![]() |
![]() |
Books
Berdichevsky, M.N., and M.S. Zhdanov, 1984, Advanced theory of deep geomagnetic sounding, Methods in Geochemistry and Geophysics, 19, Elsevier, 408 pages, ISBN: 0-444-42189-0.
Zhdanov, M.S., 1988, Integral transforms in
geophysics. Springer - Verlag, Heidelberg, 367 pages, ISBN:
0-387-17759-0.
Zhdanov, M.S. and G.V. Keller, 1994, The Geoelectrical Methods in Geophysical Exploration, Methods in Geochemistry and Geophysics, 31, Elsevier, 884 pages, ISBN: 0-444-89678-3.
Zhdanov, M S; Varentsov, I M; Weaver, J T; Golubev, N G; Krylov, V., 1997, Methods for modelling electromagnetic fields; Results from COMMEMI, the international project on the Comparison Of Modelling Methods for ElectroMagnetic Induction, Journal of Applied Geophysics, vol.37, N 3-4, pp.133-271.
Zhdanov, M.S., and P.E. Wannamaker, 2002, Three-Dimensional Electromagnetics, Methods in Geochemistry and Geophysics, 35, Elsevier, 300 pages, ISBN: 0-444-50429-X.
Zhdanov, M.S.,2007, Geophysical inverse theory: Nauchnyi Mir, Moscow, 719 pp.
Kasahara, J., V. Korneev, and Zhdanov, M. S., Eds
2010, Active geophysical monitoring: Handbook of Geophysical
Exploration: Volume 40, Elsevier, 549 pages, ISBN: 008045262
Zhdanov, M.S., 2012, Geophysical electromagnetic theory and methods: Nauchnyi Mir, Moscow, 679 pp. (in Russian).
Zhdanov, M. S., 2015, Inverse Theory
and Applications in Geophysics, Elsevier.
Zhdanov, M.S., 2015, Geophysical electromagnetic
theory and methods: Science Press (in Chinese ). ISBN:
978-7-03-046402-6/P·2884
http://www.ecsponline.com/goods.php?id=172798
https://us.nicebooks.com/book/32027714
Zhdanov, M. S., 2017, Foundations of
Geophysical Electromagnetic Theory and Methods, Elsevier
https://www.amazon.com/Foundations-Geophysical-Electromagnetic-Theory-Methods/dp/0444638903
Zhdanov, M.S., 2018, Inverse
Theory and Applications in Geophysics: Science Press (in Chinese
), ISBN: 978-7-03-058104-4
https://detail.youzan.com/show/goods?alias=36a5y1h0ogt53&v2/goods/36a5y1h0ogt53
Kasahara, J., M. S. Zhdanov,
and H. Mikada, 2019, Active Geophysical Monitoring, 2nd
Edition, Elsevier.
https://www.elsevier.com/books/active-geophysical-monitoring/kasahara/978-0-08-102684-7
Zhdanov, M. S., Ed. 2021, Geophysics for Mineral
Exploration, MDPI.
https://www.mdpi.com/books/pdfview/book/4105
Zhdanov, M. S., 2023, Advanced Methods of Joint
Inversion and Fusion of Multiphysics Data, Springer Nature.
https://play.google.com/store/books/details/Michael_S_Zhdanov_Advanced_Methods_of_Joint_Invers?id=GofrEAAAQBAJ
Publications
Eaton, P.A. and Hohmann. G.W. 1984, The influence of a conductive host on two- dimensional borehole transient electromagnetic responses: Geophysics, 49, 861-869.
San Filipo, W.A., and Hohmann, G.W., 1985, Integral equation solution for the transient electromagnetic response of athree-dimensional body in a conductive half-space; Geophysics, 50, 798-809.
San Filipo, W.A., Eaton, P.A., and Hohmann, G.W., 1985, The effect of a conductive half-space on the transient electromagnetic response of a three-dimensional body: Geophysics, 50, 1144-1162.
Bartel, D.C, and Hohmann, G.W., 1985, Interpretation of Crone pulse electromagnetic data: Geophysics, 50, 1488-1499.
Gallagher, P.R., Ward, S.H., and Hohmann, G .W., 1985, A model study of a thin plate in free-space for the EM37 transient system: Geophysics, 50, 1002-1019.
Newmann, G.A., Wannamaker, P.E., and Hohmann, G.W., 1985, On the detectability of magma chambers using the magnetotelluric method: Geophysics, 50, 1 1 36-1143.
Adhidjaja, J.I., Hohmann, G.W., and Oristaglio, M.L., 1985, Two-dimensional transient electromagnetic responses: Geophysics, 50, 2849-2861.
Newman, G.A., Hohmann, G .W., and Anderson, W.L., 1986, Transient electromagnetic response of a three-dimensional body in a layered earth: Geophysics, 51, 1608-1627.
Gunderson, B.M., Newman, G.A., and Hohmann, G.W., 1986, Three-dimensional transient electromagnetic responses for a grounded source: Geophysics, 51, 2117-2130.
Newman, G.A., Anderson, W.L., and Hohmann, G.W., 1987, Interpretation of transient electromagnetic soundings over three-dimensional structure for the central-loop configuration: Geophys. J.R. Astr. Socl, 89, 889-914.
