true) structures for model parameters 

corresponding to methods with low-resolution capabilities; 

and (3) slow convergence behavior of the joint inversion 

iteration process (Heincke et al., 2017). A challenging but 

essential issue for joint inversion is to account for the 

resolution difference in a unified inversion regime without 

biased model parameterization. 

 

We propose a new framework for joint inversion of 

multiphysics data based on the Gramian constraint (Zhdanov 

et al., 2012). Our method could (1) enforce structural 

similarity between different model parameters through 

minimizing a structural Gramian term, and (2) honor the 

different resolution capabilities of different geophysical 

methods with a multiscale resampling strategy. We have 

demonstrated the effectiveness of the proposed method with 

synthetic models by jointly inverting the P-wave traveltime 

and gravity data.  

 

Forward modeling 

 

The gravity field is calculated by the integral representation 

of the gravitational field with the point mass approximation 

method (Cuma et al., 2012; Zhdanov, 2015). We solve the 

isotropic eikonal equation for seismic traveltimes. A grid-

based solver, namely the multistage fast marching (FMM) 

method, is employed to solve the eikonal equation (De Kool 

et al., 2006; Rawlinson et al., 2006). The forward modeling 

problems could be represented in matrix form as follows: 

𝐝(𝑖) = 𝐀(𝑖)(𝐦(𝑖)), 𝑖 = 1,2; (1) 

where  𝐝(1) and 𝐝(2) represent the column vectors of gravity 

and seismic traveltime data; 𝐦(1) and 𝐦(2) denote vectors 

of subsurface density and P-wave velocity models; 𝐀(1) and 

𝐀(2)  denote the forward operators for gravity field and 

seismic traveltimes, respectively. 

 

Joint inversion methodology 

  

A. Parameterization 

To address the issue of different resolution capabilities, we 

decouple the forward modeling meshes for different physical 

properties. Seismic waves usually have better resolution 

than the gravity field. We, therefore, set the velocity to mesh 

much finer than density mesh for forward modeling, so that 

the details of the velocity model could be sampled by seismic 

waves and that the density model is not oversampled. In 

order to jointly invert seismic and gravity data, the velocity 

and density models should be coupled at the same scale, 

especially if the structural resemblance between them is 

considered. In this case, we should match the long-
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Joint inversion of geophysical data with different resolution capabilities 

wavelength structures only of the velocity model with the 

density model, as the fine structures of short wavelength are 

beyond the resolution of the gravity field. A 

parameterization scheme enabling multiscale resampling of 

the model parameters is desirable. 

 

In a general case, we can represent the spatial variations of 

density and velocity by projecting them to the associated 

interpolant-type subspace. Cubic B-spline interpolant is 

particularly prevalent in geophysics since it offers C2 

continuity, local control, and the potential for an irregular 

distribution of knots (Rawlinson et al., 2008). Any model, 

𝐦, in the original high-dimensional space can be represented 

uniquely as a linear combination of the cubic spline 

functions (basis) as follows: 

𝐦 = 𝐋𝐦𝑠, (2) 

where 𝐦𝑠 denotes a vector in the subspace with its elements 

defined discretely at the knot positions; 𝐋  is the matrix 

constituted of cubic B-spline functions. 𝐋 is controlled by 

the knots and resampling mesh. The action of 𝐋 to vector 𝐦𝑠 

would resample the model to the corresponding mesh. 

 

As illustrated in Figure 1, the models are resampled at three 

scales with three meshes. For forward modeling, we 

resample the density model with a coarse mesh (a), and the 

velocity model with a fine mesh (b). The third coarse mesh 

is employed to resample both the density and velocity 

models so that they are coupled at the same scale, (d) and 

(e). The third mesh should not be finer than the coarse mesh 

(a) so that only the long-wavelength structures resolvable by 

gravity field are matched between density and velocity 

models. We set it the same as mesh (a) in Figure 1 for 

simplicity. 