Eaton, P.A., and Hohmann, G.W., 1987, An evaluation of electromagnetic methods in the presence of geologic noise: Geophysics, 52, 1106-1126.
Adhidjaja, J.I. and Hohmann, G.W., 1988, Step responses for two-dimensional transient electromagnetic models: Geoexploration, 25, 13-35.
Newman, G.A. and Hohmann, G.W., 1988, Transient electromagnetic responses of high- contrast prisms in a layered earth: Geophysics, 53, 691-706.
Eaton, P.A. and Hohmann, G.W., 1989, A rapid inversion technique for transient electromagnetic soundings: Physics of the Earth and Planetary Interiors, 53, 394-404.
Newman, G.A., Anderson, W.L., and Hohmann, G.W., 1989, Effect of a conductive host rock on borehole transient EM responses: Geophysics, 54, 598-608.
Adhidjaja, J.I. and Hohmann, G.W., 1989, A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body: Geophys.J, Int., 98, 233-242.
Flis, M.F., Newman, G.A., and Hohmann, G.W., 1989, Induced-polarization effects in time-domain electromagnetic measurements: Geophysics, 54, 514-523.
Eaton, P.A., 1989, 3D electromagnetic inversion using integral equations: Geophys. Prosp., 37, 407-426.
Hohmann, G W., 1990, Three-dimensional IP models; Investigations in Geophysics, 4, Induced Polarization, Society of Exploration Geophysicists.
Tripp, A.C., 1990, Group theoretic reduction of the electromagnetic impedance matrix for large-contrast symmetric prisms in a layered eath: PAGEOPH, 133, 127-147.
Hohmann, G.W., and Newman, G.A., 1990, Transient electromagnetic responses of surficial, polarizable patches: Geophysics, 55, 1098-1100.
Pellerin, L. and Hohmann, G.W., 1990, Transient electromagnetic inversion: A remedy for magnetotelluric static shifts: Geophysics, 55, 1242-1250.
Boschetto, N.B. and Hohmann, G.W., 1991, Controlled-source audio frequency magnetotelluric responses of three-dimensional bodies: Geophysics, 56, 255-264.
Xiong Z. and A.C. Tripp, 1993, Scattering matrix evaluation using spatial symmetry in electromagnetic modeling: Geophysical Journal International, vol. 114, pp. 459-464.
Wang, T., and Hohmann, G.W., 1993, A finite
difference, time-domain solution for three- dimensional
electromagnetic modeling: Geophysics, 58, 797-809.
Zhdanov, M.S.,
Traynin, P. and Portniaguine O., 1995, Resistivity imaging by
time domain electromagnetic migration (TDEMM), Exploration
Geophysics, V. 25, 186-194.
Zhdanov, M.S., Traynin, P.,
Portniaguine, O., and Mac Lean, H.D., 1995, Time domain
electromagnetic migration in INEL RWMC Cold Test Pit
characterization: Proceedings of SAGEEP'95, Environmental and
Engineering Geophysical Society, 919-924.
Zhdanov, M.S., Traynin P. and
Booker, J.R., 1996, Underground imaging by frequency domain
electromagnetic migration: Geophysics, V.61, 666-682.
Zhdanov, M.S. and Fang Sh., 1996,
Quasi-linear approximation in 3D electromagnetic modeling:
Geophysics, V.61, 646-665.
Zhdanov, M.S and Fang Sh., 1996,
3D quasi-linear electromagnetic inversion: Radio Science, V. 31,
No.4, 741-754.
Traynin, P., Zhdanov, M.S.,
Nyquist, J., Beard, L., and Doll, W., 1996, A new approach to
interpretation of airborne magnetic and electromagnetic data:
Proceedings of SAGEEP 96, Environmental and Engineering
Geophysical Society.
Zhdanov, M.S. and Fang, Sh.,
1997, Quasi-linear series in three-dimensional electromagnetic
modeling: Radio Science, V. 32, No. 6, 2167-2188.
Zhdanov, M.S. and Traynin, P.,
1997, Migration versus inversion in electromagnetic imaging
technique: Journal of Geomagnetism and Geoelectricity, V. 49,
No. 11-12, 1415-1437.
Zhdanov, M.S. and Portniaguine,
O., 1997, Time domain electromagnetic migration in the solution
of the inverse problems: Geophysical Journal International, V.
131, 293-309.
De Lugao, P., Portniaguine, O.,
and Zhdanov, M.S., 1997, Fast and stable two- dimensional
inversion of magnetotelluric data: Journal of Geomagnetism and
Geoelectricity, V. 49, No. 11-12, 1469-1497.
Johnson, A., Borup, D., Wiskin,
J., Berggren, M., Zhdanov, M.S., Bunch, K., and Eidens, R.,
1997, Application of inverse scattering and other refraction
corrected methods in environmental imaging with acoustic or
electromagnetic energy: SIAM, Philadelphia, 295-312.
Zhdanov, M.S., Varentsov, I.M.,
Weaver, J.T., Golubev, N.G., and Krylov, V.A., 1997, Methods for
modeling electromagnetic fields results from COMMEMI – the
international project on the comparison of modeling methods for
electromagnetic induction: Journal of Applied Geophysics, V. 37,
133-271.
Zhdanov, M.S., 1998, Advanced
modeling and inversion technologies for high-resolution
electromagnetic methods: Proceedings of the 4th SEGJ
International Symposium, Tokyo, 15-20.
Zhdanova, O.N. and Zhdanov, M.S.,
1998, Methods for the analysis and interpretation of the sea
floor electromagnetic fields: Deep Electromagnetic Exploration,
Springer-Verlag, Narosa Publishing House, 248-259.
Zhdanov, M.S., 1998,
Electromagnetic migration: Deep Electromagnetic Exploration,
Springer-Verlag, Narosa Publishing House, 283-298.
Portniaguine, O. and Zhdanov,
M.S., 1999, Parameter estimation for 3-D geoelectromagnetic
inverse problems: Three- dimensional Electromagnetics, ed. By M.
Oristaglio and B. Spies, 1999, Geophys. Devel. Ser., No. 7,
Society of Exploration Geophysicists, Tulsa, 222-232.
Portniaguine, O. and Zhdanov,
M.S., 1999, Focusing geophysical inversion images: Geophysics,
V. 64, No. 3, 874-887.
Zhdanov, M.S. and Fang, Sh.,
1999, 3D quasi-linear electromagnetic modeling and inversion:
Three-dimensional Electromagnetics, ed. By M. Oristaglio and B.
Spies, 1999, Society of Exploration Geophysicists, Tulsa,
233-255.
Zhdanov, M.S. and Hursan, G.,
2000, 3-D electromagnetic inversion based on quasi-analytical
approximation: Inverse Problems, V. 16, 1297-1322.
Zhdanov, M.S., Fang, Sh., and
Hursan, G., 2000, Electromagnetic inversion using quasi-linear
approximation: Geophysics, V. 65, 1501-1513.
Zhdanov, M.S., Dmitriev, V,I,.
Fang, Sh., and Hursan, G., 2000, Quasi-analytical approximation
and series in 3D electromagnetic modeling: Geophysics, V. 65,
1746-1757.
Tartaras, E., Zhdanov, M.S.,
Wada, K., Saito, A., and Hara, T., 2000, Fast imaging of TDEM
data based on S-inversion: Journal of Applied Geophysics, V. 43,
No. 1, 15-32.
Pavlov, D.A. and Zhdanov, M.S.,
2001, Analysis and interpretation of anomalous conductivity and
magnetic permeability effects in time domain electromagnetic
data. Part I: Numerical modeling: Journal of Applied Geophysics,
V. 46, No. 4, 217-233.
Zhdanov, M.S. and Pavlov, D.A.,
2001, Analysis and interpretation of anomalous conductivity and
magnetic permeability effects in time domain electromagnetic
data. Part II: Sμ-inversion: Journal of Applied Geophysics, V.
46, No. 4, 235-248.
Zhdanov, M.S., Kennedy, W.D., and
Peksen, E., 2001, Foundations of tensor induction well-logging:
Petrophysics, V. 42, 588-610.
Cheryauka, A.B., Sato, M., and
Zhdanov, M.S., 2001, Induction logging with directional coil
polarizations: Modeling and resolution analysis: Petrophysics,
V. 42, No.3, 227-236.
Zhdanov, M.S., Kennedy, W.D.,
Cheryauka, A.B., and Peksen, E., 2001, Principles of the Tensor
Induction Well-Logging in a Deviated Well in an Anisotropic
Medium, 42nd Annual SPWLA Symposium, Houston.
Cheryauka, A.B. and Zhdanov,
M.S., 2001, Fast modeling of tensor induction tool response in a
horizontal well in inhomogeneous anisotropic formations: SPWLA
42nd Annual Logging Symposium, June 17-20, 2001.
Hursan, G. and Zhdanov, M.S.,
2001, Rapid 3-D magnetotelluric inversion: University of Utah,
1-53.
Zhdanov, M.S., Pavlov, D., and
Ellis, R., 2002, Localized S-inversion of time domain
electromagnetic data: Geophysics, V. 67, No. 4, 1115-1125.
Mehanee, S. and Zhdanov, M.S.,
2002, Two-dimensional magnetotelluric inversion of blocky
geoelectrical structures: Journal of Geophysical Research, Solid
Earth, V. 107, No. B4, 10/1029/2001JB000191.
Zhdanov, M.S. and Tartaras, E.,
2002, Three-dimensional inversion of multitransmitter
electromagnetic data based on the localized quasi-linear
approximation: Geophysical Journal International, V. 148, No. 3,
506-519.
Portniaguine, O. and Zhdanov,
M.S., 2002, 3-D magnetic inversion with data compression and
image focusing: Geophysics, V. 67, No. 5, 1532-1541.
Hursan, G. and Zhdanov, M.S.,
2002, Contraction integral equation method in 3-D
electromagnetic modeling: Radio Science, No. 6, 1089.
Zhdanov, M.S., Portniaguine, O.,
and Hursan, G., 2002, Compression in 3-D EM integral equation
electromagnetic modeling: Three Dimensional Electromagnetics,
Eds. Zhdanov M.S., and Wannamaker, P.E., Elsevier, 21-42.
Cheryauka, A.B., Zhdanov, M.S.,
and Sato, M., 2002, Nonlinear approximations for electromagnetic
scattering from electrical and magnetic inhomogeneities: Three
Dimensional Electromagnetics, Eds. Zhdanov M.S. and Wannamaker,
P.E., Elsevier, 65-84.