 

B. Gramian based structural coupling 

A fundamental issue of joint inversion is to define an 

appropriate coupling term. We use a  structural coupling 

based on the Gramian constraint (Zhdanov et al., 2012; 

Zhdanov, 2015): 

𝑠(𝐦𝐬
(𝟏)

, 𝐦𝐬
(𝟐)

) = ∭ 𝑔 (𝛁(𝐓(1)𝐋3𝐦s
(1)

), 𝛁(𝐓(2)𝐋3𝐦𝐬
(2)

)) 𝑑𝑣
𝑫

, (3) 

where  𝛁 = [𝛁𝒙, 𝛁𝒚, 𝛁𝒛]
𝑻

 denotes the gradient operator. The 

operators 𝐓(𝟏)  and 𝐓(𝟐)  transform the models into another 

space. In our synthetic study, we transform velocity to 

velocity perturbation to promote structural resemblance 

between velocity perturbation and density. The matrix of 

cubic B-spline basis, 𝐋𝟑, resamples the models with the same 

coarse mesh so that the two models are coupled at the same 

scale. Symbol  𝒈( , )  represents the Gramian (i.e., the 

determinant of the Gram matrix) of the gradient at a single 

point: 

𝒈 (𝛁(𝐓(𝟏)𝐋𝟑𝐦𝐬
(𝟏)

), 𝛁(𝐓(𝟐)𝐋𝟑𝐦𝐬
(𝟐)

))  

= |
(𝛁(𝐓(𝟏)𝐋𝟑𝐦𝐬

(𝟏)
), 𝛁(𝐓(𝟏)𝐋𝟑𝐦𝐬

(𝟏)
)) (𝛁(𝐓(𝟏)𝐋𝟑𝐦𝐬

(𝟏)
), 𝛁(𝐓(𝟐)𝐋𝟑𝐦𝐬

(𝟐)
))

(𝛁(𝐓(𝟐)𝐋𝟑𝐦𝐬
(𝟐)

), 𝛁(𝐓(𝟏)𝐋𝟑𝐦𝐬
(𝟏)

)) (𝛁(𝐓(𝟐)𝐋𝟑𝐦𝐬
(𝟐)

), 𝛁(𝐓(𝟐)𝐋𝟑𝐦𝐬
(𝟐)

))
| , (𝟒) 

where ( , ) denotes the inner product.  The Gramian, 𝒈, is 

nonnegative and it is zero if and only if the two gradient 

vectors are parallel. Therefore, by minimizing 𝒈, we would 

enforce the gradient vectors of the model parameters to be 

mutually parallel at a specific subsurface position. 
 

It could be demonstrated that the Gramian 𝒈 is equal to the 

L2 norm of the cross-gradient term (Gallardo and Meju, 2004; 

2007): 

𝒈 (𝛁𝒎(𝟏)(𝐫), 𝛁𝒎(𝟐)(𝐫)) = ‖𝛁𝒎(𝟏)(𝐫) × 𝛁𝒎(𝟐)(𝐫)‖
𝟐

. (𝟓) 

The Gramian, however, is (1) easier to implement due to its 

quadratic form, similar to L2 norm stabilizers; (2) more 

convenient to be incorporated in optimization; (3) more 

flexible for manipulation of the model parameters in 

different transformed spaces; and (4) more flexible to 

incorporate data of different resolution capabilities. 

 

The structural coupling term, 𝒔 (𝐦𝐬
(𝟏)

, 𝐦𝐬
(𝟐)

), in Eq. (3) is an 

integral (superposition) of the nonnegative Gramians. It 

would be minimized only if the Gramians, 𝒈 , are all 

 

Figure 1:  Schematic representation of the multiscale resampling of 

the density and velocity models for forward modeling and structural 

coupling. The density and velocity models are assumed to be  

represented by cubic B-spline functions. The white dots in panel (c) 

denote the knots of the subspace representation. The models are 

resampled by a coarse mesh (a) and a fine mesh (b) to honor the 

different resolution capabilities of gravity and seismic data. The 

models are resampled at the same third mesh to facilitate the 

structural coupling between them (panels (d) and (e)). This mesh is  

coarser than or the same as mesh (a) so that only the long wavelength 

structures of velocity model are preserved and matched with density 

model. 
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Joint inversion of geophysical data with different resolution capabilities 

minimized at every subsurface position, leading to zero 

Gramians and consequently mutually parallel gradient 

vectors everywhere in the whole inversion domain, 𝑫. As 

with the cross-gradient method, aligned gradient orientations 

of different model parameters necessitate the coincidence of 

structural boundaries of them.  