Portniaguine, O. and Zhdanov,
M.S., 2002, 3-D focusing inversion of CSAMT data: Three
Dimensional Electromagnetics, Eds. Zhdanov M.S., and Wannamaker,
P.E., Elsevier, 173-192.
Zhdanov, M.S. and Yoshioka, K,
2003, Cross-well electromagnetic imaging in three dimensions:
Exploration Geophysics, V. 34, No.s 1 and 2, 34-40.
Peksen, E. and Zhdanov, M.S.,
2003, Apparent resistivity correction for tensor induction well
logging in a deviated well in an anisotropic medium:
Petrophysics, V. 44, 196-204.
Zhdanov, M.S. and Golubev, N.G.,
2003, Three-dimensional inversion of magnetotelluric data in
complex geological structures: in Macnae, J., and Liu, G.
(eds.), Three-dimensional electromagnetic III, Australian
Society of Exploration Geophysicists, 39pp.
Zhdanov, M.S., Cheryauka, A.B.,
and Peksen, E., 2003, Sharp boundary inversion of tensor
induction logging data: SPWLA 44th Annual Logging Symposium,
June 22-25, 2003.
Zhdanov, M.S. and Tolstaya, E.,
2004, Minimum support nonlinear parameterization in the solution
of 3-D magnetotelluric inverse problem: Inverse Problems, V. 20,
No 3, 937 - 952.
Zhdanov, M.S., Tartaras, E., and
Gribenko, A., 2004, Fast 3-D imaging from a single borehole
using tensor induction logging data: Petrophysics, V. 45, No. 2,
167-178.
Mehanee, S. and Zhdanov, M.S.,
2004, A quasi-analytical boundary condition for 3-D finite
difference electromagnetic modeling: Radio Science, V. 39,
RS6014.
Zhdanov, M.S., Ellis, R., and
Mukherjee, S., 2004, Three-dimensional regularized focusing
inversion of gravity gradient tensor component data: Geophysics,
V. 69, No. 4, 925-937.
Zhdanov, M.S. and Chernyavskiy,
A., 2004, Rapid three-dimensional inversion of multi-transmitter
electromagnetic data using the spectral Lanczos decomposition
method: Inverse Problems, V. 20, S233-S256.
Yoshioka, K. and Zhdanov, M.S.,
2005, Three-dimensional nonlinear regularized inversion of the
induced polarization data based on the Cole–Cole model: Physics
of the earth and Planetary Interiors, V. 150, 29-43.
Zhdanov, M.S., 2005, Rapid solutions of 3-D EM inverse problems:
Electromagnetic Study of the Earth’s Interior, Ed. Spichak, V. V.,
Nauchnyi Mir, Moscow, 76-90.
Ueda, T. and Zhdanov, M.S., 2006,
Fast numerical modeling of multitransmitter electromagnetic data
using multigrid quasi-linear approximation: IEEE Transactions on
Geoscience and Remote Sensing: V. 44, No. 4.
Zhdanov, M.S., Lee, S.K., and
Yoshioka, K., 2006, Integral equation method for 3D modeling of
electromagnetic fields in complex structures with inhomogeneous
background conductivity: Geophysics, V. 71, No. 6, G333-G345.
Zhdanov, M.S., Vignoly, G., and
Ueda, T., 2006, Sharp boundary inversion in crosswell traveltime
tomography: Journal of Geophysics and Engineering, V. 3, 122-134
doi:10.1088/1742-2132/3/2/003
Zhdanov, M.S. and Tolstaya, E.,
2006, A novel approach to the model appraisal and resolution
analysis of regularized geophysical inversion: Geophysics, V.
71, No. 6, R79-R90.
Zhdanov, M.S., Dmitriev, V.I.,
and Gribenko, A, 2007, Integral electric current method in 3-D
electromagnetic modeling for large conductivity contrast: IEEE
Transactions on Geoscience and Remote Sensing: V. 45, No. 5.
Gribenko, A. and Zhdanov, M. S.,
2007, Special Section – Marine controlled-source electromagnetic
methods; rigorous 3D inversion of marine CSEM data based on the
integral equation method: Geophysics, V. 72, No. 2, WA73-WA84.
Heilweil, V.M., McKinney, T.S.,
Zhdanov, M.S., and Watt, D.E., 2007, Controls on the variability
of net infiltration to desert sandstone: Water Resources
Research, V. 43, WO741.
Cox, L.H. and Zhdanov, M.S.,
2008, Advanced computational methods of rapid and rigorous 3-D
inversion of airborne electromagnetic data: Communications in
Computational Physics, V. 3, No. 1, 160-179.
Zhdanov, M.S., 2008, Generalized
effective-medium theory of induced polarization: Geophysics V.
73, F197-F211.
Ueda, T. and Zhdanov, M.S., 2008,
Fast numerical methods for marine controlled-source
electromagnetic (EM) survey data based on multigrid quasi-linear
approximation and iterative EM migration: Exploration
Geophysics, V. 39, 60-67.
Endo, M., Cuma, M, and Zhdanov,
M.S., 2008, A multigrid integral equation method for large-scale
models with inhomogeneous backgrounds: Journal of Geophysics and
Engineering, No.5, 438-447.
Endo, M., Cuma, M., and Zhdanov,
M.S., 2009, Large-scale electromagnetic modeling for multiple
inhomogeneous domains: Communications in Computational Physics,
21 September, 269-289.
Zhdanov, M.S., 2009, New advances
in regularized inversion of gravity and electromagnetic data:
Geophysical Prospecting, 463-478.
Black, N., & Zhdanov, M.S.,
2010, Active geophysical monitoring of hydrocarbon reservoirs
using EM methods: in J. Kasahara, V. Korneev, and M.S. Zhdanov
eds. Active Geophysical Monitoring, Elsevier, 135-159.
Zhdanov, M.S., 2010, Maxwell’s
equations and numerical electromagnetic modeling in the context
of the theory of differential forms: in J. Kasahara, V. Korneev,
and M.S. Zhdanov eds. Active Geophysical Monitoring, Elsevier,
299-324.
Zhdanov, M.S., Cuma, M., and
Ueda, T., 2010, 3D electromagnetic holographic imaging in active
monitoring of sea-bottom geoelectrical structures: in J.
Kasahara, V. Korneev, and M.S. Zhdanov eds. Active Geophysical
Monitoring, Elsevier, 325-350.
Zhdanov, M.S., and Wang, S.,
2010, Foundations of the method of EM field separation into
upgoing and downgoing parts and its application to MCSEM data:
in J. Kasahara, V. Korneev, and M.S. Zhdanov eds. Active
Geophysical Monitoring, Elsevier, 351-379.
Zhdanov, M.S., 2010,
Electromagnetic geophysics: Notes from the past and the road
ahead: Geophysics, 75A49-75A66.
Zhdanov, M.S., Liu, X., and G
Wilson, 2010, Potential field migration for rapid 3D imaging of
entire gravity gradiometry surveys: First Break, V. 28, 47-51.
Zhdanov, M.S., Velikhov, E.P.,
Čuma, M., Wilson, G., Black, N., and A. Gribenko, 2010,
Exploring multiple 3D inversion scenarios for enhanced
interpretation of marine CSEM data: an iterative migration
analysis of the Shtokman gas field: First Break, V. 28, 95-101.
Zhdanov, M.S., Green, A.,
Gribenko, A., and M. Cuma, 2010, Large scale three-dimensional
inversion of Earthscope MT data using integral equation method:
Fizika Zemli, V. 8, 27-35.
Cox, L.H., Wilson, G.A., and M.S.
Zhdanov, 2010, 3D inversion of airborne electromagnetic data
using a moving footprint: Exploration Geophysics, 41, 250–259.
Michael S. Zhdanov, Le Wan,
Alexander Gribenko, Martin Čuma, Kerry Key, and Steven
Constable, 2011, Large-scale 3D inversion of marine
magnetotelluric data: Case study from the Gemini prospect, Gulf
of Mexico: Geophysics, 76, F77–F87.
Michael S. Zhdanov, Robert B.
Smith, Alexander Gribenko, Martin Cuma, and Marie Green, 2011,
Three‐dimensional inversion of large‐scale EarthScope
magnetotelluric data based on the integral equation method:
Geoelectrical imaging of the Yellowstone conductive mantle
plume: Geophysical Research Letters, 38, L08307.
Glenn Wilson, Martin Čuma, and
Michael S. Zhdanov, 2011, Massively parallel 3D inversion of
gravity and gravity gradiometry data: Preview, 29-34.
Michael S. Zhdanov, Martin Cuma,
Glenn A. Wilson, Evgeny P. Velikhov, Noel Black, and Alexander
V. Gribenko, 2011, Iterative electromagnetic migration for 3D
inversion of marine controlled-source electromagnetic data:
Geophysical Prospecting, 60, 1-15.
Michael S. Zhdanov,
Xiaojun Liu, Glenn A. Wilson, and Le Wan, Potential field
migration for rapid imaging of gravity gradiometry data, 2011,
59, 1052-1071.
Zhdanov, M.S., Liu, X., Wilson,
G.A., and Wan, L., 2012, 3D migration for rapid imaging of
total-magnetic-intensity data: Geophysics, Vol. 77, No. 2,
J1-J5, 10.1190/GEO2011-0425.1.
Wilson, G.A., Cox,
L.H., Cuma, M., and Zhdanov, M.S., 2012, Inverting airborne
geophysical data for mega-cell and giga-cell 3D Earth
models: The Leading Edge, Special Section: Mining
Geophysics, March, Vol. 31, No. 3, 316-321, doi:
10.1190/1.3694899.
Cuma, M., Wilson, G., and Zhdanov,
M.S., 2012, Large-scale 3D inversion of potential field
data: Geophysical Prospecting, DOI:
10.1111/j.1365-2478.2011.01052.x.
Michael S. Zhdanov,
Chris Anderson, Masashi Endo, Leif H. Cox, Martin Čuma, Glenn A.
Wilson, Noel Black, and Alexander V. Gribenko, 3D inversion of
towed streamer EM data: a model study of the Harding field with
comparison to CSEM, 2012, First Break, 30, 71-74.