 

C. Objective functional 

The joint inversion of gravity and seismic traveltime data is 

performed by minimizing the objective functional (Zhdanov, 

et al., 2012; Zhdanov, 2015): 

𝑝 = ∑ 𝛷(𝑖)(𝐦𝑠
(𝑖)

)

2

𝑖=1

+ ∑ 𝛼(𝑖)𝛹(𝑖)(𝐦𝑠
(𝑖)

)

2

𝑖=1

+ 𝛽𝑠(𝐦𝑠
(1)

, 𝐦𝑠
(2)

), (6) 

where 𝛷(𝑖) denotes the misfit functional for the 𝑖-th type of 

data; 𝛹(𝑖) represents the regularization stabilizer promoting 

preferred structures of the model; 𝑠 (𝐦𝑠
(1)

, 𝐦𝑠
(2)

) is the joint 

stabilizer enforcing structural coupling. 𝛼(𝑖)  and 𝛽  are the 

regularization parameters balancing the misfits and the 

corresponding stabilizers. 

 

As the probability density functions of data and model 

uncertainties are usually characterized by long-tailed 

distribution (Claerbout and Muir, 1973), the least-squares 

(L2 norm) error metric based on Gaussian uncertainty 

assumption often leads to biased models (Tarantola, 2005). 

Error metrics less sensitive to large measurement errors and 

more appropriate to long-tailed probability density functions 

could yield far more stable estimation of the model 

parameters than L2 norm (Guitton and Symes, 2003). We 

employ the robust norms for the misfit functional: 

𝛷(𝑖) (𝐦𝑠
(𝑖)

) = ‖𝐖𝑑
(𝑖)

[𝐀(𝑖) (𝐋𝑖𝐦𝑠
(𝑖)

) − 𝐝(𝑖)]‖
𝜌

2
, (7) 

where 𝐖𝑑
(𝑖)

 represents the corresponding data weighting 

matrix; 𝐝(𝑖) is the observed data, i.e., gravity data or P-wave 

first arrivals; ‖ ‖𝜌
2   denotes the robust norm, e.g., Huber or 

Bisquare norm. The robust norms could be easily 

represented as quasi-quadratic functionals (Zhdanov, 2015; 

Tu and Zhdanov, 2020), making it convenient to optimize. 

 

The general methods of solving the above inverse problems 

were developed in Zhdanov (2015). We base our solution on 

the re-weighted regularized conjugate gradient method 

(RRCG), which is easier to implement numerically. 

Implementation details of the RRCG method for joint 

inversion problems could be found in Zhdanov et al. (2012), 

Zhu (2017), and Lin and Zhdanov (2019 (b)).  

 

Model study 

 

The developed method was tested using computer-generated 

data. Model 1 represents a homogeneous half-space 

containing four blocky. Figure 2 presents horizontal sections 

of the true density contrast and velocity perturbation at a 

depth of 10 𝑘𝑚.  The density distribution inside each 

anomaly is homogeneous and even. The corresponding 

velocity perturbation was designed to exhibit fine patterns, 

which could be resolved by the seismic waves while beyond 

the resolution capability of the gravity field. Four tiny ball-

shaped high velocity anomalies with radius of 1 𝑘𝑚 were 

also set for the velocity model at a depth of 20 𝑘𝑚. There is 

no density anomaly at positions corresponding to the four 

tiny high-velocity balls. The background P-wave velocity of 

the half-space is 6 𝑘𝑚/𝑠. A joint gravity and seismic survey 

consisting of 484 gravity stations and 225 seismic stations 

were designed to map the anomalies. The distribution of 

earthquake epicenters and gravity and seismic stations are 

also shown in Figure 2. The computer-simulated gravity data 

were contaminated with random noise with a standard 

derivation of 0.1 𝑚𝐺𝑎, which corresponds to a relative noise 

level of 3.6% . The computed traveltimes also contain 

random noise with a level of 7 𝑚𝑠 (i.e., 5%).  