Michael S. Zhdanov, Chris Anderson,
Masashi Endo, Leif H. Cox, Martin Čuma, Glenn A. Wilson, Noel
Black, and Alexander V. Gribenko, 3D inversion of towed streamer
EM data: a model study of the Harding field with
comparison to CSEM, 2012, First Break, Vol. 30, April, 1-6. In
Russian.
Michael S. Zhdanov, Chris Anderson,
Masashi Endo, Leif H. Cox, Martin Čuma, Glenn A. Wilson, Noel
Black, and Alexander V. Gribenko, 3D inversion of towed streamer
EM data: a model study of the Harding field with
comparison to CSEM, 2012, First Break, Vol. 30, April, 71-74. In
Spanish.
Zhdanov, M.S., Cai, H., and Wilson,
G.A., 2012, Migration transformation of two-dimensional magnetic
vector and tensor fields: Geophysical Journal
International, Vol. 189, 1361-1368.
Zhdanov, M.S., Gribenko, A., and
Wilson, G., 2012, Generalized joint inversion of multimodal
geophysical data using Gramian constraints: Geophysical
Research Letters, Vol. 39, L09301, 1-7, doi:
10.1029/2012GL051233.
Zhdanov, M.S., and
Liu, X., 2013, 3-D Cauchy-type integrals for terrain correction
of gravity and gravity gradiometry data: Geophysical Journal
International, 194, 249-268.
Zhdanov, M.S., and Cox, L., 2013,
Multinary Inversion for Tunnel Detection: IEEE Geoscience and
Remote Sensing Letters, 10, 1100-1103.
Zhdanov,
M.S., Endo, M, Cox, L.H., Cuma, M., Linfoot, J., Anderson, C.,
Black, N., and A. V. Gribenko, 2013, Three-dimensional inversion
of towed streamer electromagnetic data, Geophysical Prospecting
62(3), 552-572. doi: 10.1111/1365-2478.12097.
Zhdanov,
M. S., M. Endo, D. Yoon, M. Cuma, J. Mattsson,
and M. Jonathan (2014b), Anisotropic 3D
inversion of towed-streamer electromagnetic
data: Case study from the Troll West Oil
Province: Interpretation, 2(3), SH97-SH113, doi:
10.1190/INT-2013-0156.1
Cuma, M., and M.S. Zhdanov, 2014,
Massively parallel regularized 3D inversion of potential fields
on CPUs and GPUs, Computers
& Geosciences, 62, 80-87.
Cai H. and M. S.
Zhdanov, 2015, Application of Cauchy-type integrals in
developing effective methods for depth-to-basement inversion of
gravity and gravity gradiometry data: Geophysics, 80, 1180-1184.
Xu Z. and
M. S. Zhdanov, 2015, Three-Dimensional Cole-Cole Model Inversion
of Induced Polarization Data Based on Regularized Conjugate
Gradient Method: IEEE Geoscience and Remote Sensing Letters,
Vol. 12, No. 6, D81-D94.
Yavich, N, and M S
Zhdanov, 2016, Contraction preconditioner in
finite-difference electromagnetic modeling: Geophysical Journal
International, ggw237.
Zhdanov, M. S., and H Cai,
2016, Redatuming controlled-source electromagnetic data using
Stratton–Chu type integral transformations: Journal of Applied
Geophysics, 126, 1-12.
Cai, H., and M. S. Zhdanov, 2016,
Three-dimensional inversion of magnetotelluric data for the
sediment–basement interface: IEEE Geoscience and Remote Sensing
Letters, 13 (3), 349-35.
Yoon, D., Zhdanov, M.S., Mattsson,
J., Cai, H., and Gribenko, A., 2016, A hybrid finite-difference
and integral-equation method for modeling and inversion of
marine controlled-source electromagnetic data: Geophysics,
Vol. 81, No. 5, E323-336.
Zhdanov, M. S., D. Yoon, and J.
Mattsson, 2016, Rapid imaging of towed streamer EM Data using
the optimal synthetic aperture method: IEEE Geoscience and
Remote Sensing Letters, 14 (2), 262 - 266.
Zhdanov, M.S., Endo, M., Cuma, M.,
Sunwall, D., Malmberg, J-A, McKay, A., Tshering, T., and
Midgley, J., 2016, Large-scale seismically guided anisotropic
inversion of towed-streamer EM data in the Barents Sea:
First Break, Vol., 34, November, 75-79
Zhdanov, M., and H. Cai, 2017, Joint
Inversion of Gravity and Magnetotelluric Data for the
Depth-to-Basement Estimation: IEEE Geoscience and Remote
Sensing Letters, Vol. 14, No. 8, 1228 – 1232.
Čuma, M., A Gribenko, and M S
Zhdanov, 2017, Inversion of magnetotelluric data using integral
equation approach with variable sensitivity domain: application
to EarthScope MT data: Physics of the Earth and Planetary
Interiors, Vol. 270, 113 – 127.
Malovichko, M, N Khokhlov, N Yavich,
and M Zhdanov, 2017, Approximate solutions of acoustic 3D
integral equation and their application to seismic modeling and
full-waveform inversion: Journal of Computational Physics, Vol.
346, 318-339.
Zhdanov, MS , and W Lin, 2017,
Adaptive multinary inversion of gravity and gravity gradiometry
data: Geophysics, G101-G114.
Cai, H., X. Hu, B. Xiong, and M. S.
Zhdanov, 2017, Finite-element time-domain modeling of
electromagnetic data in general dispersive medium using adaptive
Padé series: Computers & Geosciences, 109, 194-205.
Voynov, O. Y., V. I. Golubev, M.S. Zhdanov, and I.B. Petrov, 2018, Migration of Elastic Wavefield Using Adjoint Operator and Born Approximation: in Innovations in Wave Processes Modelling and Decision Making: Springer, 219-240, 11,800-11,807.
Favorskaya, A.V., and M.S. Zhdanov, 2018, Migration of Elastic Fields Based on Kirchhoff and Rayleigh Integrals: in Innovations in Wave Processes Modelling and Decision Making: Springer, 219-240, 11,800-11,807.
Zhdanov M. S., F. A.
Alfouzan, L. Cox, A. Alotaibi,, M. Alyousif, D. Sunwall, and M.
Endo, 2018, Large-Scale 3D Modeling and Inversion of
Multiphysics Airborne Geophysical Data: A Case Study from the
Arabian Shield, Saudi Arabia: Minerals , 8, 271;
doi:10.3390/min8070271.
Favorskaya A. V., M. S. Zhdanov, N. I. Khokhlov, and I. B. Petrov,
2018, Modeling the wave phenomena in acoustic and elastic media
with sharp variations of physical properties using the
grid-characteristic method: Geophysical Prospecting, 66(8),
1485-1502, https://doi.org/10.1111/1365-2478.12639
Zhdanov M. S., V.
Burtman, M. Endo, and W. Lin, 2018, Complex resistivity of
mineral rocks in the context of the generalised effective‐medium
theory of the induced polarization effect: Geophysical
Prospecting 66 (4), 798-817
Lin, W and M. S. Zhdanov, 2018,
Joint multinary inversion of gravity and magnetic data using
Gramian constraints: Geophysical Journal International 215 (3),
1540-1557
Lin, W and M. S. Zhdanov, 2019, The Gramian Method of Joint
Inversion of the Gravity Gradiometry and Seismic Data: Pure and
Applied Geophysics, 176(4), 1659-1672
Tu, X., and M.S. Zhdanov, 2019, Enhancement and sharpening the migration images of the gravity field and its gradients: Pure and Applied Geophysics: 1-23.
Zhdanov, M. S., and X. Tu, 2019, Processing and imaging of
towed-streamer electromagnetic data with synthetic aperture
method: First Break, 37 (12), 51-54.
Zhdanov, M. S., 2020,
Maxwell's equations and numerical electromagnetic modeling in the
context of the theory of differential forms: Active geophysical
monitoring, 245-267.
Wan, L., M Han, HA AlJanobi, and MS Zhdanov, 2020, Feasibility
study of gravity gradiometry monitoring of CO2 sequestration in
deep reservoirs using surface and borehole data: Active
Geophysical Monitoring, 123-140.
Marsala, A., MS Zhdanov, V Burtman, L Cox, D Sunwall, and M Ćuma,
2020, Feasibility study of reservoir monitoring using the induced
polarization effect associated with nanoparticles: Active
Geophysical Monitoring, 141-164.
Zhdanov, MS , and S Wang, 2020, Foundations of the method of
electromagnetic field separation in upgoing and downgoing parts
and its application to marine controlled source electromagnetic
data: Active Geophysical Monitoring, 295-321.
Zhdanov, MS, M Ćuma, and T Ueda, 2020, Three-dimensional
electromagnetic holographic imaging in active monitoring of
sea-bottom geoelectrical structures: Active Geophysical
Monitoring, 269-294.
Black, N., and MS Zhdanov, 2020, Active geophysical monitoring of
hydrocarbon reservoirs using electromagnetic methods: Active
Geophysical Monitoring, 69-95.
Zhdanov, MS, M Han, and L Wan, 2020, Joint iterative
migration of surface and borehole gravity gradiometry data: Active
Geophysical Monitoring, 97-121.
Malovichko, M., N Khokhlov, N Yavich, and M.S. Zhdanov, 2020, Incorporating known petrophysical model in the seismic full‐waveform inversion using the Gramian constraint: Geophysical Prospecting, 68 (4), 1361-1378.
Tu, X., and M.S.
Zhdanov, 2020, Robust Synthetic Aperture Imaging of Marine
Controlled-Source Electromagnetic Data: IEEE Transactions on
Geoscience and Remote Sensing.
Yavich, N. and M. S. Zhdanov, 2020,
Finite-element EM modelling on hexahedral grids with an FD
solver as a pre-conditioner: Geophysical Journal International,
223 (2), 840-850.
Xu, Z., L. Wan,
and M. S. Zhdanov, 2020, Focusing iterative migration of gravity
gradiometry data acquired in the Nordkapp Basin, Barents Sea:
Geophysical Prospecting 68 (7), 2292-2306.
Alfouzan, F. A. , A. M. Alotaibi, L.
H. Cox, and M. S. Zhdanov, 2020, Spectral Induced Polarization
Survey with Distributed Array System for Mineral Exploration:
Case Study in Saudi Arabia: Minerals, 10, 769;
doi:10.3390/min10090769.