 

Table 1: Inversion setup with multiscale resampling 

Knot/mesh 
Interval/cell size 

East × North × Depth 

Num. of knots/Cells 

East × North × Depth 

Subspace representation 4 km × 4 km × 2 km 21 × 21 × 16 

Density: forward modeling 4 km × 4 km × 2 km 18 × 18 × 13 

Velocity: forward modeling 1 km × 1 km × 1 km 73 × 73 × 27 

Structural coupling 4 km × 4 km × 2 km 18 × 18 × 13 

 

We first inverted the gravity and seismic traveltime data 

separately using the RRCG method with MN stabilizer 

(Zhdanov, 2015). The same data were then jointly inverted 

using the developed method with multiscale resampling 

setups shown in Table 1. The knot/mesh setups for the 

separate inversions are the same as for joint inversion. 

Comparisons of the true and inverted models are presented 

in Figure 3. The joint inversion recovers the density model 

much better compared to separate inversion. The artifacts in 

the velocity model are also significantly reduced in joint 

inversion. The joint inversion produces models with 

 

Figure 2:  Horizontal sections of true density and velocity model at 

a depth of 10 km. The white dotes denote gravity stations. The red 

dots are earthquake epicenters. The seismic stations are represented 

by blue triangles. 
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Joint inversion of geophysical data with different resolution capabilities 

improved structural similarity and better-aligned density and 

velocity gradients. Most importantly, by using the multiscale 

resampling, the joint inversion does not introduce artifact of 

over coupling to the density model.   

    

For comparison, we then ran the same joint inversion with 

the same structural coupling method but without multiscale 

resampling. The inversion setups are shown in Table 2. The 

gravity and seismic traveltime data were modeled with the 

same fine mesh, and the density and velocity models were 

structurally coupled with the same mesh. The inverted 

models are shown in Figure 4. Both jointly inverted density 

and velocity models show significant improvement 

compared to the separately inverted ones. The fine structures 

inside each anomaly are also observed in the jointly 

recovered density model, which, however, are too good to 

be true, since such fine-scale structures are beyond the 

resolution of the gravity data.   

 

Table 2: Inversion setups without multiscale resampling 

Knot/mesh 
Interval/cell size 

East × North × Depth 

Num. of knots/Cells 

East × North × Depth 

Subspace representation 4 km × 4 km × 2 km 21 × 21 × 16 

Density: forward modeling 1 km × 1 km × 1 km 73 × 73 × 27 

Velocity: forward modeling 1 km × 1 km × 1 km 73 × 73 × 27 

Structural coupling 1 km × 1 km × 1 km 73 × 73 × 27 

 

The jointly inverted density and velocity models are 

structurally coupled at both long and short wavelength scale, 

leading to fine-scale artifacts in the density model.  

Especially at a depth of 20 𝑘𝑚, the four tiny ball-shaped 

anomalies are also presented in the density model as a result 

of over coupling. The joint inversion results with multiscale 

resampling, however, are free of such over coupling artifacts, 

which demonstrates the importance of accounting for the 

difference of resolution capabilities of different geophysical 

methods in joint inversion. 

 

 

Conclusions 

 

We have developed a framework for joint inversion of 

multiphysics data based on the Gramian constraint. Our 

method promotes structural similarity between different 

physical parameters by minimizing a Gramian based 

structural coupling term. These structural constraints could 

be considered as a generalization of the cross-gradient 

method. The quadratic nature of the Gramian structural 

coupling term makes it numerical implementation similar to 

conventional L2 norm stabilizing functionals. 

  

The developed method could also consider the differences in 

resolution capabilities of different geophysical methods 

using a multiscale resampling strategy. The effectiveness of 

the method was shown by jointly inverting the P-wave 

traveltime and gravity data. Our synthetic model study 

demonstrated that joint inversion without considering the 

resolution differences might result in creating artifacts in the 

inverse models. Thus, the developed method successfully 

avoids the over coupling problem.  
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Figure 3:  Horizontal sections of true, separately, and jointly 

inverted models ata depth of 10 𝑘𝑚. 

 

Figure 4:  Horizontal sections of true, separately and jointly inverted 

models at the depth of 10 𝑘𝑚.   
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