Tu,
X., and M.S. Zhdanov, 2021, Joint Gramian inversion of
geophysical data with different resolution capabilities: case
study in Yellowstone: Geophysical Journal International, 226,
1058-1085.
Tu, X., and M.S. Zhdanov, 2022, Joint focusing
inversion of marine controlled-source electromagnetic and full
tensor gravity gradiometry data: Geophysics, 87 (5), 1-57. https://doi.org/10.1190/geo2021-0691.1
Cox, L., M.
Jorgensen, M.S. Zhdanov, D. Pitcher, and J. Niemi, 2022,
Inversion of Airborne Data for Three-Dimensional Conductivity,
Chargeability, and Magnetic Properties Models in Wawa, Ontario,
Canada: Proceedings of 83rd EAGE Annual Conference &
Exhibition 2022.
Nadasi, E.,
A.V. Gribenko, and M.S. Zhdanov, 2022, Data-Space Implementation
of Regularized Gauss-Newton Method in 3D Inversion of the
Lithoprobe and Earthscope MT Data: Proceedings of 83rd EAGE
Annual Conference & Exhibition 2022.
Zhdanov,
M.S., M. Jorgensen, and L. Wan, 2022, Three-Dimensional Gravity
Inversion in the Presence of the Sediment-Basement Interface: A
Case Study in Utah, USA: Minerals, 12 (4), 448.
Zhdanov, M.S., X. Tu, and M. Ćuma, 2022, Cooperative inversion of
multiphysics data using joint minimum entropy constraints: Near
Surface Geophysics, https://doi.org/10.1002/nsg.12203
Zhdanov,
M.S., M. Jorgensen, L. Wan, 2022, Two-step approach to 3D
gravity inversion: Case study in the State of Utah: Proceedings
of First International Meeting for Applied Geoscience &
Energy, 916-920.
Tu, X. and
M.S. Zhdanov, 2022, Joint focusing inversion of marine
controlled-source electromagnetic and full tensor gravity
gradiometry data: Case study of the Nordkapp Basin in Barents
Sea, Norway: Proceedings of First International Meeting for
Applied Geoscience & Energy, 1746-1750.
Tao, M., M.
Jorgensen, and M.S. Zhdanov, 2022, Mapping the salt structures
from magnetic and gravity gradiometry data in Nordkapp Basin,
Barents Sea: Proceedings of First International Meeting for
Applied Geoscience & Energy, 874-878
M.S. Zhdanov,
Ed. 2022, Editorial for Special Issue 'Geophysics for Mineral
Exploration': Minerals, 11 (7), 692.
Nadasi, E., A.V. Gribenko, and M.S. Zhdanov, 2022,
Large-scale inversion of magnetotelluric data using regularized
Gauss-Newton method in the data space: Pure and Applied
Geophysics, 1-22. https://doi.org/10.1007/s00024-022-03147-0
Jorgensen,
M.; Zhdanov, M. S., 2024, Simultaneous Inversion of Magnetic
Data into Induced and Remanent Magnetizations: 85th EAGE Annual
Conference & Exhibition.
Cox, L.;
Zhdanov, M. S.; Prikhodko, A., 2024, Simultaneous Inversion of
AEM Data for 3D Conductivity and Chargeability: Case Study of
TargetEM Data, Canada: 85th EAGE Annual Conference &
Exhibition.
Xian, M.; Xu,
Z.; Zhdanov, M. S.; Ding, Y.; Wang, R.; Wang, X.; Li, J.; Zhao,
G., 2024, Recovering 3D Salt Dome by Gravity Data Inversion
Using ResU-Net++: Geophysics 89 (5), 1-64.
Zhdanov, M.
S.; Wan, L.; Jorgensen, M., 2024, Joint Three-Dimensional
Inversion of Gravity and Magnetic Data Collected in the Area of
Victoria Mine, Nevada, Using the Gramian Constraints: Minerals,
14 (3), 292.
Cox, L.;
Zhdanov, M. S.; Pridhodko, A., 2024, Inversion for 3D
Conductivity and Chargeability Models Using EM Data Acquired by
the New Airborne TargetEM System in Ontario, Canada: Minerals,
14 (3), 237.
Wang, R.;
Ding, Y.; Xu, Z.; Zhdanov, M. S.; Xian, M.; Zhang, Y.; Li, J.;
Jiang, C.; Guo, Z., 2024, Employing MS-UNets Networks for
Multiscale 3D Gravity Data Inversion: A Case Study in the
Nordkapp Basin, Barents Sea: IEEE Transactions on Geoscience and
Remote Sensing, 62, 4502813.
Wang, R.; Xu,
Z.; Lai, C.; Wang, X.; Zhdanov, M. S.; Li, G.; Cheng, Z.; Li,
J.; Zhao, G.; Liang, S.; Li, H.; Zhang, Y., 2024, Reconstructing
2-D Basement Relief using Gravity data by Deep Neuron Network:
An Application on Poyang Basin: IEEE Transactions on
Geoscience and Remote Sensing, 62, 4500911.
Jorgensen,
M.; Zhdanov, M. S.; Gribenko, A.; Cox, L.; Sabra, H.; Prikhodko,
A., 2024, 3D Inversion and Interpretation of Airborne
Multiphysics Data for Targeting Porphyry System, Flammefjeld,
Greenland: Minerals, 14, 1130.